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Abstract The article constructs TSM Tree storage model for big data stream, optimizes the fast query method by 
using APSO algorithm thinking, and constructs fast query model for big data stream by using discrete wavelet 
transform. The storage and retrieval performance of the big data stream storage model and fast query model are 
verified respectively.The TSM Tree storage model has high storage efficiency. The storage rate of the TSM Tree 
storage model increases rapidly when the file size is larger than 20MB, and the TSM Tree storage model is suitable 
for storing big data files over 20MB. In this paper, the fast indexing method has the highest Put execution efficiency 
and becomes the secondary indexing method for single condition query. The fast indexing method in this paper is 
optimized on multi-conditional query with the fastest response time of 0.954, 0.898, and 0.907s. 
 
Index Terms apso algorithm, TSM Tree, data storage model, fast querying 

I. Introduction 
With the continuous development of information technology, big data streams have become an important 
information resource in today's society [1], [2]. In order to effectively manage and utilize big data streams, various 
storage methods have emerged [3]. The common big data stream storage methods are distributed file system, 
columnar storage database, NoSQL database, in-memory database and distributed storage system [4], [5]. The 
choice of big data stream storage methods should be evaluated based on actual requirements and scenarios [6]. 
Distributed file systems are suitable for scenarios requiring high fault tolerance and scalability, columnar storage 
databases are suitable for scenarios requiring high-speed querying and analyzing large amounts of data, NoSQL 
databases are suitable for scenarios requiring high concurrent read/write and storing semi-structured data, in-
memory databases are suitable for scenarios requiring real-time processing and analyzing large-scale data, and 
distributed storage systems are suitable for high reliability and high availability and distributed storage systems are 
suitable for scenarios requiring high reliability and high availability [7]-[10]. Choosing the appropriate storage 
method for big data streams according to specific needs can improve the efficiency of data processing and analysis, 
and thus realize better business value [11], [12]. 

In database systems, the main role of indexing is to make the search or reading easier and faster, and to find the 
needed part quickly and accurately in a large pile of information [13], [14]. In general, indexes require a lot of time 
and space to build, but they can improve the efficiency when reading [15]. Different index structures and query 
methods are suitable for different scenarios. Common types of indexes include B-tree indexes, hash indexes, bitmap 
indexes, full-text indexes, etc [16]-[18]. Indexing methods, on the other hand, are specific algorithms and strategies 
implemented in a specific database system according to the indexing type [19], [20]. Common indexing methods 
include sequential scanning, binary lookup, hash lookup, and bitwise mapping [21], [22]. 

The article adopts methods such as multi-computer distributed storage and compressed storage for data storage 
for large data streams, and proposes an improved TSM Tree storage model based on the LSM Tree. With the 
optimization thinking of Adaptive Particle Swarm Optimization (APSO) algorithm based on adaptive inertia weights, 
the data stream detection method is optimized, and the discrete wavelet transform summary and indexed distributed 
data stream are introduced to construct the fast query model of data stream. The storage performance of the data 
stream storage model constructed in this paper is analyzed to explore the storage efficiency of TSM Tree storage 
model. Finally, the insertion performance, single-conditional query performance and multi-conditional query 
performance of the proposed data stream fast query model are verified. 
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II. Large data stream storage and fast indexing methods 
II. A. Large data stream storage 
II. A. 1) Data storage 
Due to the massive nature of the data, if it is stored directly, then hundreds of millions of data will require a large 
disk storage space, which is not only costly, but also very inconvenient to manage, so this paper uses the 
appropriate compression algorithms as well as adopts the multi-machine distributed storage, this subsection will be 
specifically introduced in this paper to design the storage method. 

