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Abstract The rapid development of the Internet of Things (IoT) has brought unprecedented opportunities and 
challenges to decision-making in engineering projects. This paper constructs intelligent decision-making method by 
utilizing the Internet of Things, artificial intelligence and other technologies. The Internet of Things is utilized to 
collect real-time engineering project status information and monitor the abnormal status. Then artificial intelligence 
is combined with operation research optimization algorithm to propose an intelligent decision-making method based 
on IoT data-driven. By verifying the overall performance of the system and analyzing the application examples, it 
can be found that the data delay of the IoT device is randomly distributed between 50ms-150ms, which is relatively 
smooth and has no obvious changing trend. The IoT device responds to the project 1000 data requests more 
accurately. The intelligent decision-making method based on artificial intelligence was adjusted at the 100th artifact. 
This ministry effectively reduces production performance loss, avoids the problem of inventory surge, and always 
maintains the inventory at a reasonable level. 
 
Index Terms internet of things, artificial intelligence, operations optimization, data-driven, intelligent decision 
making 

I. Introduction 
Data-driven decision making is a data-based decision making approach [1]. Compared with the traditional way of 
making decisions based on experience and subjective judgment, data-driven decision-making is more objective, 
accurate and reliable [2]. Through in-depth analysis of a large amount of data, we can obtain more comprehensive 
and detailed information, so as to better understand the nature and trend of things [3], [4]. Such a way of decision 
making can reduce the risk of decision making and improve the success rate of decision making [5]. 

In engineering projects, decision-making is a complex and critical link [6]. In the era of artificial intelligence, the 
application of data-driven decision-making based on artificial intelligence technology can provide reliable support 
for decision-making in engineering projects [7], [8]. By comprehensively analyzing and modeling the data, 
enterprises can arrive at scientific and accurate decision-making results [9]. In terms of project schedule 
management, a reasonable construction progress and schedule can be developed by analyzing historical and real-
time data [10], [11]. In terms of cost management, material procurement and resource utilization can be optimized 
based on the results of AI analysis to achieve cost control and reduction [12], [13]. In addition, artificial intelligence 
technology can help enterprises carry out risk assessment and prediction, and formulate response plans in advance 
to reduce losses and risks [14]. The use of artificial intelligence is not just a one-time event; it can also provide 
companies with opportunities for continuous improvement and innovation [15], [16]. By continuously collecting and 
analyzing data in the construction process, effective management experience and technical methods can be 
summarized to provide reference for the continuous improvement of engineering management [17]-[19]. 

In this paper, we mainly utilize the online intelligent decision-making system based on the Internet of Things with 
intelligent sensing devices, wireless communication technology, artificial intelligence and data-driven technology. 
Engineering projects generate a large amount of complex data during the implementation process. In order to 
capture potential consumption anomalies, IoT technology is utilized to collect data in real time and synthesize and 
analyze real-time project scenarios. Then artificial intelligence algorithms, i.e., machine learning, deep learning, and 
optimization algorithms, are integrated with theories related to operations research (project planning techniques, 
decision theory) to intelligently generate decision-making scenarios and achieve online intelligent scheduling for 
engineering projects. The system in this paper is applied to an automotive door welding production project to provide 
scheduling advice and guide the specific actions of on-site equipment and staff. 
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II. Data-driven decision support methodology based on Internet of Things (IoT) 
II. A. Research on the application of IoT technologies in decision-making 
The importance of IoT technology as a core driver cannot be overstated. IoT closely connects various fields such 
as facilities and environment through intelligent sensing devices, wireless communication technologies, cloud 
computing and big data analysis platforms, forming a huge intelligent network [20]. This network is capable of 
collecting real-time and accurate data on the operation of engineering projects. 

