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Abstract In this paper, sensor data are collected by group wise perception for preprocessing and fusion, SSA 
method is introduced to divide the output of LSTM into temperature loading effect with periodic trend, and residual 
data as vehicle loading effect and noise, combined with BDLM method to reduce the noise, increase the accuracy 
and stability of the model, and effectively monitor the bridge structure in real time. Then the Stacking integrated 
learning algorithm is used to mix different kinds of base learners to reduce the variance, which effectively improves 
the generalization ability of the model and realizes the fault warning of the bridge structure. The results show that 
the proposed method can effectively reduce noise, increase the accuracy and stability of the model, and alleviate 
the risk of overfitting. The LSTM-SSA-BDLM model can obtain vehicle-induced strain data under lossy and non-
destructive conditions, and the four damage assessment indexes of "k, R², b and Ta" are stably distributed in the 
range of 0.45~1.55, which can effectively identify the hypothetical bridge damage. The baseline value of the warning 
threshold is pre-tested and estimated using the Pareto distribution model, and the value of the mid-span disturbance 
for a suspension bridge with 95% guarantee is obtained as -0.7076m, which ensures that the baseline value of the 
threshold can meet the standard of material strength. 
 
Index Terms LSTM, SSA method, BDLM method, Stacking integrated learning, bridge structure monitoring, failure 
warning 

I. Introduction 
The construction of highways, railroads and other transportation projects, as an important part of the national 
infrastructure, has also made leapfrog development, making travel faster and more convenient. Due to China's vast 
territory and complex terrain, bridge engineering construction is very important in the process of China's 
transportation network construction. The progress of science, economic development and the continuous maturity 
of relevant design research theories have contributed to the vigorous development of bridge engineering in China, 
and the number of bridges put into operation has grown rapidly in recent years [1]-[3]. Bridge facilities play an 
important role in social development, especially the development of large-span bridges, which largely improves the 
timeliness and convenience of traffic transportation [4]. Bridges in the later stage of operation and maintenance, 
with the increasing service life of bridges, will inevitably encounter some problems. At present, there is a 
considerable part of the bridge service life in more than ten years some, some even reached more than thirty years, 
although these bridges are designed to serve far more than two or three decades, but part of the bridge in service 
due to the long-term environment, load, natural environment, the role of the vehicle and so on many aspects of the 
impact of the bridge, resulting in corrosion aging of the building materials, the accumulation of structural damage to 
the key parts, and in serious cases lead to the collapse [5]-[8]. At the same time, along with the rapid development 
of the economy, some bridges designed and built in the last century are difficult to adapt to the current traffic volume 
needs, traffic flow are far more than the design value, these factors have accelerated the bridge structural damage, 
the bridge is also a challenge to the long-term safe operation [9]. Some of them even lead to major traffic accidents 
during the service period of bridges due to poor management by relevant departments, and the transportation 
department pays more and more attention to the safe operation of bridges. With the continuous emergence of these 
problems, the bearing capacity of bridges will be affected firstly, the safety coefficient of bridges will be reduced, the 
safety will be weakened, and the bridges may not be able to reach the design service life, which will pose a threat 
to people's life safety [10], [11]. By monitoring bridges, timely maintenance and management of bridges can be 
carried out, while reducing the occurrence of accidents. However, the current inspection of bridges is still carried 
out periodically, which is difficult to cope with bridge failures caused by sudden damage and accumulated damage. 
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Therefore, real-time monitoring of bridges and early warning of bridge failures are needed. With various monitoring 
technologies and early warning methods, bridge management has entered into intelligence. Among them, the drive 
of big data and artificial intelligence (AI) accelerates the speed and accuracy of data collection and data calculation, 
and various types of integrated learning algorithms are characterized by accurate predictive performance, which 
provides a guarantee for bridge operation and maintenance [12], [13]. 