(1) Multi-computer distributed storage 
In this paper, multi-machine distributed storage adopts a decentralized design as shown in Figure 1, all nodes 

store data individually, communicate with each other through the intermediate cache to achieve, due to the timed 
collection of data, so every day and every month to produce the data is quite, so the realization of load balancing is 
to ensure that each machine to store the data for the same number of days can be. In this paper, the first 
preprocessing, the data where the server information is stored in the table, so that in the index, only need to find 
the data can be found to the corresponding server, and then the use of each storage node storage index for the 
second lookup. 

client

Index

Cached Data Tables

Database 1 Database 2 Database 3

 

Figure 1: Overall storage design 

(2) Compressed storage 
The data contains time as well as attribute information, so the data types are mainly time type, integer, floating 

point, Boolean and string. In order to solve the problem of large amount of time series data, this paper adopts 
different compression algorithms for different data types, and then the compressed data is merged into a byte stream 
for storage, the specific process is shown in Figure 2. 
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Figure 2: Data compression process 
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Compression of integer data: When storing, if the data is the first integer data stored, then it is stored directly 
without compression. If it is not the first data, then calculate the difference between the data and the previous integer 
data, and then Zig-Zag encode the difference result, so that the difference can be mapped to a positive integer, and 
then data compression is carried out in different cases: (1) due to the continuity of time data, so the difference will 
appear a lot of repetitions of the data, and if the difference occurs to be the same, in order to reduce the storage 
space, it is only necessary to store the difference value and the number of times the difference appears, and then 
the difference appears again on the difference storage can be added one. (2) If the difference exceeds a certain 
size, then it will be stored directly and will not be compressed. (3) If the above two cases are not satisfied, then the 
encoded data will be stored directly with simple8b algorithm. 

Time type data compression: in the time series data, each data have time, the time data compression method is 
similar to the integer type, the first to determine the time data is not stored in the first time type data, if so, then do 
not compress the direct storage, if not, then the previous time for the difference. Difference and then compressed, 
determine the difference is the first difference stored, if so, then do not compress, otherwise calculate the difference 
with the previous one. If the difference is zero, which means that the data is stored at the same interval, then only 
the zero value and the number of times it occurs are stored. Otherwise the simple8b algorithm is used to store the 
new compression. 

Boolean type compression is relatively simple, Boolean type generally accounts for a byte, compressed storage 
can be Boolean data with a bit of storage, a byte of 8 bits can be stored 8 Boolean values. Strings are sequentially 
added to the byte stream after compression with the snappy algorithm. 

Floating-point data compression: float type for 8 bytes, the main idea is that the byte stream in accordance with 
a certain format for continuous appending. First of all, similar to the integer data compression method, the first float 
is not compressed, the difference is that the second after the data need to be different from the previous float 
operation delta, delta is a 64-bit unsigned integer. If delta is 0, it means that the difference is 0, that is, the floating-
point number and the last data duplication, only need to store a 0 can be. If it is not 0, first store a 1, then use 5 bits 
to store the number of leading 0s, 6 bits to store the number of trailing 0s, and finally write the valid bits. 

 
II. A. 2) Storage model 
(1) LSM Tree 

The traditional b-tree and hash storage structure although the query speed is very fast, but the hash storage does 
not support traversal operations, while the b-tree can not meet the requirements of fast data writing, so in this paper, 
we study the LSM tree to improve the write performance. 

LSM tree is a log-structured merge tree [23], the main idea is to change every time to write the disk to a one-time 
batch write to reduce the number of random seeks on the disk. Each time the data is updated, the idea of caching 
is utilized to store the latest data temporarily in memory, and then the cached data is directly merged into the disk 
data when it accumulates to the pre-set threshold of the cache.The specific structure of the LSM tree is shown in 
Fig. 3. 
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Figure 3: LSM Tree internal structure 

(2) TSM Tree 
TSM tree inherits the advantages of LSM tree and also has good insertion efficiency for data. The difference is 

that the LSM tree stores the data directly, resulting in the need for a large storage space, while TSM can use 
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compressed data.TSM greatly improves the speed of reading data, because when looking for data, generally more 
interested in the most recent data, so most of the time the query does not go to query the TSM File, but the query 
results are returned directly in the Cache. 