In the IoT environment, the instantaneous explosion and influx of massive, unstructured data not only makes the 
application problem scenarios change rapidly, so that the data processing and feedback must have the 
characteristics of real-time, in-line, etc., and all kinds of application problems can only be effectively calculated 
under distributed conditions, and each terminal device must have real-time synergy and interaction with its 
peripheral devices or people to ultimately realize the Each terminal device must have real-time collaboration and 
interaction with its neighboring devices or people in order to realize effective support for online scheduling decision-
making of various application problems. Therefore, how to carry out effective collaboration and interaction between 
devices and people, and how to analyze the effectiveness and robustness of the decision-making results after 
interaction have become the key issues to be solved in this field. In addition, the traditional decision mechanism 
design and decision-making method for scheduling problems, data real-time and data collection range is limited, 
the decision does not have a strong in-line and real-time characteristics, the necessity of online autonomous 
decision-making for each terminal device is often not very obvious. As a result, the traditional decision-making 
mechanism is difficult to meet the dynamic real-time requirements of the IoT environment, and cannot be applied to 
the rapidly changing scenario sequences of various application problems in the IoT environment. 

 
II. B. Data-driven anomaly sensing methods 
Intelligent decision-making in the IoT environment faces the challenges of multiple and continuous system data, 
complex and diverse abnormality patterns, and variable future trends, and is susceptible to factors such as 
seasonality, cyclicity, and multifactor superposition [21]. 

The decision-making system needs to use the Internet of Things to collect the corresponding state information in 
real time during the operation process, so as to judge and screen whether the system is in a normal state or 
abnormal state, or in a non-stationary state between normal and abnormal. Abnormal state is the state that causes 
the system to fail and makes the system unable to operate normally, and immediate measures must be taken to 
reschedule the system back to normal. 

 
II. C. Core methods for intelligent decision making 
A data-driven anomaly perception method and a trend analysis and decision-making method based on "scenario-
focus" are proposed by combining artificial intelligence and operations research optimization, and a data-driven 
"scenario-focus" online intelligent scheduling decision-making method is formed, which provides a new system 
based on the Internet of Things to solve dynamic and complex intelligent scheduling problems [22]. 
 
II. C. 1) Trend projections 
In this paper, trend analysis will be combined with uncertainty decision making, firstly, the probability distribution of 
future states will be given by the prediction model, and then the uncertainty decision model will be constructed by 
combining the possible outcomes of each state, so as to advance the utilization of data in the IoT environment from 
prediction to real-time decision making. 
 
II. C. 2) Focus selection 
Uncertainty handling in the IoT environment should be oriented towards solving practical problems and adapting to 
the real-time requirements of online decision-making. Uncertainty handling varies from scenario to scenario, and 
uncertainty handling that reflects the purpose of decision-making should be selected based on the scenario. 

Definition 1: Suppose a typical scenario state *
ix  of a suspected anomaly has n  possibilities for its next state 

1 (1 )i
ix i n   , where 1ix   occurs with probability 

1( )i
i ip x p  , and 

1 1 1 1( , ; , ; ; , )i i a
i i i i ax p x p x p    is said to be a state 

to be collapsed. 
For a to-be-collapsed state 

1 1 1( 1, ; , ; ; , )i n
i i i i nx p x p x p    , when the system is running up to 1t   

1 11, , , ,i n
i i ix x x     one and only one of them will be realized, and the outcome (gain or loss) when 

1
l
ix   occurs is 

recorded as 
1( )l

i iy x y   . The combination of each possible outcome and its probability of occurrence 

1 1 1( , ; , ; ; , )i a ay p y p y p  is called the outlook. The core of uncertainty handling is to evaluate the effect of a choice 

when its future state is uncertain, i.e., to construct the prospect function 1 1 1( , ; , ; ; , )i n nF y p y p y p  . Noting that 
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1 2( , , , )ny y y y  , 1 2( , , , )np p p p  , the prospect function can be shortened to ( , )F y p , which means: by weighing 

the likelihood of the occurrence of each state and the outcome it will generate The meaning is: by measuring the 
likelihood of each state occurring and the outcome it will produce, the state is assigned an appropriate “value” for 
the purpose of decision making. Since the collapsed state is collapsed to a unique state when the collapsed state 
is realized, if the decision-making process is difficult to repeat many times and the possible states are more 
dispersed, the mean value (or expected utility) naturally loses its significance, and it is difficult to reflect the decision-
maker's actual pursuit. In this paper, we will consider the possible outcomes and their likelihood of occurrence, and 
measure the degree of attention to be paid to various states to deal with uncertainty: ( , ) ( , )F y p y p y  , where 

