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Abstract The article constructs the covariance matrix as well as the mean vector of the stochastic differential 
equation and tests its hypotheses using the EM algorithm estimation. The model is applied to the PV carrying 
capacity assessment of county distribution networks, and the method is utilized to solve for the maximum PV 
capacity under the constraints such as the discard rate. Meanwhile, the distribution of PV carrying capacity 
prediction error uncertainty is analyzed by cloud modeling, and the kernel density estimation is used to quantify the 
prediction error confidence interval. Combined with the collected PV historical operation and real-time observation 
data, the carrying capacity assessment and uncertainty analysis are carried out. When the PV abandonment rate 
is 3.5%, the maximum overload and maximum network loss are 6.495 MW and 0.712 MW, respectively, and the PV 
acceptable capacity reaches a steady state. The results of PV carrying capacity assessment of this paper's method 
and Monte Carlo method in power supply station area are close to 6.73MW and 6.71MW, respectively, but the 
calculation time of this paper's method is faster. The application of stochastic differential equation modeling yields 
high accuracy of PV carrying capacity prediction results, which fall completely inside the 85% to 95% confidence 
interval. The PV carrying capacity prediction result of this paper's method for 816 households in a county is 2652 
kW. This paper's method can effectively predict the PV carrying capacity of county distribution networks and realize 
accurate assessment. The confidence interval of the carrying capacity is quantified by combining the nonparametric 
kernel density estimation method. 
 
Index Terms stochastic differential equation, nonparametric kernel density, carrying capacity assessment, 
uncertainty analysis 

I. Introduction 
With the continuous development of China's economy and the continuous improvement of urban and rural power 
grid construction, county distribution grid projects occupy a very important position in China's power industry [1], 
[2]. County distribution grid project refers to the engineering project to renovate and upgrade the distribution grid 
within the county to improve the reliability of power supply, reduce the line loss rate, improve the quality of power 
supply, and improve the efficiency of power grid operation [3]-[6]. In order to ensure the effective implementation of 
the project and the continuous improvement of the project results, it is particularly important to assess and analyze 
the PV carrying capacity and uncertainty of the county distribution grid projects [7]-[9]. 

With the rapid development of distributed PV, its high percentage of large-scale access has become the future 
development trend of distribution grid [10], [11]. However, due to the random volatility of PV power generation, it 
makes the problems of voltage overrun and current backflow more serious during distribution network operation 
[12]. In order to guarantee the safe and coordinated development of distribution network source-network-load, it is 
important to assess the distributed PV carrying capacity to guide the distributed PV scale access based on the 
stable operation boundary of the distribution network and the actual operation state [13]-[15]. The PV carrying 
capacity assessment needs to be carried out from the technical, environmental, socio-economic and other 
dimensions to ensure the scientific and sustainability of the whole life cycle of the project [16], [17]. The assessment 
process is divided into six core aspects: site selection, resource calculation, equipment selection, system design, 
environmental impact prediction, and social benefit analysis, each of which requires the establishment of a 
quantitative index system and a dynamic monitoring mechanism [18]-[20]. As the PV carrying capacity is largely 
susceptible to environmental, meteorological and other uncertainties, the volatility of its output under high 
penetration scenarios has brought a series of adverse effects on the operational security of the distribution network 
[21]-[23]. Therefore, it is of practical significance to analyze the uncertainty of PV carrying capacity, quantify the 
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operational risk level of the distribution network, and take reasonable measures to control the risk, in order to 
improve the security of the distribution network operation and ensure the quality of power supply to users [24]-[26]. 

In this paper, we propose a stochastic differential equation model-based PV carrying capacity assessment method 
for distribution grids to quantify the impact of PV processing uncertainty on the carrying capacity of distribution grids. 
By inputting the PV capacity of the distribution grid and generating stochastic operation scenarios, the PV 
abandonment rate under different scenarios is calculated. The model is utilized to solve for the maximum PV 
capacity using the operating states of different PV operating scenarios and the discard rate as constraints. The 
probability distribution and cumulative distribution of random samples are calculated to quantitatively analyze the 
PV carrying capacity prediction error uncertainty. By mining county distribution network data, PV equipment rating 
data, and operation data, the corresponding data are selected for distribution network PV carrying capacity 
assessment. 