The assistance of sensors is indispensable in performing real-time monitoring of bridges, but the sensors used 
and the focus varies from one institute to another. Comisu et al [14] combined visual inspection, multi-sensors and 
augmented reality deterioration modeling to construct a permanent inspection system that can monitor multiple 
forms of damage and structural safety parameters of bridges as well as predict the evolution of deterioration 
mechanisms while reducing the cost of operation and maintenance. VH and Shubhangi [15] created a real-time 
bridge monitoring method based on wireless IoT technology, consisting of communication devices, four types of 
sensing devices, and database storage devices. Lin and Chang [16] developed a real-time monitoring system for 
bridge scour in order to clarify whether the bridge failure under water scour is affected by vibration frequency or 
rigid body motion, and the monitored data were used to construct a bridge safety evaluation index, which provides 
a reference for bridge safety warning. Qowiy et al [17] provided an online real-time monitoring system for railroad 
bridge structures consisting of four types of strain gauges, accelerometers, linear variable displacement and 
proximity wireless intelligent sensors to form an online real-time monitoring system for railroad bridge structures. 
Xu and Qiu [18] established a centralized remote real-time bridge health condition monitoring system by using a 
wireless sensor network and an embedded wavelet neural network for collecting and denoising the vessel data in 
the monitoring range of a long-span bridge, respectively, with the support of Internet-based technology. Zhang et al 
[19] designed a dynamic monitoring system for bridge structures, which captured bridge response data in real time 
through sensors and integrated cloud computing and edge computing to compute the data efficiently. Zeng et al [20] 
applied strain sensors to acquire bridge data in real time and combined with a modal coordinate transformation 
method to transform the data into strain and displacement, and performed real-time structural deformation 
monitoring. Li et al [21] used back propagation neural network and long and short term memory network to learn 
and analyze the long term real time monitoring bridge data based on the on-site structural health monitoring system 
in order to predict the response of the bridge under the complex environment. Kokane and Jadhav [22] emphasized 
on the deflection identification by means of four kinds of sensors, namely, deflection, infrared, water level and 
vibration, which are four types of sensors for real-time monitoring of bridge structural data, introducing IoT control 
technology for real-time monitoring of bridge structure and safety, and setting relevant structural thresholds to 
activate an alarm program when the bridge risk exceeds the thresholds. However, due to the differences in factors 
such as strain and vibration, the impact of data noise interference is significant, making it difficult to guarantee the 
accuracy of these monitoring methods. 

In terms of early warning for bridges, Riyansyah et al [23] proposed a bridge condition assessment and early 
warning system for wireless sensor network monitoring, which performed acceleration-frequency transformation, 
displacement and effective stiffness confirmation of the monitored data, and simulated different levels of bridge 
damages combined with a finite element model to determine the location of bridge damages. Jiang et al [24] 
integrated small wave packet analysis and fuzzy comprehensive evaluation to analyze and judge the damage 
condition of the bridge, and combined with mathematical statistical analysis and principal component analysis to 
provide early warning of structural damage of the bridge on the basis of assessment. Zhu et al [25] used Gaussian 
process model to select the bridge performance data and capture the relevant uncertainty between the data to 
achieve the health state assessment and abnormal warning of the bridge. Wang et al [26] brought together partial 
least squares analysis, Euclidean distance similarity measure, local linear regression model, and principal 
component analysis to develop a methodology that can realize the abnormal frequency warning of bridges with 
different environmental conditions. Li et al [27] predicted and clustered the error values and predicted values of 
bridge response data by using long and short-term memory network and expectation maximization-Gaussian hybrid 
model to accomplish the bridge under the influence of uncertain environmental factors Dynamic Early Warning. 

In this paper, data from the bridge system is collected using swarm intelligence sensing and transmitted by wired 
or wireless means. Multi-sensor fusion using D-S evidence theory algorithm is used to realize the overall structural 
data of the bridge. After that, the Long Short-Term Memory Network (LSTM) method is used to output the 
temperature loading effect with periodic trend through Singular Spectrum Analysis (SSA), and the residual data as 
vehicle loading effect with noise. Meanwhile, the BDLM method is used to dynamically correct the decomposed 
vehicle load effect and noise, and finally the LSTM-SSA-BDLM prediction framework is established as a way to 
accurately estimate the expected behavior of the bridge structure. Then the Stacking method in integrated learning 
is used to improve the generalization ability of the model by reducing the model prediction variance, so as to avoid 
the lower limit problem brought by a single deep model and further improve the model's early warning confidence, 
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and this model is used to assess and warn the damage state of the bridge, as well as determining the dynamic 
threshold of safety warning for the bridge structure. 

II. Stacking algorithm-based bridge structure monitoring and failure warning model 
II. A. Data Processing of Bridge Intelligent Early Warning System 
II. A. 1) Data perception 
Bridge monitoring sensors focus on key areas in conjunction with the characteristics of the specific bridge, its 
environment, and the requirements of the safety assessment during the operational phase. This paper proposes a 
combination of fixed sensors and swarm sensing sensors to monitor bridge equipment. The monitoring programs 
in this paper are mainly divided into: stress, environment, displacement and tilt monitoring. Among them, stress 
monitoring is used to monitor the main girder pressure, vibration acceleration and cable pressure, which is placed 
on the main arch, ground and boom; displacement monitoring is used to monitor the longitudinal slip of the bridge 
deck and the deflection of the arch ribs, which is placed at the arch foot and the arch rib mid-span; tilt monitoring is 
used to monitor the inclination of the bridge, which is placed at the arch foot; and environment monitoring is used 
to monitor seasonal and insolation-induced temperature changes, which is placed at the main arch ribs and the 
ground. 
 
II. A. 2) Data transmission 
Data transmission ensures that a stable physical connection is established between the various components of the 
monitoring system to ensure that monitoring data and commands are transmitted safely, reliably and with high 
quality within the system. The long-distance data transmission between the on-site monitoring unit and the data 
center adopts fiber optic transmission technology, wireless transmission technology and a combination of the two, 
and wireless networks such as NB-IoT and 5G are adopted for bridge areas with inconvenient traffic, complex terrain 
and difficult physical wiring. 
 