1( , ) ( ( , ), , ( , ), , ( , ))i ay p y p y p y p       is the attention vector, and ( , )i y p  is called the attention coefficient of 

the state 
1

i
ix   , which satisfies 

1

( , ) 1
n

i
i

y p


  . The coefficient of interest differs from probability in that it is 

determined by both the likelihood of the event occurring and the outcome of the event. The process of uncertainty 
handling reflects the decision-making purpose, and the attention coefficient ( , ) 0i y p   implies that the state 

1
i
ix   

is not attended to in decision-making, regardless of whether the probability of its occurrence is greater than 0. 
Similarly, the attention coefficient ( , ) 0i y p   implies that the state 

1
i
ix   is attended in decision making, and the 

nodes corresponding to those states that are attended are called focuses. 
Definition 2: For a to-be-collapsed state 1

1 1 1 1( , ; , ; ; , )l n
i i i i ax p x p x p    , the state with attention coefficients 

( , ) 0i y p   
1

i
ix   corresponding to a node is called a focus. 

For situations where there are states where serious consequences may occur and only one of them is sufficient 
for the decision maker to make a choice (e.g., an interruption in the oil distribution system occurs in a state sufficient 
to cause the decision maker to initiate a rescheduling, a lottery win is sufficiently rewarding to cause the buyer to 

ignore the cost and make a purchase), the focus is on the state of maximal gain (or loss) 
1

*
1argmax ( )i

i
ix

ix y x


 , 

when the state with the largest gain (or loss) has a focus coefficient of 1, and the rest are 0. 
For scheduling decisions that are not repeatable multiple times or where a state is of sufficiently high concern, if 

a strategy is chosen that gives a larger payoff with a larger likelihood, the way the focus is chosen in one-shot 

decision theory and multi-stage one-shot theory: 
1

*
1 1(margmax ( , )in ( ) )i

i

i i
t tx

x x u x


  , where 
1 1( ), ( )i i

t tx u x    are the 

normalization functions of 
1 1( ), ( )i i

t tp x y x   respectively. The focus *x  indicates that there does not exist a state in 

which the probability and the return are both greater than the focus, and if one is dissatisfied with the status quo the 
pursuit of a higher return requires a higher risk. The focus is assigned a coefficient of concern of 1, and the other 
states are 0. For such problems, the choice of focus changes accordingly when the decision goal is different, but it 
is a simple operation of probability and gain (or loss). 

For routine decisions that can be repeated many times (or the decision process is very similar), when the decision 
process is repeated enough times, the frequency of each state will converge to its probability, at this time each state 
can not be ignored, and become the focus of attention, 

1
i
ix    of the attention coefficient and its probability of 

occurrence is equal to the ( , )i iy p p  . When the decision process is repeatable enough times, the focus-based 

uncertainty treatment converges to the mean-based treatment and the two are equivalent. 
Uncertainty handling depends on the scenario, i.e., system state and decision purpose. When the decision 

purpose is clear, the computational process of choosing the focal point is all a simple computation of probabilities 
and gains (or losses), and the choice of focal point allows for a fast implementation of uncertainty handling that 
reflects the decision purpose and meets real-time requirements. Handling uncertainty also solves the preference 
ranking of alternative strategies. 

When the decision-making objective is clear, the premise of focus selection is to determine the scenario of the 
scheduling problem through data in order to determine the appropriate uncertainty handling. During the operation 
of the system, the scenarios may also change at different stages, and the decision-making goals are not the same, 
and different types of focuses can be used to meet the evolutionary needs of each stage. 