II. Methodology 
II. A. One-dimensional stochastic differential equation modeling 
In this study, one-dimensional stochastic differential equations are constructed within the framework of distribution 
network system, and appropriate covariance matrices are established for the characteristics of the grid, and various 
covariance matrices [27], such as AR(1), SAD(1), and Brownian process, are added to accommodate the 
differences in the phenotypes, so as to construct a complete stochastic framework. 
 
II. A. 1) Construction of the covariance matrix 

Extending the dependence model to fit the structure of the time-dependent variance and correlation results in a 
structured dependence (SAD) model. In this study, SAD is used as a covariance model, consisting of the correlated 
variance v  and the structure of the correlation  as follows: 
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When 2 1t t , the correlation coefficient function of the SAD model can be written in the following form: 
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The following form is obtained: 
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The correlation function of the SAD model is non-smooth because the correlation depends not only on the time 
interval 2 1t t   but also on the correlation structure  . Therefore, the covariance matrix can be simplified by 

parameterizing ( ,v ). 

 
II. A. 2) Mean Vector Modeling 
Considering that the distribution system often encounters the influence of environmental factors, it is of wide interest 
to study whether fluctuations affect the biological system and whether they cause a change in the already existing 
results, where the effect of environmental fluctuations on the PV carrying capacity is investigated by introducing a 
perturbation term, so that the equation can be expressed as follows: 

 
( )

( ) ( )(1 ) w t

x t
dx t rx t dt dw

K
    (4) 

A quantitative measure of model uncertainty can be obtained if the parameters of the diffusion term are estimated 
simultaneously. Since equation (4) a nonlinear stochastic differential equation under its Ito integral form: 
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where 0( )x t  is a random variable independent of the Wiener process and it can only be a constant. 

It is clear that w  in the equation is independent of tx , so the results are the same using Stratonovich integration 

[28] and Ito integration [29]. This is because the drift term of the equation is nonlinear and the diffusion term is a 
constant, so it is not possible to integrate to obtain a solution to the equation. 

In the study only the first and second order moments of the solution are required and these moments can be 
obtained in a simple way. The specific solution is also given next. 

The KEF is used to obtain the mean of the multivariate normal distribution, which is the same as predicted below: 

 | 1 1ˆ ( , )|k k k ky E y Y    (6) 

The same conditional density prediction variance is: 

 | 1 1( | , )k k k kR V y Y    (7) 

The above representation is also used for the mean and variance of the first prediction, and the initial condition 
of the EKF is 

01|0 1|0ˆ ( ),ty E y R , which is the mean and variance of the initial state of equation (4). The predicted mean 

( (1), , ( ))j j jc u T    is obtained according to equations (6) and (7). Thereby, according to equation (4) can be 

reduced to the parameters ( , ,w r K ). 

 
II. A. 3) Hypothesis testing 
The parameters of this mean and covariance structure established can be estimated using the EM algorithm. 
Optimization of the likelihood function provides estimates of the parameter covariances given by the negative 
inverse Hessian of the log-likelihood evaluated at the best parameter value. Thus, the existence of a significant QTL 
can be tested by the following hypothesis test: 

 ,H0 : ( , , ) ( , ) 1, ,j j wj wr K r K for j J     (8) 

 H1:  At least one of the above equations is not true  (9) 

where H0 corresponds to the simplified model of PV carrying capacity without the influence of factors and H1 
corresponds to the full model with the presence of factors, as well as this log-likelihood values L0 and L1 are 
obtained by calculating under H0 and Hl. Then, the likelihood ratios of these two types of assumptions are calculated: 

 0

1

2 ln( )
L

LR
L

   (10) 

The log-likelihood ratio (LR) of the obtained full model was calculated and compared with the critical threshold. 
 