 
II. B. Fast indexing method based on APSO algorithm optimization 
II. B. 1) Particle swarm optimization algorithm based on adaptive inertia weights 
Particle swarm algorithm is a stochastic search heuristic algorithm based on group intelligence, which is able to 
efficiently search for problems with a large solution space and find candidate solutions under the premise of knowing 
less information. In this paper, particle swarm algorithm is introduced to solve the hyperparameter optimization 
problem of long and short-term memory neural networks. The particle swarm algorithm will quickly locate the 
particles near the optimal candidate solution in the early iteration period, and in the later iteration period, the particles 
will carry out finer-grained optimization in the vicinity of the optimal candidate solution in order to ensure the 
accuracy of the optimization results. However, at the same time, due to the premature convergence problem 
inherent in the particle swarm algorithm, an adaptive inertia weighted particle swarm algorithm (APSO) is proposed 
on the basis of the basic particle swarm algorithm for balancing the global and local searching behaviors of the 
particles [24], in order to improve the ability of the particle swarm algorithm to jump out of the local optimum. 

Inertia weight is a very important parameter in particle swarm algorithms, Shi et al. first introduced the concept of 
inertia weight into particle swarm algorithms, which indicates how much the current state of a particle remembers 
its historical state, taking values between [0, 1]. A larger inertia weight is beneficial to the global search ability of the 
particle swarm algorithm, while a smaller inertia weight is beneficial to the local search ability of the particle swarm 
algorithm [98, 120], which can be adjusted to achieve the purpose of balancing the global and local search behaviors 
of the particle swarm algorithm. After the introduction of inertia weights, the convergence speed of the particle 
swarm algorithm is improved, which is analyzed for the following two reasons: (1) In the early iteration period, the 
inertia weights are large, the global search ability is strong, and the local search ability is weak, at this time, the 
particles can be coarsely and rapidly localized to the vicinity of the optimal candidate solution. (2) In the late iteration, 
the inertia weight is small, the global search ability of the particle is weakened, and the local search ability is 
strengthened, at which time the particle is able to perform a finer-grained search in the range of the optimal 
candidate solution to optimize to the solution with higher accuracy. This search avoids a lot of fearless repetitive 
calculations, so the convergence speed is enhanced. 

In the particle swarm algorithm, inertia weights are regulated by static constants, random numbers, time-varying 
and adaptive changes. Linear decreasing inertia weight is a commonly used regulation, compared with the complex 
calculation of the particle swarm algorithm, linear decreasing inertia weight seems relatively single, which can not 
control and balance the searching behavior of the particles well. In the late iteration of the particle swarm algorithm, 
the inertia weights are small, when the particles of 

,
t
i dpbes t   and dgbest   are closer, then all the particles will 

converge to the same point quickly, then 
, ,
t t
i d d i dpbest gbest x    the equation is established, at which point the 

particle's velocity update can be simplified to Eq. (1). Since the inertia weight is a real number between [0, 1], with 
the increasing number of iterations, according to Eq. (1), it can be seen that the particle velocity will be closer and 
closer to zero, until finally equal to 0. At this time, the position of the particles will be kept unchanged, i.e., all the 
particles will converge at a certain point of local optimum until the end of the iteration of the algorithm and exit. To 
address the above problems, this paper proposes a dynamic adaptive inertia weights, whose update formula is 
shown in (2). In the pre iteration period of the APSO algorithm, the inertia weights decrease faster, while the 
decrease slows down in the late iteration period. Since the APSO algorithm in the late iteration of the inertia weight 
decreases slower, the inertia weight can still be maintained in a larger value interval, which reduces the risk of the 
particles being in a stationary state, and improves the possibility of the APSO algorithm to get out of the local optimal 
solution: 

 1
, ,
t t
i d i dv v    (1) 

 max max min
max

( ) tan( )
4iter

iter

iter

         (2) 

where iter  and maxiter  denote the current iteration number and the maximum iteration number, respectively, and 

max  and min  denote the maximum and minimum inertia weights. 
II. B. 2) Data flow fast query modeling 
The APSO algorithmic thinking from Section 2.2.1 is introduced into the query indexing domain to optimize fast 
queries on data streams. 
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The number of distributed data streams processed is growing rapidly in large-scale applications of the Web, e.g., 
measurements for network monitoring, stock trading, transactions in retail chain stores, ATM operations in banks, 
logging for web services, sensor data, etc. 