Intelligent scheduling decision-making cannot be separated from artificial experience and knowledge, and the 
decision-making goal is the accumulation of experience and the embodiment of domain knowledge. The 
implementation of the system integrates the use of artificial intelligence and operations research in a variety of 
knowledge representation methods, in the system to achieve the problem knowledge representation, model 
knowledge representation, and algorithmic knowledge representation, with the support of the knowledge 
representation of the various parts of the realization of the modeling process of online intelligence is shown in Figure 
1. 
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Figure 1: The core module of intelligent modeling and optimization method 

III. Application of Artificial Intelligence Algorithms Combined with Operations Research 
Theory in Intelligent Decision Making 

Scheduling optimization methods combining artificial intelligence and operations research optimization techniques 
mainly focus on the development of artificial intelligence models and corresponding algorithms for complex 
scheduling problems, especially NP-hard problems, which decompose the complexity of the problem and can find 
a better solution in a limited time. 
 
III. A. Operations Research Theory 
The main contents of operations research include: planning theory (including linear planning, nonlinear planning, 
integer planning and dynamic planning, etc.), graph and network analysis, project planning techniques, decision 
theory, countermeasure theory, queuing theory, storage theory and so on. 

(1) Planning Theory. Planning theory, also known as “mathematical planning”, is an important branch of operations 
research. The study of the given conditions, how to the most reasonable and effective use or deployment of limited 
human resources, material resources, financial resources, and time, in order to better achieve the desired goals of 
the system. It can be expressed as the problem of finding the maximum and minimum values of a function under 
satisfying constraints. Usually referred to as the amount of problem solving needs to control the “variable” or 
“decision variable”, the decision variable must meet the conditions of the “constraints”, to achieve the expected 
target for the “objective function”.  

(2) Graph and network analysis. Graph and network analysis is an old but very active branch, it is the foundation 
of network technology. The founder of graph and network analysis was the mathematician Euler. 
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(3) Storage Theory. Storage Theory, also known as Inventory Theory, is a theory that focuses on material 
inventory strategies, i.e., determining the amount of material inventory, the frequency of replenishment, and the 
amount of material to be replenished at one time. Reasonable inventory is a necessary guarantee for the smooth 
running of production and life, which can reduce the occupation of funds, reduce expenses and unnecessary 
turnover links, shorten the material circulation cycle and accelerate the process of reproduction. 

(4) Project planning technology. Project planning technology is a kind of scientific plan management technology 
developed in the mid-1950s, which is an integral part of operations research. 

 
III. B. Machine Learning Algorithms 
Machine learning techniques play a central role in intelligent decision making, especially in the field of analyzing 
and predicting production data. By applying different machine learning methods, such as decision trees, support 
vector machines (SVMs), and random forests, it is possible to predict core metrics such as the health of equipment, 
location distribution of resources, and production efficiency [23]. A typicalized prediction formula is: 

 ( )Y f X  ò  (1) 

III. C. Deep Learning Algorithms 
Deep learning techniques are mainly used for monitoring and parsing of the environment. Especially in security 
monitoring, the image analysis capability of deep learning is fully applied [24]. The commonly used target detection 
formula in deep learning is: 

 2 2

1

ˆ( ) (( ) || || )
N

i i
i

L y y  


    (2) 

where ( )L   is the loss function, iy  is the actual value, îy  is the predicted value,  is the model parameter,  is 

the regularization term, and N  is the data sample size. 
 
III. D. Optimization algorithms 
In the intelligent decision-making process, the application of optimization algorithms focuses on improving the 
quality of scheduling plans. Scheduling involves resource allocation, equipment usage efficiency, and manpower 
arrangement, and optimization algorithms are able to seek the optimal scheduling solution by constructing 
mathematical models [25]. Mathematical models with specific constraints and objective functions are often used in 
intelligent decision making to find the best solution using optimization algorithms. For example, a specific linear 
programming method can be used to optimize the scheduling plan, and the set objective may be to maximize the 
efficiency of resource use or minimize the operating cost, and at the same time, it needs to satisfy the constraints 
such as the output volume of the mine, the state of the equipment, and the allocation of human resources. It not 
only improves operational efficiency, but also ensures the effective use of resources. The common optimization 
model formula is: 

 
1

min . , , 0
N

i i
i

c x s t Ax b x


    
 
  (3) 

where ic  denotes the cost of each resource, ix  is the decision variable, A  is the matrix of constraint coefficients, 

and b is the vector of constraints. 