II. A. 3) Data pre-processing 
This system uses data cleaning methods to process sensor data in the order of missing values, outliers, and 
duplicate values processing. Firstly, multiple linear regression interpolation is used to fill the missing values. For the 
bridge system at the same moment, if the overall structure of the bridge is abnormal, some of the sensor data will 
change accordingly, so the data from different sensors have correlation, and this method is to use the correlation of 
the data to establish a regression equation to fill the missing values. 

This system uses the nearest neighbor sorting algorithm to screen and remove duplicate values from the dataset. 
First of all, based on the type of sensor, the data set is disaggregated and arranged, and the selected class of 
sensor data is arranged in ascending order, so that similar or the same monitoring data are adjacent to each other; 
then a sliding window of size w  is set up for the sorted sensor data, and each time the data in each row of the 
sliding window is screened for similarity in terms of the Euclidean distance. The first row of data in the window is 
compared with the remaining 1w  rows of data, and if it meets the judgment criterion of Euclidean distance, this 
row of data is deleted, and other data are processed in turn. After data cleaning, data that meets the quality can be 
obtained and input to the fusion system. 

 
II. A. 4) Data fusion 
Data fusion fuses multiple heterogeneous sensors in the following steps: Firstly, the basic probability distribution 
function of the sensor is constructed according to the warning threshold, and the construction method based on the 
sample value is used here. Secondly, the D-S evidence theory algorithm is used for data fusion to obtain the fused 
warning level and realize the warning function. On the basis of the original algorithm, a genetic algorithm is used to 
weight the optimization and improve the credibility of the warning. 
 
II. B. SSA-LSTM-BDLM prediction framework design 
II. B. 1) LSTM networks 
LSTM [28] is a type of recurrent neural network (RNN) whose structure consists of three gates: an input gate, a 
forgetting gate and an output gate. The equations of LSTM are as follows: 

(1) The forgetting gate tf  determines how much previous information should be retained by the model in the 
current time step, i.e.: 

 1( [ , ] )t j t t ff W o h x b    (1) 
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where: ( )   expresses the Sigmoid function; tx  denotes the current input. 1th   is the hidden state, which is 

linearly transformed using the weights fW  and the bias term fb . 

(2) The input gate ti  controls how much new information tc  is stored by the LSTM network into the current cell 

state tc , i.e.: 

 1( [ , ] )t t i t ti W h x b    (2) 

(3) Candidate memories c  that create a new information vector by applying a hyperbolic tangent (tanh) 
activation function: 

 1tanh( [ , ] )t c t t cc W h x b   (3) 

The above equation is similar to the forgetting gate, but the weights and bias terms ( tW  and tb ) are different, 
and the subscript c  denotes the corresponding cellular state, i.e., the state of the information storing the long-term 
memory in the LSTM network. 

(4) Memory cell: 

 1t t t t tc f c i c    (4) 

(5) Output gate: 

 1( [ , ] )t o t t oo W h x b    (5) 

where oW  and ob  are the weight and bias terms, respectively. 

(6) The hidden state th  is the output of the LSTM, which is generated by the weighted product of the cell state 

tc  and the output gate to : 

 tanh( )t t th o c  (6) 

The LSTM parameters in this paper are set as follows: the maximum number of training rounds in the training set 
is 200 using the Adam optimizer, each small batch contains 10 samples, the initial learning rate is 0.005, the learning 
rate is reduced every 100 iteration cycles, and the percentage of learning rate reduction is set to 0.1. 

 
II. B. 2) Singular spectrum analysis methods 
Singular Spectrum Analysis (SSA) [29] aims to decompose the original sequence into a small number of sums of 
independent interpretable components. In this paper, we mainly combine the SSA method to extract the long-term 
trend and periodic terms in the extreme deflection series, and the method steps are as follows: 

(1) Choose a suitable window length L  to lag the original sequence 1 2{ , , , }nx x x  to obtain the trajectory matrix 
as follows: 
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 (7) 

where: n  is the length of the sequence and L  takes the cycle length of the sequence. 
(2) Singular value decomposition (SVD) of the trajectory matrix.SVD will decompose the trajectory matrix into 

three matrices: an orthogonal matrix U , a diagonal matrix S  and another orthogonal matrix V : 

 X USV ú  (8) 

(3) Principal component grouping: By grouping the corresponding columns in ,U S  and V , the principal 
components of the time series can be obtained. These principal components can represent different characteristics 
of the time series, such as trend, periodicity and noise, etc. for the i th principal component: 

 t t t tT s u v •  (9) 
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where ts  is the element on the diagonal of the diagonal matrix S, called the singular value, which represents the 

energy magnitude of each component of the time series. tu  and tv  are the column vectors of U  and V , which 
denote the left singular vector and the right singular vector, respectively. 

(4) Sequence reconstruction: the selected principal components are inverted to obtain the reconstructed 
sequence. For the selected principal components in this paper the reconstructed sequence is as follows: 

 2 1 2X T T   (10) 

Diagonal averaging is then performed to convert back to the original sequence format. 
 