II. B. Carrying capacity assessment model of distribution network based on light abandonment rate 
II. B. 1) Basic principles 
Based on the basic principle of distributed PV systems, PV inverters have the function of regulating abandoned 
light. When the grid voltage exceeds the limit, the PV inverter can reduce the active and reactive power injected 
into the grid by the PV system by adjusting the output power, so as to effectively regulate the voltage that exceeds 
the limit to within the normal range. This regulation process can respond to the changes in the grid operation state 
in real time to maintain the stable operation of the grid. 

In this paper, the statistical value of the abandoned light rate under various operating scenarios after distributed 
PV access does not exceed a given limit value as a constraint, and the distributed PV access capacity that satisfies 
the abandoned light rate constraint is determined based on the opportunity constraint. Different levels of light 
abandonment rate correspond to different carrying capacities, and the higher the allowable light abandonment rate 
means the stronger the ability to regulate the operation indexes exceeding the limit by regulating the light 
abandonment, so the carrying capacity of distributed PV access to the distribution grid can be improved. 

 
II. B. 2) Objective function 
In this paper, we study the assessment of the carrying capacity of distributed photovoltaic (PV) access to the 
distribution network, and set the maximum capacity of distributed PV accessed by the distribution network as the 
objective function: 
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where DGP  is the i th distributed PV capacity and n  is the number of distributed PVs connected to the distribution 

grid. 
 
II. B. 3) Constraints 
(1) Operational state constraints: 

a) Currents Balance: 
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where 
, ,,DG i DG iP Q  is the active and reactive output of the distributed PV at the i th node. ,i iP Q  is the active and 

reactive load of the i th node. ,ij ijG B  is the conductance, conductor distributed on the wire from the i th node to 

the j th node. 
i j  is the phase angle difference at nodes ,i j . 

b) Voltage crossing: 

 min maxnU U U   (13) 

where maxU  and minU  are the upper and lower limits of the line voltage, respectively. 

c) Current constraints: 

 max0 iI I   (14) 

where iI  is the current flowing on branch i  and m axI  is the maximum current allowed to flow on the branch. 

d) Branch transmission capacity constraint: 

 max0 iS S   (15) 

where iS  is the actual transmission capacity of line i  and maxS  is the rated transmission capacity of the line. If 

the transmission capacity of a branch line exceeds its design or carrying capacity, it may lead to overloading of 
equipment, accelerating equipment aging or even damage, thus affecting the reliability and stability of the power 
grid. 

(2) Light abandonment rate constraint: 
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where 
,q iP  is the amount of distributed PV abandoned at the i th node and 

,DG iP  is the actual output of distributed 

PV at the i th node. And: 

 max   (17) 

where  is the actual abandonment rate and m ax  is the maximum abandonment rate. 

 
II. B. 4) Model solving 
Based on the opportunity constraint for distributed PV carrying capacity model, the solution steps are as follows: 

(1) Input distribution network system parameters and distributed PV capacity. Including topology and line 
parameters, as well as the load of each node and the set distributed PV capacity. 

(2) Generate stochastic scenarios. A stochastic differential equation method is used to extract a large number of 
stochastic PV output curves from the output model. 

(3) Calculate the amount of abandoned light. For each random PV output curve sampled based on the stochastic 
differential equation method, it is compared with the safety constraints. If the PV output exceeds the constraint, the 
amount of light discarded for that curve is calculated. 
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(4) Calculate the light abandonment rate. Sum the discarded light from all random PV output curves and divide 
by the total PV generation to get the final discard rate. 

(5) Repeat (3) and (4) as the installed capacity of distributed PV increases gradually until the light abandonment 
rate reaches the preset constraints. At this point, the access capacity of distributed PV is the maximum access 
capacity. 