StatStream is currently the latest relevant detection method in data streams. It mainly considers the problem of 
monitoring a large number of data streams in real time by subdividing the stream's historical data into a certain 
number of basic windows and maintaining the Discrete Fourier Transform (DFT) coefficients for each basic window 
[25], which allows the DFT coefficients to be updated in chunks throughout the historical period. The literature also 
adds an orthogonal regular grid applied to the feature space, which decomposes this space into cells of length ε, 
the associated threshold. Each stream is mapped onto a certain number of cells of the feature space based on a 
subset of its DFT coefficients (the number depends on the delay time), and the proximity of this feature space is 
exploited to report correlations. The application of all of the above techniques suffers from the fact that the linear 
constants grow exponentially with increasing feature space. Cells in the k  -dimensional space have 3 1k   
neighboring cells, resulting in a search space of (3 1)k k  , and if the same grid structure is used to detect 
thresholds greater than   (e.g. 2 ,3 ,...,n   ) correlation, then the cell spacing also needs to be tested. This ratio is 
further increased for correlation detection when the radius exceeds the threshold n   because a cell in the k-
dimensional space will have (2 1)kn   neighboring cells, which means that StatStream performs poorly in the high-
dimensional and high-threshold cases. 

In this paper, we propose a novel scheme to summarize and index distributed data streams, using the Discrete 
Wavelet Transform (DWT) [26], to reduce the overhead required to maintain the indexing structure by calculating 
the transform coefficients in real-time online and inserting them into a sequence of high-dimensional indexing 
structures. 

A data stream consists of a sequence of data points ... ...ix , and the data range of each data point is min max[ , ]R R . 
In this paper, we discuss systems with M  data streams and are only interested in the first N  most recent data 
items in each stream. We use K  sliding windows of size N  to store the data streams, with the most recently 
arrived N  streams data stored in the latest basic window, and so on, with the sliding window constantly updated 
for each new arrival, and processing mainly two main types of queries on the data streams, i.e., inner-product 
queries and similar queries. 

(1) Inner product query 
Inner product queries are very important in statistical computation and conditional specification. An inner product 

query can be represented by a ternary function ( , , )I V   , where I   denotes the index vector (the data item of 
interest), V  denotes the weight vector (the weights corresponding to each data item), and the result of the inner 
product query of I  and V  I V  has an accuracy of , usually both point and range queries can be expressed 
as inner product queries. 

(2) Similar queries 
Supporting similar queries is an important part of most data mining applications [27], identifying companies with 

similar growth patterns and finding stocks with similar stock price movements are typical types of similar queries on 
sequential databases. The distance measure used in this section is the Euclidean distance 2( )L , which is stored 

in the orthogonal transform [28]. Since the Euclidean distance between two sequences can range from zero to 
infinity, only the distance corresponding to the distance between normalized sequences is considered. And mainly 
two types of similar queries are discussed, namely correlation queries and subsequence queries. 

Correlation queries have an important role in correlation trend analysis. A correlation query (all pairwise queries) 
can be defined by the formula as follows: given a threshold  , find all pairs of data streams that are correlated 
within  . The correlation between two sequences x  and y can be reduced to the Euclidean distance between 
their normalized sequences. We normalize the streams as follows: ˆ ( ) / , 1, 2,...,i i x xx x i N    , where x  has a 
mathematical meaning and x  denotes the standard deviation. 

A subsequence query is an integral part of an analytic model. A subsequence query can be defined by the formula 
as follows: given a query sequence Q  and a threshold  , find all subsequences within the given sequence stream 
whose distance is within   . We take a stream 1 2 3, , , ..., Nx x x x   are normalized as follows: 

m axˆ / * , 1, 2, ...,i ix x N R i N   and map it to the unit sphere. 