II. B. 3) BDLM method considering error updating 
BDLM is a dynamic linear model based on Bayesian statistical methods.The dynamic part of the BDLM model 
consists of a linear state-space model for describing the state of the system over time. The core idea of the BDLM 
method for error parameter updating is to use the t  distribution to approximate the overall error distribution, defined 
as follows. 

Monitoring Equation: 

 , ~ (0, )t t t ty v v N V   (11) 

Combined with the physical a priori knowledge that the vehicle loading effect and noise etc. have a linear trend 
during the monitoring time, in order to estimate the true state information after noise elimination, the state equation 
can be written as: 

 1 , ~ (0, )t t i t t tG w w N W     (12) 

Initial information: 

 0 0 0 0( , ) ~ ( , )| tD N m V C   (13) 

 0 0 0( | ) ~ [ / 2, / 2]D n d   (14) 

where: ty  and t  are observation and state values, respectively; tv  and tw  are independent and mutually 

independent monitoring and state errors; 1tG   is the state transfer coefficient; tV  is the unknown variance of the 

monitoring error, tW  is the state error variance; ( )N   is the normal probability density function; ( )   is the chi-

square distribution probability density function; and 1 1
tV   . 

The detailed probabilistic recursion method is as follows: 
(1) 1t   moment of the posterior distribution: 

 1 1 1 1( | ) ~ ( , )t t t tD T m C      (15) 

 1 1
1 1( | ) ~ ( , )

2 2
t t

t t

n d
D  

    (16) 

(2) The prior distribution of the t  moment: 

 1( | ) ~ ( , )t t t tD T m C   (17) 

 1( | ) ~ ( , )
tt t s t ty D T f Q  (18) 

(3) The posterior distribution at moment t: 

 ( | ) ~ ( , )i i i iD T m C  (19) 

Its recursive relationship: 
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 (20) 

The initial value of the noise distribution parameter tV  is replaced by the estimate 1tS  . 
 

II. B. 4) LSTM-SSA-BDLM approach 
The LSTM-SSA-BDLM state space equations established in this paper are as follows: 

 1( ) , ~ (0, ), ~ (0, )t t t t t t t tZ G Z X Y v u v N V u N U      (21) 

 1 , ~ (0, )t t t t tX X w w N W   (22) 

Where ( )G   denotes the LSTM prediction function, the input 1tZ   is the sensor monitoring data at the moment 

1t  , and tZ  is the predicted value updated based on the LSTM network at the moment t , which can be regarded 

as the expectation of the prediction distribution due to the existence of prediction error. tX  denotes the vehicle 

loading effect, and tY  is the long-term trend and periodic trend data obtained from SSA decomposition. tv  is the 

vehicle loading noise, and tu  is the random fluctuation of long-term trend and periodic trend obtained by SSA 

method decomposition. Where tu  is small enough to be negligible. 
The forecasting accuracy of the model can be measured by the Root Mean Square Error (RMSE), which is very 

sensitive to the reflection of extra-large or extra-small errors in a set of measurements, and thus can be a good 
reflection of the forecasting accuracy, calculated as follows: 

 
2

1

( )
n

t t
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n




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 (23) 

where: ty  and ty  are the monitored and predicted values, respectively; n  is the number of predicted samples. 
 

II. C. Prediction integration strategies and dynamic warning interval setting methods 
II. C. 1) Optimization algorithm based on integrated learning 
The integration learning method is applicable to deep learning models, which can further improve the generalization 
performance of the models. Based on this, this paper adopts the integration learning method to integrate the 
prediction model in order to improve the generalization ability of the response prediction model. 

(1) Model generalization ability measurement index 
In statistical learning, it is common to use bias and variance to measure the generalization ability of a model. 

Where the bias ˆ[ ]Bias f  is the mean of the prediction error and represents the statistical shift of f  between the 

model f̂  obtained from training and the ideal model. The variance ˆ[ ]Var f  is the variance of the prediction value, 

which indicates the size of the difference between the models obtained from each learning. 
(a) Mathematical definition of generalization error 
For the sample set 1 1{( , ), , ( , )}n nD x y x y  , where the input features 1{ , , }nx x x   , and their corresponding 

labels 1{ ,..., }ny y y  . There exists an ideal optimal model f  such that ( )y f x   . where   is unlearnable 

independent noise. Thus the model f̂  is made as close as possible to the ideal model f  by learning the model 

f̂  in the sample set D  during the training phase of machine learning. The bias-variance decomposition formula 

for the MSE decomposition of the model on the data set D  is: 

 
2 2
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 (24) 
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Also since the expectation of the true value [ ]E f f , the expectation of the noise   [ ] 0E   , and the variance 

of the noise is denoted as 2[ ]Var   , the MSE of the model on the test set can be specifically expressed as the 

bias ˆ[ ]Bias f , variance ˆ[ ]Var f , and data collection error 2  composed as: 