IV. Analytical study of data-driven decision-making method for engineering projects 
IV. A. System Test Methodology 
The system testing method is to collect specified data from 10 devices of the project through IoT devices and 
sensors, and verify whether the serial port rate, data sharing service and other functions of the module meet the 
design requirements and actual needs through the configuration and collection capability of the terminal. The overall 
performance of the system is verified by recording the collected data and analyzing the key parameters such as 
response delay, collection interval and BER. 

(1) Hardware Installation: 10 data acquisition modules are installed on 10 devices, connected to PLC through the 
serial cable terminal serial port, and the upper serial port is connected to the touch screen. 

(2) module parameter configuration: module power-up, according to the port parameters connected to the PLC, 
with the AT command to configure the serial port parameters, including the baud rate, parity bit, data bits, stop bits, 
etc.; in the computer log in the module WiFi configuration page, configure the wireless connection parameters and 
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set up the module to the STA mode; reboot the module, the PLC and the touch screen is normally connected, WiFi 
is normally connected, then the configuration is complete. 

(3) Software deployment: install the data acquisition software on the acquisition host and deploy the local 
database; add 10 terminal information in the software and configure the terminal parameters; test whether the 
terminal is normally on-line.  

(4) Response delay test: after the terminal connection is normal, carry out the response delay test; the test method 
is as follows: send a data request to a single module, and record the interval time between the data collection host 
sending a request and receiving a reply, and then calculate the average response delay; after receiving a reply, 
immediately send the same request again, repeat 200 times to get 200 groups of response delay data, and then 
calculate the average response delay; respectively, select 4 devices for testing, and get 4 sets of data collection 
hosts to get the average response delay. The average response delay of the four devices is obtained. 

(5) BER test: select a device, set a certain parameter value, send data request to the device 1000 times at the 
monitoring end, receive data recorded into the database, and automatically check whether there is any error 
according to the set value; test the 4 units selected in 4) respectively. 

(6) Data collection interval test: select 1 device, set the serial port baud rate to 115200bps, send 20bytes, 
100bytes of data requests, and set the sending interval to 150ms, 100ms, 50ms; each combination of sending 300 
times, record the data and analyze the data with or without anomalies. 

Use the serial port debugging assistant to configure the serial port parameters and network parameters of 10 
data acquisition modules through AT commands. 

The data acquisition software and database are deployed on the acquisition host. After debugging 10 devices are 
successfully connected, the acquisition information is shown in Table 1, you can query the data acquisition 
information of 10 devices in real time on the software. 

Table 1: Verification results of data acquisition software 

Equipment Alarm status x-code x-code x-code Running state 

1 0009 0000 0001 0001 00 

2 000 0000 0001 0001 00 

3 0001 0001 0001 0001 00 

4 0008 0001 0001 0001 00 

5 0009 0001 0001 0001 00 

6 0009 0001 0000 0001 00 

7 0007 0001 0000 0001 00 

8 0001 0001 0000 0001 00 

9 0000 0001 0000 0001 00 

10 0000 0001 0000 0001 00 

……      

 
The results of the response delay test are shown in Figure 2. All the data delay is randomly distributed between 

50ms-150ms, the overall is relatively smooth, there is no overall change in the trend, it can be considered that the 
system response line is relatively stable in a certain range. 

 

Figure 2: Results of response delay test 
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The response delay data of each device is counted to get the minimum, maximum and average values. The 
response delay data statistics are shown in Table 2, and the average response delay of the four devices are 95ms, 
95ms, 75ms and 76ms, respectively, and the average response delay of the four devices is 84ms. 

Table 2: Results of response delay test(ms) 

Unit:ms Equipment1 Equipment2 Equipment3 Equipment4 Total 

Mean 95 95 75 76 85 

Min 72 75 64 55 86 

Max 140 135 98 100 138 

 
The results of the BER test are shown in Table 3, where all four devices responded to 1000 data requests with 

accurate data. 

Table 3: Results of error rate Test 

 Equipment1 Equipment2 Equipment3 Equipment4 Total 

Error rate 0% 0% 0% 0% 0% 

 
The results of the collection interval test are shown in Table 4, under the baud rate of 115200bps, the actual test 

100bytes is sent at an interval of 100ms, and no abnormality occurs. In common industrial automation protocols 
generally do not use a single packet 500bytes length of data packets, so according to the actual situation, only 
tested to 100bytes. 