 
II. C. Uncertainty analysis of wind power prediction error 
II. C. 1) Fundamentals 
In this section, cloud modeling and nonparametric kernel density estimation [30] are used to quantify the uncertainty 
in the prediction error of PV carrying capacity, and finally confidence intervals are obtained for different conditions 
of PV. 

Assuming U  is a quantitative thesis, A  is a qualitative concept in the thesis U , and x  is a random number 

in U  , and assuming that there exists a correspondence ( )Az f x  , which is the degree of affiliation of x  

corresponding to A , the distribution of x  in the thesis U  becomes a cloud, and the random number x  is a cloud 
droplet which is the basic unit of the cloud model. Usually cloud models have three qualitative characteristic 
quantities: expectation xE , entropy nE , and hyperentropy H . where xE  is the expectation of the distribution of 

cloud droplets in U  space. nE  is the degree of qualitative conceptual uncertainty, which is jointly determined by 

the degree of discretization and fuzziness. And eH  represents the uncertainty of entropy, i.e., the entropy of entropy. 

The forward cloud generator belongs to the conversion process from qualitative to quantitative, i.e., the feature 
quantities , ,x n eE E H  and the number of cloud droplets N  are known to generate a normal random number x  

with xE  as the expectation, and nE  as the standard deviation, and utilize the eH  to solve the problem of the 

degree of affiliation of x  corresponding to affiliation z  of A  until N  cloud drops are generated. 
The inverse generator, on the other hand, is a quantitative-to-qualitative transformation that solves for three 

eigenvalues using data x  that conforms to a certain deterministic information sample. The calculations are as 
follows: 
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where n  is the number of samples, i  is the i th sample, and ix  is the difference between the predicted size and 

the actual size of the i th sample. s  is the sample standard deviation. 
Let the power prediction error be the qualitative concept A , and a  be the one-time quantized representation of 

concept A , then ( )Af a  is the certainty of the one-time quantized representation of concept A , and the solution 

( )Af a   is the process of quantized realization of the qualitative concept A  , and the process of cloud droplet 

generation in the concept of cloud model. 
In the PV carrying capacity prediction uncertainty analysis, the cloud model xE  represents the average of the 

power prediction error magnitude. The nE  denotes the fluctuation range of the prediction error magnitude. eH  

denotes the concentration of the fluctuation range of the power prediction error magnitude. 
 

II. C. 2) Non-parametric kernel density estimation 
In this paper, when carrying out the uncertainty analysis of PV carrying capacity prediction, the cloud model is first 
used to qualitatively analyze the distribution of wind and PV power prediction errors, and then non-parametric kernel 
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density estimation and confidence intervals are used to quantitatively compute the distributional characteristics of 
uncertainty in the PV carrying capacity prediction. 

Non-parametric kernel density estimation is different from parametric statistical methods, which does not need to 
make assumptions about the overall distribution of the sample in advance, and the key point is to analyze the 
corresponding distributional characteristics of the data directly from the sample itself, which is of wide practical value. 
The prediction error of photovoltaic carrying capacity is stochastic, and the fluctuation range is large with strong 
uncertainty, so the univariate kernel density estimation method is chosen to complete the quantitative analysis of 
the power prediction error. 

Let the number of samples for N   independent random variable 2 3( , , )I nX X X X X   , the variable random 

probability distribution function and the cumulative distribution function ( ), ( )f x F x  relationship is as follows: 
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The empirical distribution function is one of the most commonly used estimation functions in with the following 
formula: 
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The density function for nonparametric kernel density estimation can be obtained from the above equation as: 
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where g is the kernel function, N  is the number of interval samples, h is the bandwidth coefficient, and ix  is 

the i th sample. 
Nonparametric kernel density estimation based on Gaussian kernel function has more advantages, for this reason, 

this paper adopts Gaussian kernel function as the kernel function for nonparametric kernel density estimation. 
Gaussian kernel function: 
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II. C. 3) Confidence intervals based on nonparametric kernel density estimation 
After obtaining the probability density distribution of the PV carrying capacity prediction error through nonparametric 
kernel density estimation, the probability density distribution can be quantified using confidence intervals. 