 2 2 2ˆ ˆ ˆ[( ( )) ] [ ] [ ]E y f x Bias f Var f      (25) 

(b) Generalization error reduction methods 
The generalization error of the model can be reduced by way of reducing the above three errors, and in practical 

engineering, the 2  can be effectively reduced by improving the quality of data collection and reducing the noise 

of the data itself. The bias ˆ[ ]Bias f  can be reduced by the way of increasing the complexity of the neural network 

model or the way of Boosting in integrated learning. 
(2) Introduction to the Integration Algorithm 
Bagging is a method of combining multiple unstable models to obtain a relatively stable model. Bagging requires 

firstly to train n  homogeneous base models independently and in parallel at the same time, and after the models 
have been trained, the outputs of the base models are averaged together to obtain the final result. 

Boosting is a method that combines multiple weak models with high bias to obtain an integrated model with low 
bias.The Boosting method first trains n  weak models sequentially, and then the latter model is retrained again 
using the output of the previous model as input, so that the model focuses on samples that have a high prediction 
error of the previous model. 

The Stacking algorithm reduces variance by mixing different kinds of base learners. It can directly train the base 
model using the same dataset, reducing the variance of the predicted values of the regression task through the 
variety of model types. 

 
II. C. 2) Stacking-based weight estimation algorithm 

The base model learning algorithm is denoted as algorithm 1,..., K  , and the metamodel learning is denoted as 

algorithm  . For the i th structural response prediction result output based on the learning algorithm at moment 

T  is denoted as ,ˆ( )t T T iX y  , where {1,..., }i K . Notate ˆTy , simplifying as 1ˆ ˆ ˆ[ , ..., ]F T
i i iy y y , where F  is the 

number of variables of the multivariate prediction task, i.e., the number of sensors to be predicted. The outputs of 
the K  base models are spliced as 1ˆ ˆ( ,..., )oc

KY y y . 
(1) Breiman's method 
Breiman proposes the generalized linear model and the Stacking method [30] combined with an integration 

strategy that assigns weights to each base model based on its performance on the historical craniometry task. The 
Breiman method is formulated as follows: 

 
1
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K

t t
i

X y 


  (26) 

where the scalar ˆiy  is the prediction of the i th base model and i  is the corresponding weight. For {1,..., }i k , 
the weights assigned to each model need to satisfy the following conditions: 

 
1

1, 0
i

i i

k

 


   (27) 

The weights i  contributed by the base model should be non-negative and the sum of the weights i  is 1. 
In the multivariate task prediction integration task, there is a need to extend the method for Breiman, which targets 

the model ˆiy  with a scalar output, to an integration method for vectors ˆiy : 

 
1

ˆ( ) i

K

i
iX y 



  (28) 

For the multivariate prediction of the task of the need to consider the contribution of each target by each model, 
and then the allocation of weights, this paper multivariate ŷ  prediction of the task of integration of the formula for: 

 
1

ˆ ˆ( )
K

i i
i

y X y 


   (29) 



Big data and AI-driven research on real-time monitoring and fault early warning of bridge structures using integrated learning algorithms 

131 

where, for {1,..., }i K  , i  is the weight matrix of the multivariate vector ˆiy  for the output of the i th base 
model: 
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For {1,..., }j F , j
i  is the weight of the contribution of the model at the i th model on the prediction of each 

target ˆ j
iy . 

Thus the output of the final integrated model can be written as: 
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where the ( )X  output of the integrated model has a multivariate vector with the j th row corresponding to the 

integrated output value of the structural response of the j th sensor, obtained by weighting and summing the 

outputs of each model for that sensor. And the weights j
i  need to satisfy the following two conditions: 
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That is, the weights contributed by each model need to be non-negative and the sum of the contribution weights 
of each model for each prediction target is 1. The estimation of the optimal weights *  under the above constraints 
is then carried out by least squares on the dataset D : 

 
*

2arg min || ( ) || , . .(5 8)oc
D Y y s t


     (33) 

(2) Dynamically integrated weight estimation 
The Breiman method uses historical data for the estimation of individual base model weights, which refers to data 

collected in the past that may contain a wider range of situations, a larger range of variability, and a larger sample. 
In order to discuss the implications of long-term weight estimation and short-term weight estimation for the new 
prediction task, this paper further discusses two methods that consider short-term estimation based on the Breiman 
method. They are: 

(a) LS-E 
The weights of the base model are estimated using the historical data LD  and the combined post-data of the 

neighboring cycles sD , i.e., the data used for weight estimation is ( , )L SD D D . 
(b) S-E. 
Weight estimation of each base model using data from the adjacent previous cycle sD . The factors affecting the 

integration effectiveness of the Stacking method include the selection of the base model in addition to the integration 
strategy. This chapter mainly focuses on the integration algorithm, and the selection aspect of the base model is 
not emphasized. Since the integration method of Stacking requires the base model to be a strong model with 
excellent prediction performance, and considering that the integration of a poorly performing model will reduce the 
accuracy of the integrated model, the LSTM-SSA-BDLM model is chosen as the basis of the integrated model for 
the study of the Stacking method. 