Table 4: Results of data collection interval test 

Sending interval/ms Data length/byte  

 20 100 

50 Slight loss Slight loss 

100 normal normal 

150 normal normal 

 

Table 5: car door welding line dynamic disturbance event list 

Disturbing event Workstation number Change Disturbance duration(s) 

1 4 44 320 

2 2 66 500 

3 7 85 360 

4 3 96 300 

5 5 122 710 

6 1 250 1264 

7 6 389 440 

8 4 430 700 

9 3 482 320 

IV. B. Example of application of big data-driven customized production method optimization for 
engineering projects 

IV. B. 1) Case Description and Base Parameter Collection 
The automotive door welding line consists of seven stations and six buffer zones. The transfer of workpieces 
between adjacent processes is realized by automated conveyors. The function of each station of the line is 
described as follows: station 1 - welding of reinforcement plates, station 2 - welding of window frames, station 3 - 
welding of bumpers, station 4 - gluing and edging, station 5 - induction curing, station 6 - welding of hinges, station 
7 - testing. Each station has multiple sets of fixtures, thus allowing for mixed line production of multiple products. 

In order to realize automated decision-making, each station of the welding line is installed with RFID system, 
sensor system, image recognition system, etc.; RFID system is used to collect real-time data related to the operation, 
such as material shortage data, workpiece flow data, workpiece position data, etc.; the sensor network mainly 
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senses the robot status data, and the sensor network mainly senses the robot status data such as the number of 
robot failures as Table 5 shown in Table 5. 

Robot processing time data is shown in Table 6. The welding line suffers from bottleneck drift during multi-species 
mixed flow production. 

Table 6: car door welding line (s) 

Product 

variety 

m1 m2 m3 m4 m5 m6 m7 

Variety A 252 278 230 200 220 254 250 

Variety B 179 230 264 246 196 236 236 

Variety C 230 245 263 184 187 241 227 

Variety D 200 218 254 246 187 214 247 

 
Multi-product mixed-flow production and automated in-process control: In order to deliver multiple products in a 

short period of time, the welding line is designed with mounting fixtures for different products to realize fast 
changeover of the robot, including switching between front and rear doors of multiple vehicle models. The 
changeover time of the robot between four types of doors is shown in Table 7. 

Table 7: The car door welding line is the replacement time (s) 

Transposition m1 m2 m3 m4 m5 m6 m7 

𝐴→𝐵 200 160 130 264 -- 140 -- 

𝐴→𝐶 -- 190 130 264 80 120 -- 

𝐴→𝐷 140 -- 160 252 80 160 -- 

𝐵→𝐴 180 160 160 132 -- 140 -- 

𝐵→𝐶 220 170 130 232 60 100 -- 

𝐵→𝐷 170 130 -- 212 -- 170 -- 

𝐶→𝐴 100 210 205 252 60 140 -- 

𝐶→𝐵 140 130 160 192 60 120 -- 

𝐶→𝐷 -- 210 210 92 -- 170 -- 

𝐷→𝐴 170 190 170 232 60 140 -- 

𝐷→𝐵 200 140 -- 192 -- 140 -- 

𝐷→𝐶 -- 220 210 -- -- 160 -- 

 
The diagnostic results of permanent capacity loss of the manufacturing system under the effect of different 

dynamic disturbance events are shown in Table 8. In addition to the AI model, the diagnostic results of manufacturing 
system performance loss under two other process control strategies are also listed. In the table, Y and N denote 
the presence and absence of permanent capacity loss, respectively. The results show that the AI is slightly less 
responsive than the Kanban mechanism when the dynamic disturbance event lasts for a longer period of time. The 
responsiveness of the AI can be improved if the work-in-process inventory constraint is increased moderately, i.e., 
the necessary work-in-process inventory is maintained in the manufacturing system. 