The PV carrying capacity prediction error is the difference between the predicted value 
fo reP  and the actual value 

tureP  at a point in time as follows: 

 fore truee P P   (25) 

For bearing capacity errors, the confidence level is calculated using the following formula: 

 ( ) 1low upP e e e      (26) 

where the interval [ , ]low upe e  is called the confidence interval under the confidence level of 1  , bwe  is the lower 

limit of the confidence interval, and 
upe  is the upper limit of the confidence interval. ( )bw wpP e e e   denotes the 

probability that the bearing capacity prediction error value e   falls into the interval [ , ]bw wpe e  . From this, the 

confidence interval for the bearing capacity prediction is [ , ]fore low fore upP e P e  . 

The confidence intervals are evaluated in terms of coverage and interval width. The coverage rate 
p  describes 

how the confidence interval covers the real value, and the larger the coverage rate is, the more real the confidence 
interval can reflect the distribution of the actual value of the carrying capacity. 

The formula for calculating the coverage ratio is as follows: 
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where n  is the total number of samples and îc  is the coverage factor, when the actual carrying capacity falls within 

the confidence interval, then ˆ 1ic  , otherwise 0i  . 

The interval width P , on the other hand, is a measure of the effectiveness of the prediction, and the smaller the 
interval width, the better the prediction under the premise of guaranteeing the coverage. The formula for interval 
width is as follows: 
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where iP  is the difference between the upper and lower limits of the confidence interval in which the i th power 

value is located. 
 
II. D. Data preparation 
Considering the multiple factors of grid topology, bus size operation mode and load level, the PV carrying capacity 
assessment data of the distribution network mainly comes from three sources: historical operation data, equipment 
labeled operation data or historical data, and real-time observed data of the distribution network. 

Distribution network parameter information data are primary grid wiring diagrams and impedance parameter 
values. Equipment rated data are equipment rated parameters and specified equipment operating limit parameters, 
etc. Operational data includes data on operational parameters under normal operation of the distribution network. 
Distribution grid PV carrying capacity assessment needs data sources, classification and its role are listed in the 
above table, according to the needs of the corresponding data can be selected for distribution grid PV carrying 
capacity assessment. 

(1) Distribution network data 
Distribution network primary frame wiring diagram, distribution network equivalent impedance parameter values. 

Through the collection of distribution network primary frame wiring diagram and grid equivalent impedance 
parameters, it is clear that the scope of the carrying capacity needs to be assessed. 

The busbar operation size mode and its short circuit impedance for each voltage level. Calculation of short-circuit 
impedance is to calculate the short-circuit capacity, short-circuit capacity can be determined by the accessible PV 
capacity usually does not have a priori, will be verified in the form of calibration of the PV access to meet the short-
circuit capacity and short-circuit current limit requirements. 

(2) Equipment rating data 
The rated parameters of the distribution network equipment and the specified parameters of the equipment 

operating limits. The rated parameters of the distribution network equipment mainly include the voltage level 
applicable to the equipment and the current limit value that can be circulated under the operating condition. 

(3) Operation data 
Distribution network operation size mode data. The operation size data not only includes the bus size operation 

data but also includes the power operation data under normal operation of the distribution network. The evaluation 
process studied in this paper does not take into account the impact of the operation mode, so this part of the data 
can be used in the actual carrying capacity assessment. 

Distribution network operation data. First of all, it is necessary to determine the load level of the distribution 
network, bus voltage, voltage, current, branch current distribution, harmonic pollution under the established load 
level. Using this as the base data, the PV is connected to the distribution network to assess whether the above 
operational data is out of bounds. It should be noted that the operational data need to be selected during normal 
operation, and if the operational data of the distribution network exceeds the limit values before accessing the PV, 
the PV carrying capacity assessment of the distribution network will not be carried out. 