III. Analysis of early warning results of bridge structure monitoring and fault diagnosis 
III. A. Anomaly data diagnosis based on bridge structure 
III. A. 1) Subject of the study 
In this section, the monitoring data of Jiangyin Bridge, a large-span bridge, is used as a research object to 
demonstrate the feasibility of diagnosing anomalous data based on LSTM-SSA-BDLM. 
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Jiangyin Bridge, a 1385m main span suspension bridge located in Jiangsu Province, China, was completed in 
1999 and became the largest span bridge in China at that time. The main span is a streamlined flat steel box girder 
with a height of 3 m and a width of 36.9 m. The heights of the south and north towers are 187 m and 184 m. The 
health monitoring system of the JYB was upgraded in 2005 to include anemometers, Global Positioning System 
(GPS), fiber optic strain gauges, thermometers, and accelerometers. Five transverse accelerometers and ten 
vertical accelerometers are arranged along the main girders at 1/8, 1/4, 3/8, 1/2 and 3/4 of the main span, and the 
sampling frequency of the accelerometers is 50Hz. 

 
III. A. 2) Lateral acceleration during ship collision at Jiangyin Bridge 
At about 20:14 on June 2, 2005, a pile driving vessel collided with the main girder of the JYB. Meanwhile, the 
structural health monitoring system successfully recorded the acceleration response of the bridge. Since the ship 
collision force is generally along the transverse direction, the transverse acceleration is extremely sensitive to ship 
impact and is considered in this section. Although the impact location was close to 1/4 of the main span, the 
accelerometers AD5CL and AD7CL recorded some unknown events simultaneously. Therefore, only the AD9CL 
accelerometer was selected to verify the validity of the LSTM-SSA-BDLM. The average value was taken for every 
50 points to reduce the measurement noise and uncertainty. Figure 1 shows the lateral acceleration during ship 
impact on Jiangyin Bridge. It can be seen that the lateral acceleration fluctuates significantly around 20:15 when 
the ship impacts the bridge. 

 

Figure 1: Transverse acceleration during collision of jiangyin bridge 

The acceleration has a nonlinear strong dynamic change characteristics, but no obvious periodicity. Therefore, 
LSTM-SSA-BDLM is established to identify the outliers of acceleration response of Jiangyin Bridge. The form of 
LSTM-SSA-BDLM is as follows: 

  1 0 1 0AcF   (34) 

 
,1 ,2

1 1 0 0

0 1 0 0

0 0

0 0 0 0

Ac
Ac Ac

G
 

 
 
 
 
 
 

 (35) 

 2
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 2 2 2[( ) ( ) ( ) 0]AR
Ac Ac Ac AcW blockdiag      (37) 

The LSTM-SSA-BDLM parameters to be estimated are: 

 ,1 ,2
AR

Ac Ac Ac Ac Ac Ac Ac
            (38) 

To ensure computational efficiency, the LSTM-SSA-BDLM is built using the acceleration response every 10 
minutes, and then the data within the next 10 minutes are diagnosed. Therefore, the LSTM-SSA-BDLM parameters 
and thresholds are updated every 10 minutes to accommodate different acceleration characteristics. Note that when 
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consecutive anomalous data are recognized, the updating of the model parameters is stopped until the acceleration 
within the next 10 minutes is free of outliers. The first 20% of data within each 10-minute period is used to estimate 
the LSTM-SSA-BDLM parameters and thresholds. For acceleration data within 19:00 to 19:10, the LSTM-SSA-
BDLM parameters are: 

 4 5 5 50.4177 0.441 2.26 10 6.9 10 1.26 10 5.92 10c
   

          (39) 

With its threshold value of 9.0516, this paper represents the change in the log-likelihood function between 19:00 
and 19:10. Figure 2 shows the threshold and the log-likelihood difference between 19:10 and 22:00 for the 
neighboring time steps. The algorithm stops when the number of iterations reaches only 27, which is partly due to 
the fact that there are fewer parameters to be estimated, and partly an indication of the efficiency of the initialization 
of the subspace method. 

 

Figure 2: The logarithm of the threshold and the adjacent time step 

The variation of the log-likelihood differences is shown in Figure 3. It can be noticed that all log-likelihood 
differences are smaller than the threshold between 19:10 and 20:14. However, the log-likelihood differences 
suddenly increase around 20:10:10 and most of the log-likelihood differences are significantly above the threshold 
between 20:10:10 and 20:15:20. After 20:15:20, the log-likelihood difference drops below the threshold. This 
duration corresponds to the time of the ship collision, proving the effectiveness of diagnosing the acceleration data 
based on LSTM-SSA-BDLM. Based on the above analysis results, it can be known that the outliers caused by the 
ship collision lasted for nearly 5 minutes. Based on the estimated LSTM-SSA-BDLM parameters, further predictions 
can be made using Bayesian inference. 