III. Storage and indexing effect analysis 
III. A. Storage performance 
III. A. 1) Construction of document classification rules 
HDFS file sizes are usually at the GB to TB level, so HDFS is designed to be adapted to support the storage of 
large files, and when storing data smaller than the HDFS chunk size (128M by default), HDFS will also store it 
according to the chunk size. Increased storage space also affects access efficiency. The experiment designs the 
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optimal storage model by analyzing the comparison of the efficiency of HDFS and the TSM Tree storage model of 
this paper for storing large data streams. The validation program is as follows: 

(1) Select the dataset smaller than HDFS chunk size (128M) from the test dataset. 
(2) 5 test data sets of 100, 500, 1000, 5000 and 10000 different number sets are selected from the re-selected 

test set. 
(3) Record the storage time under different test data sets. 
The results of comparison of HDFS and TSM Tree storage characteristics are shown in Fig. 4. From the results 

in Fig. 4, it can be seen that TSM Tree is more efficient in storing small files with the same amount of data, and in 
different orders of magnitude of small files, the efficiency improved by using the TSM Tree storage model over HDFS 
appears to increase first and then decreases, and the improved efficiency reaches 88.7% at 1000 files. Overall, 
TSM Tree is more suitable for small file storage than HDFS. 

 

Figure 4: Comparison of Storage Characteristics between HDFS and TSM Tree 

The TSM Tree storage model is more efficient for storing small files, but it is not possible to determine the specific 
size range of small files. In this experiment, the storage efficiency of the TSM Tree storage model is analyzed by 
setting up data files with different data volume sizes to derive the optimal amount of data for storing small files. The 
validation program is as follows: 

(1) 500 remote sensing data files each of 200KB, 500KB, 1MB, 20MB, 50MB and 100MB are selected from the 
test set. 

(2) Store the files with different data volume sizes in batches in the TSM Tree database. 
(3) Record the storage time and calculate the storage rate. 

 

Figure 5: Storage rate of TSM Tree under different data volumes 
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The storage rate of TSM Tree storage model with different data size is shown in Fig. 5. It can be seen from Fig. 
5 that the size of the data volume is gradually increasing. When the file data size reaches 1MB~20MB, the storage 
efficiency of TSM Tree storage model is relatively smooth (93.45MB/s). When the file size is larger than 20MB, the 
storage rate of the TSM Tree storage model increases rapidly, so the TSM Tree storage model is suitable for storing 
large data files with data volume larger than 20MB. 
III. A. 2) Model storage efficiency 
Data storage query efficiency is an important indicator of the storage system, in the test data randomly selected 
data sets of different data volume sizes, by verifying the native distributed storage solution in the same hardware 
configuration environment and the storage solution used in this platform for comparison testing. 

(1) Randomly select data sets of about 10GB, 50GB, 100GB, 500GB, and 1TB from the test data. 
(2) Store different test datasets in the storage schemes of HDFS, MongoDB and TSM Tree in this paper, 

respectively. 
(3) 10 storage operations are performed on each test set respectively, and the 10 average value is taken as the 

final consumption time. 
The storage performance comparison results are shown in Figure 6. It can be seen that when the number of files 

is small, the number of large and small files is relatively balanced, and both storage models need to send requests 
to the main storage node, although the number of requests of this study's scheme is much less than that of the 
original storage technology scheme, the storage time of the three is similar, and with the gradual increase in the 
number of files, the advantage of the storage management model is gradually embodied, and with the increasing 
size of the data, this study's scheme's The storage efficiency gradually increases and remains stable, and the 
improvement of storage efficiency is stabilized at about 16.7% compared with the original distributed storage method. 

 

Figure 6: Storage performance comparison 

 

Figure 7: Comparison of response time of inserted data 
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III. B. Performance Validation of Data Insertion and Retrieval Scheme 
III. B. 1) Insertion Performance Comparison 
The experiment inserts data into the HBase table through 4 clients at the same time, and counts the Put time of 
every 107 data on 4 clients, after repeating the experiment for 10 times, the average value is taken, and test the Put 
time of the fast index, ElasticSearch-based index, Solr's index and Phoenix's index in the same conditions in this 
paper, respectively, and the result is shown in Fig. 7 The results are shown in Fig. 7. 