III. Results and analysis 
III. A. Quantitative assessment of critical carrying capacity of PV in distribution networks 
In this algorithm, distribution grid PV operation under different abandonment rates is used as a comparison scenario 
to analyze the impact of node voltage, branch currents, network losses, and PV access capacity on distribution grid 
operation using node voltage, branch currents, network losses, and PV access capacity as reference indicators. 
Quantitatively analyze the critical carrying capacity of PV in the distribution grid system under the premise of safe 
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and economic operation of the distribution grid. The simulation calculates ±8% system node voltage offset rate and 
+10% branch current maximum overload as the judgment condition of distribution grid safe operation, and the 
maximum system network loss as the constraint of grid economic operation. Table 1 shows the simulation 
comparison results under different abandonment rates. 

From the results in the table, it can be seen that with the increase of PV power abandonment rate, the total load 
of the distribution system is increasing, and the node voltage offset, branch current overload and total system 
network loss also increase. If the maximum system node voltage offset and branch current overload are used as a 
comprehensive measure of the constraints on the actual PV acceptance capacity of the distribution network, the 
iterative tidal current calculation shows that the maximum PV abandonment rate that can be admitted to the PV is 
3.5%. At this time, the maximum overload and maximum network loss are 6.495 MW and 0.712 MW, respectively, 
and the acceptable capacity of PV also stabilizes to 16.791 MW.When the number of PVs in the distribution network 
exceeds this scale, there will be unstable balance node voltages and branch current overload exceeding 10% of 
the safe operation margin under each time section. The average network loss rate of the system exceeds 5%, which 
seriously affects the safe and economic operation of the grid. 

Table 1: Simulation comparison results of different rejection rates 

Rejection rate 

(%) 

Voltage 

offset 

Tidal current overload 

rate 

Maximum overload 

(MW) 

Maximum net loss 

(MW) 

Access capacity 

(MW) 

0 0.371 0 / 0.124 14.315 

0.5 0.394 0.03 4.188 0.192 14.322 

1 0.375 0.03 4.597 0.278 15.537 

1.5 0.351 0.03 4.967 0.329 15.671 

2 0.397 0.06 5.082 0.407 15.958 

2.5 0.358 0.06 5.588 0.532 15.959 

3 0.373 0.06 6.081 0.602 16.518 

3.5 0.429 0.06 6.495 0.712 16.791 

4 0.572 0.09 6.943 0.808 16.842 

4.5 0.606 0.09 7.629 0.914 16.917 

5 0.714 0.09 8.394 1.073 16.944 

 
III. B. Comparison of the results of PV carrying capacity assessment by different methods 
In order to verify the evaluation results of the proposed method and its advantage in computational efficiency, this 
section evaluates the admittance capacity of the feeder and its three connected power supply stations using three 
different comparative methods, namely, the original Monte Carlo method (MCM), the long and short-term memory 
neural network (LSTM), and the convolutional neural network (CNN). The comparison results of the evaluation 
results of each method and its efficiency are shown in Table 2. 

From the table, it can be seen that there is a slight difference between the evaluation results of the method 
proposed in this paper and the traditional Monte Carlo method, which are 6.73 MW and 6.71 MW, respectively. This 
difference mainly stems from the stochastic character of Monte Carlo simulation. In contrast, the LSTM and CNN 
models yielded results of 7.77 MW and 7.49 MW, respectively.This significant difference is mainly due to the fact 
that the two intelligent optimization algorithms treat the distribution network PV configuration scenarios as 
individuals in the population during the evaluation process, and thus tend to find the optimal distribution network PV 
configuration scheme. However, in practice, the optimal configuration does not always fully reflect the true 
admittance capacity of the distribution grid. Any deviation in the distribution grid PV configuration may lead to 
constraint violations, which in turn may affect the operational safety of the grid. In contrast, the stochastic differential 
equation method is able to provide more accurate assessment results by simulating a large number of configuration 
scenarios, which helps to ensure the safe and stable operation of the system. 