 

Figure 3: Logarithmic variation 

The results of the forward step prediction based on LSTM-SSA-BDLM are shown in Fig. 4. Fundamentally, data 
reconstruction by LSTM-SSA-BDLM belongs to the prediction problem, i.e., the prediction results are utilized to 
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replace the anomalous data. Since LSTM-SSA-BDLM only performs well in finite step forward prediction, it is not 
accurate in diagnosing continuous outliers. In addition, acceleration change is a typical nonlinear stochastic dynamic 
process, and the predicted values are not substituted for the detected acceleration anomalies in order to ensure the 
accuracy of LSTM-SSA-BDLM. The LSTM-SSA-BDLM based method only needs 0.3546s to process 500 
acceleration data and estimate the model parameters, so the method detects a single data point consumes an 
average of 0.0312 s. From the above analyzed results, it can be seen that the anomaly identification method based 
on the LSTM-SSA-BDLM has a better performance in terms of both accuracy and computational efficiency. 

 

Figure 4: A forward prediction result based on LSTM-SSA-BDLM 

III. B. Bridge Damage State Assessment and Early Warning 
Damage assessment for the bridge structure as a whole should focus on the performance of multiple measurement 
points rather than a single measurement point; therefore, the damage assessment metrics averaged over eight 
measurement points (the mean of the metrics at multiple measurement points) were used for bridge damage 
assessment. The regression error aT , the coefficient of the primary term k  and the constant term b  of the 

regression equation, and the goodness-of-fit of the scatter points about the regression equation 2R  were used, 
and due to the difference in the physical significance and order of magnitude of the four indicators of damage 
assessment of 2, ,k R b  and aT , a value of the converted bias C  was introduced for the convenience of 
examination to conduct the unified conversion: 

 mean

mean

A
C

B
  (40) 

where mesmA  is the mean value of multi-measurement point index of one test set; meanB  is the mean value of all test 

sets mesmA . 
In the selected period of the measured data, it was determined that there was no new damage to the bridge 

during the period by manual inspection of the bridge, so the measured data were considered to be nondestructive, 
and thus the measured data of the period could be used as the benchmark for determining whether there was new 
damage or not. The vehicular strain data of the left span of the main bridge of Siantang Bridge in a certain month 
were selected and inputted into the measured multi-input correlation model, and the four damage assessment 
indexes were calculated in a period of 1 h. The data were then analyzed and the damage assessment indexes were 
calculated in the same period. 

 
III. B. 1) Numerical distribution of damage assessment indicators for measured data 
The distribution of the measured data damage assessment index values is shown in Fig. 5, where the solid lines 
are the upper and lower limits of the distribution, where (a)~(d) represent the conversion errors under the conditions 
of k, R², b and Ta, respectively. It can be seen that: k conversion deviation is 0.4754~1.5432, R² conversion deviation 
is 0.9349~1.0785, b conversion deviation is 0.7106~1.4505, and Ta conversion deviation is 0.9537~1.0438, and the 
four indexes are all stably distributed within a certain range, with less fluctuation, indicating that there is no new 
damage of the bridge in the near future. 
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(a)Conversion deviation of k    (b)Conversion deviation of R² 

  

(c)Conversion deviation of b   (d)Conversion deviation of Ta 

Figure 5: Measured data damage assessment index distribution 

III. B. 2) Numerical distribution of damage assessment indicators for simulated data 
In order to judge the sensitivity of the long-term distribution of the four damage assessment indexes to damage, a 
certain number of non-destructive and destructive data sets were generated by using the finite element model and 
input into the simulated multi-input correlation model for the calculation of the four damage assessment indexes. 
The distribution of the damage assessment indexes in the simulated data is shown in Fig. 6. The values in the figure 
are the maximum values of the damage assessment indexes on the lossless data set, where (a)~(d) represent the 
conversion errors under the conditions of k, R ², b and Ta, respectively. From the figure, it can be seen that the 
thresholds of k, R ², b and Ta are 1.0783, 1.073, 1.4804 and 1.0454, respectively, while more than 90% of the index 
points in the damaging condition 1 (5% damage) exceed the thresholds of the corresponding indexes, and all the 
indexes in the damaging condition 2 (10% damage) have already exceeded the thresholds. 

 

(a)Conversion deviation of k          (b)Conversion deviation of R² 
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(c)Conversion deviation of b   (d)Conversion deviation of Ta 

Figure 6: Numerical distribution of simulated data damage assessment index 

III. B. 3) Rate of exceedance of injury assessment indicators 
The exceedance rates of the four damage assessment indicators in the two damage conditions are shown in Table 
1. From the table, it can be seen that there is an exceedance rate of less than 10% in the damage condition 1, 
which may be due to the relative insensitivity of the corresponding damage assessment indicators to the low 
percentage of damage, and then it is necessary to combine with the exceedance of other indicators to determine 
whether it is necessary to issue an early warning. In fact, there is a certain probability that a single indicator will 
generate false alarms in a certain assessment, therefore, choosing to use four indicators for damage assessment 
at the same time can analyze whether the data contain damage characteristics from multiple perspectives, thus 
reducing the probability of false alarms. Therefore, assuming that 75% of the damage assessment indicators exceed 
the limit at the same time, a warning can be issued. 