Table 8: car welding line capacity loss diagnosis results 

Disturbing event MPS Kanban e-MPC Artificial intelligence 

1 N N N N 

2 N N Y N 

3 N N N Y 

4 N N N N 

5 N Y N N 

6 N N Y Y 

7 N N N N 

8 N N Y N 

9 Y N N N 
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IV. B. 2) Workpiece waiting time 
As shown in Fig. 3, the average waiting time of workpieces under Kanban, e-MPC and AI are 3234s, 2243s and 
2695s respectively, and combined with the results of the production line output rate, it can be seen that AI can 
achieve almost the same output rate as that of MPS and Kanban with less WIP inventory. Combined with the above 
results, it can be shown that the AI model proposed in this paper can show better performance under endogenous 
event perturbation. 

 

Figure 3: Workpiece waiting time 

IV. B. 3) Change of workpiece machining sequence 
It is assumed that the optimal machining order of workpieces under the effect of different exogenous perturbation 
events is shown in Table 9 (the results are given according to the rescheduling model). Each element in the table 
represents: the point at which processing order II, III and IV changes compared to processing order I. For example, 
A→C means that the 116th-135th workpiece in processing order II changes from product A to product C, etc. 

Table 9: Change of artifact processing order 

Numbering Process order I Process order II Process order III Process order IV 

116-135 -- A→C A→C A→C 

153-178 -- C→B C→B C→B 

179-198 -- B→A B→A B→A 

224-250 -- -- A→D A→D 

251-275 -- -- C→A C→A 

276-298 -- -- A→C A→C 

406-440 -- -- -- B→A 

441-470 -- -- -- A→D 

471-500 -- -- -- D→C 

 
The workpiece release time and workpiece waiting time corresponding to different machining sequences are 

shown in Fig. 4. Where, the graph represents the difference in workpiece release time corresponding to different 
machining sequences, i.e., {𝑢𝐼𝐼(𝑘)−𝑢𝐼(𝑘), 𝑢𝐼𝐼𝐼(𝑘)−𝑢𝐼𝐼(𝑘), 𝑢𝐼𝑉(𝑘)−𝑢𝐼𝐼𝐼(𝑘)}, 𝑢𝐼(𝑘), 𝑢𝐼𝐼(𝑘), 𝑢𝐼𝐼𝐼(𝑘) and 𝑢𝐼𝑉(𝑘) are the optimal 
release times of the workpieces corresponding to different machining sequences, respectively. As can be seen from 
the figure, the AI can dynamically adjust the workpiece release schedule before the scheduling scheme changes to 
better cope with the perturbations that will occur. For example, the machining sequences II, III, and IV are changed 
only when 116 workpieces are machined, but the optimal control scheme of the AI is adjusted when the 100th 
workpiece is machined. This ex ante dynamic control mechanism can be effective in minimizing manufacturing 
system performance loss or avoiding work-in-process inventory spikes. 

The workpiece waiting times corresponding to different machining sequences are shown in Fig. 5. The results 
show that the AI can always maintain the work-in-process inventory of the manufacturing system at a reasonable 
level with small fluctuation when coping with the change of machining sequences, and the workpiece waiting times 
corresponding to the four machining sequences in the figure are [1974, 2054s]. 
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Figure 4: Time of release of work 

 

Figure 5: Workpiece waiting time 

V. Conclusion 
This paper mainly utilizes IoT devices (intelligent sensing devices, wireless communication technology, cloud 
computing), artificial intelligence, data-driven technology, etc., to design an online intelligent scheduling decision-
making method based on IoT, so as to realize the search for optimal scheduling solutions based on engineering 
project data. Empirical analysis can get the following conclusions: the delay of IoT devices collecting engineering 
project data is randomly distributed between 50ms-150ms, therefore, the response of IoT devices is relatively stable 
in a certain range. Its requests for data are answered and data are accurate, and the BER is low. Artificial intelligence 
algorithms can dynamically adjust the workpiece release schedule, always maintaining the product inventory at a 
reasonable level with small fluctuations when the machining sequence changes. 

The conclusion of this paper provides a new decision-making method for intelligent scheduling system in the 
environment of IoT and AI, and provides new ideas for solving complex scheduling decision problems in the 
environment of IoT. 
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