In addition, as seen from the computation time comparison in the table, the computational efficiency of the 
proposed method in this paper is improved by 23.18% to 71.22% compared with the comparison method. The 
computational efficiency of the original Monte Carlo method is the lowest, which is mainly due to the fact that the 
original Monte Carlo method starts with no PV configuration of the system and gradually increases the capacity of 
the PV configuration to assess the final admittance capacity, which requires more scenarios to be computed. In 
contrast, the method in this paper significantly reduces the number of scenarios required in the stochastic simulation 
process by first performing a preliminary measurement of the admittance capacity and further evaluating it on this 
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basis. The method proposed in this paper proves to be effective in balancing the accuracy and timeliness of PV 
admittance calibration. 

Table 2: The comparison results of the evaluation results and their efficiency 

Models Ours MCM LSTM CNN 

Check result (MW) 

Feeder 1 5.44 5.38 6.21 6.13 

Platform area 1 0.62 0.65 0.74 0.66 

Platform area 2 0.41 0.43 0.53 0.49 

Platform area 3 0.26 0.25 0.29 0.21 

Total 6.73 6.71 7.77 7.49 

Computation time (s) 13.26 46.07 19.13 17.26 

 
III. C. PV Bearing Capacity Prediction Error Uncertainty Analysis 
In order to verify the uncertainty of PV carrying capacity assessment based on stochastic differential equation 
modeling, an experiment on PV carrying capacity prediction for distribution networks is designed in this section. Ten 
access nodes are selected to connect distributed PV power plants to a regional power system, which together form 
the experimental environment. The training data in the arithmetic examples in the paper are collected in the PV 
power generation field nodes, and the data size in this paper is around 2.3G, and the data processing process is 
almost not affected by the data size. 

In order to facilitate the experiment, set the PV grid-connected process, the power system lines and transformer 
capacity will not produce any changes, only need to consider the changes in current, voltage and power, simplify 
the experimental process, and facilitate the acquisition of experimental results. Based on the above experimental 
preparation stage, the distributed PV load-bearing capacity prediction experiments are carried out, and the PV load-
bearing capacity prediction time and prediction error show the application performance of the proposed method. 

Using the nonparametric kernel density estimation method, the results of the PV carrying capacity prediction 
confidence intervals are calculated as shown in Figure 1. From the figure, it can be seen that the PV carrying 
capacity prediction results obtained by applying the proposed method in this paper fall completely inside the 95%, 
90%, and 85% confidence intervals, which are almost consistent with the actual results. At PV access node 3, the 
PV carrying capacity obtained by the proposed method is 290.90 W, and the actual result is 290.69 W, which 
indicates that the PV carrying capacity prediction error of the proposed method is small and the accuracy is high. 

 

Figure 1: Pv capacity prediction interval 

In order to further verify the superiority of the proposed method, the method proposed in this paper is compared 
with the three methods above, and the test index is the PV bearing capacity prediction error, and the results of the 
comparison of the prediction errors of different methods are shown in Fig. 2. It can be seen that the PV carrying 
capacity prediction error obtained by applying the stochastic differential equation model is 0%~3%, the PV carrying 
capacity prediction error of the MCM method is 3%~5%, and the prediction error of the LSTM and CNN methods is 
more than 8%. It shows that the prediction error of PV carrying capacity based on stochastic differential equation 
model in this paper is small and the accuracy is high. The above experimental results show that the PV bearing 
capacity prediction results obtained by the proposed method in this paper are almost consistent with the actual 
results, which fully confirms the better bearing capacity prediction effect of the proposed method. 
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Figure 2: Comparison results of different methods of prediction error 

III. D. Simulation analysis of PV carrying capacity of county distribution network 
In the 10-node wiring diagram of the county distribution network in Fig. 3, residential loads are connected to nodes 
2 to 10, and distributed PV is installed on the roofs of 816 households in the county area, and the area of distributed 
PV panels can be installed on each household is about 20 m², and each household has 10 panels, and each PV 
panel has the capacity of 500 Wp, and each household installs a total of 5.0 kW of PV capacity, and a total of 4080 
kW of distributed PV capacity is installed in the county area. The total installed capacity of distributed PV in the 
county is 4080kW, and the distributed PV connected to the roofs of the residents are all generating electricity on the 
user side, which can be self-generated and self-consumed with the surplus power on the Internet. 