In summary, it can be seen that in the non-destructive state, each damage assessment index is stably distributed 
within a certain limit value range. If the bridge structure is damaged during the subsequent monitoring period, the 
strain correlation between each measurement point changes, and the damage identification and early warning of 
the bridge structure can be realized by the multi-input model and multi-measurement point damage assessment 
indexes constructed in this paper. 

Table 1: Four damage assessment indicators are under two damage conditions 

Loss condition 
Overlimit rate(%) 

Warning rate(%) 
k  2R  b  aT  

1 90 100 100 100 90 

2 100 100 100 100 100 

 
III. C. Determination of dynamic thresholds for early warning of structural safety of bridges 
In this section, the Pareto distribution model is utilized to pre-test and estimate the baseline value of the warning 
threshold as a means of ensuring that this threshold baseline value will meet the assurance rate of the material 
strength criteria, and will also need to be compatible with the baseline service life of the bridge design. By focusing 
on historical data, the likelihood of such extreme events occurring in a given time domain can be estimated, and the 
threshold benchmark value can be set accordingly to the value of the correlation index under this probability. In this 
way, in a new scenario, the system initiates an alert once the metric value of the event that occurs exceeds the 
threshold baseline value. The specific steps are as follows: 

Step 1: Prepare data. Collect relevant historical data, including the variable values of the factors and their 
corresponding warning situations. Step 2: Establish Pareto distribution model. Based on the collected data, establish 
a generalized Pareto distribution model. 

Specifically, the Pareto distribution model is a probabilistic model suitable for dealing with extreme cases such as 
tail data and outliers. 

Step 3: Set the guarantee rate. According to the engineering needs, set the assurance rate of the threshold base 
value, aiming to maintain the consistency of the threshold base value with the standard value taken for material 
strength and the bridge design base period. 

Step 4: Obtain the threshold quantile. By modeling the Pareto distribution and setting the base period to be within 
T years, the px  estimate of the quantile can be expressed as: 
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where the solution p  of (1 ) 1Tp Pr    is the quantile corresponding to the credibility of the early warning 

indicator; ̂  is the estimate of the shape parameter; ̂  is the estimate of the scale parameter; n  is the number 

of samples; and uN  is the number of samples exceeding the threshold. 
Step 5: Setting the warning threshold benchmark value Set the quartile obtained in step 4 as the warning threshold 

benchmark value. The system will issue a warning signal when the observed indicator value exceeds this threshold 
datum value in a new situation. 

This threshold is reached when the state of the bridge really reaches a dangerous level. Therefore a mild warning 
threshold needs to be established. The mid-span deflection of the bridge is used as the warning benchmark to verify 
the feasibility of determining the dynamic anomaly warning threshold proposed above. It is known that the sampling 
frequency of the sensor is 25Hz and the accuracy of the dynamic measurement in the vertical direction is 
32mm2ppm. The determination of dynamic thresholds is investigated based on the mid-span disturbance data of 
this suspension bridge. 

Figure 7 shows the four-month mid-span disturbance data for the study bridge for the year 2024. After the 
predicted data is processed for temperature effect separation and noise reduction, Pareto polar analysis is utilized 
to predict the base value of the threshold. In this section, the threshold value is taken as 0.35 m. The confidence 
level is 0.95, and the corresponding threshold solution is calculated as 0.7076, so the mid-span disturbance value 
of this studied suspension bridge with 95% guarantee is -0.7076 m. Finally, temperature correction is performed for 
this threshold, so that the threshold line changes in real time, and the complete dynamic threshold line can be 
obtained. 

 

Figure 7: The study of the bridge in the four months of 2024 is the average 

IV. Conclusion 
In this paper, based on the damage condition strain data of bridge structure, a bridge damage early warning method 
is developed using LSTM-SSA-BDLM network and integrated learning algorithm under the background of big data 
and AI-driven, and the conclusions obtained are as follows. 

(1)The relationship between temperature and strain can improve the diagnostic accuracy of the anomaly data of 
LSTM-SSA-BDLM, and the method based on LSTM-SSA-BDLM can well capture and reconstruct the change 
characteristics of the strain time series. 

(2) Using the measured data of the main bridge of Siantang Bridge and the established damage early warning 
method for condition assessment, the four damage assessment indexes of “k, R², b and Ta” are all stably distributed 
within a certain range, indicating that there is no new damage in the bridge recently. 

(3) Considering that with the increase of traffic pressure, more pressure and wear and tear may be formed on 
related infrastructures such as roads and bridges, this chapter proposes that the threshold values should be updated 
periodically to accurately reflect the current state and possible risks of the structure, and to avoid serious problems 
or damages of the structure due to exceeding the capacity by issuing early warning and taking appropriate measures. 
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