As can be seen from Fig. 7, the highest efficiency of Put execution is the fast indexing method of this paper, and 
the response times of the indexing scheme of this paper are 16.91, 48.67, 77.32, 116.51, and 171.69 s when the 
data are 1×107, 2×107, 3×107, 4×107, and 5×107 entries, respectively. This is because there is no need to reallocate 
the resources during Put operation for index construction, whereas all other approaches require additional 
construction of secondary indexes. It can be seen that the insertion time is getting longer and longer when the same 
107 pieces of data are added, this is because as the amount of data increases, the indexed data is also getting more 
and more, which makes it difficult to perform index insertion. At the same time, because Phoenix underlying need 
to build the appropriate storage index structure in the coprocessor, additional consumption of computing resources. 
And based on ElasticSearch and Solr only need to build indexes in their own clusters, do not need to program 
additional computational resources, so Phoenix secondary indexes on the insertion of the largest performance loss. 
III. B. 2) Comparative analysis of single-condition query performance 
Retrieve the data is still using the above data, and its retrieval performance comparison is shown in Figure 8. As 
can be seen in Figure 8, ElasticSearch response speed is reduced more significantly, when the amount of data 
reaches 1 × 108, the response time is greater than 5s. For the comparison of the secondary index, when the amount 
of data reaches 1 × 108 entries, the efficiency of this paper's fast indexing method is 1.75 times that of Solr. Phoenix's 
retrieval efficiency is close to the speed of this paper's fast indexing method, but the coupling of Phoenix's coupling 
is stronger, so finally choose the fast indexing method of this paper as the secondary index. 

 

Figure 8: Comparison of retrieval performance 

III. B. 3) Multi-conditional queries, performance analysis and their optimization 
Retrieval data is still used as above, the number of retrieval conditions were 3, 6, 9, take the average value after 10 
experiments, its average retrieval performance comparison shown in Figure 9. 

Compare the data horizontally and find that the retrieval time is negatively correlated with the retrieval conditions, 
and the more retrieval conditions the shorter the retrieval time, for example, when the data is 5×107, the number of 
retrieval conditions is taken to be 3, 6, 9, and the retrieval time of ElasticSearch is 4.752, 4.343, and 4.315s, and 
that of this paper's fast indexing optimization is 0.954, 0.898, and 0.907 s, which is due to the increase of retrieval 
conditions in this paper's fast indexing method, the amount of data retrieval that meets the conditions is reduced, 
which is equivalent to reducing the amount of user concurrency, and therefore, the retrieval time has been reduced. 
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(a) Retrieval condition is 3 (b) Retrieval condition is 6 

 

(c) Retrieval condition is 9 

Figure 9: Comparison of multi-condition retrieval performance 

IV. Conclusion 
The article adopts multi-computer distributed storage and compressed storage for the storage work of large data 
streams, and constructs TSM Tree data stream storage model. Using discrete wavelet variation to deal with indexed 
distributed data streams, APSO algorithm thinking is used for optimization to construct data stream fast query model. 

In this paper, the storage efficiency of TSM Tree storage model is higher, and the improved efficiency reaches 
88.7% at 1000 files. When the file data size reaches 1MB~20MB, the storage efficiency of TSM Tree storage model 
is 93.45MB/s. When the file size is larger than 20MB, the storage rate of TSM Tree storage model rises rapidly, and 
TSM Tree storage model is suitable for storing large data files. 

The Put execution efficiency of this paper's fast indexing method is the highest, and the response time of this 
paper's indexing scheme is 16.91, 48.67, 77.32, 116.51, and 171.69s when the data are 1×107, 2×107, 3×107, 4×107, 
and 5×107 entries, respectively.The fast indexing method of this paper is selected as the second level index on 
single-condition query. On multi-conditional query, the fast indexing optimization of this paper has the fastest 
response time of 0.954, 0.898, 0.907s. 
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