 

Figure 3: The county domain distribution network 10 node connection diagram 

The daily output curve of distributed PV installed on the rooftop of each home in this county area is shown in 
Figure 4. From the figure, it can be seen that the PV begins to produce power at approximately 6:00 a.m. each day 
and reaches its maximum capacity of nearly 5.0 kw at approximately 12:00 p.m. Immediately afterward, the PV 
power level begins to decrease and stops producing power at nearly 20:00 p.m. in the evening. Since the survey 
was conducted during the month of July, the sun appeared at 6:00 a.m. in the county and the PV began generating 
power. It was not until 20:00 p.m. when the sun completely set and power generation ceased. 

 

Figure 4: PV daily output curve 
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The county is categorized into three types based on the electricity usage of different residents in the county. The 
daily load profiles of the three residential types are shown in Figure 5, with the black dash line representing the 
residential daily load profiles at nodes 2, 3, and 4, the black dashed line representing the residential daily load 
profiles at nodes 5, 6, and 7, and the gray dash line representing the residential daily load profiles at nodes 8, 9, 
and 10. 

 

Figure 5: Daily load curve of residents 

In order to obtain the maximum PV carrying capacity in the county distribution network, the distributed PV grid-
connected model under different acceptance rates is subjected to current simulation calculations to analyze the 
impact of distributed PV under different acceptance rates on the sensitive point voltage, and the maximum PV 
acceptance rate and carrying capacity of the county distribution network at this time are sought when the sensitive 
point voltage is satisfied as the upper limit value (1.07 pu). Figure 6 demonstrates the value of the sensitivity point 
voltage under different PV admittance rates. 

The simulation results show that with the increase of distributed PV acceptance rate, the value of the sensitive 
point voltage gradually increases, and when the acceptance rate is 1, the sensitive point voltage is 1.088 pu, at this 
time, the sensitive point voltage has crossed the limit of 0.018 pu. When the value of the voltage at the sensitive 
point is 1.07 pu, the voltage at the sensitive point at this time just reaches the upper voltage limit, which corresponds 
to the distributed PV admittance rate of 0.65, indicating that when the distributed PV admittance rate is 0.65 for the 
maximum PV admittance rate of the distribution network in the county. The PV admittance rate k is the ratio of PV 
output to PV capacity, i.e.: 

 out

N

P
k

P
  (29) 

Since the total installed distributed PV capacity in this county area is 4080kW, from the above equation, the 
maximum distributed PV output in this county area is 2652kW, i.e. the maximum PV carrying capacity in this county 
area is 2652kW. 

 

Figure 6: Sensitive point voltage value of different photovoltaic acceptance rate 
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IV. Conclusion 
The study builds a one-dimensional stochastic differential equation model for the assessment of PV carrying 
capacity of county distribution grids, and uses this model to solve for the maximum PV capacity under different 
constraints. Inputting the distribution system topology and line parameters as well as the set PV capacity, a 
stochastic utilization scenario is generated, and the stochastic differential equations are used to calculate the PV 
output profile. Based on this, the PV treatment curve is summed up to calculate the final abandonment rate. When 
the resulting discard rate reaches the set conditions, the maximum PV access capacity can be obtained. At the 
same time, the univariate kernel density estimation method is used to quantify the PV carrying capacity prediction 
uncertainty distribution. 

(1) When the PV light abandonment rate exceeds 3.5%, the branch current overload of the distribution network 
exceeds 10%, and the average network loss rate exceeds 5%, which affects normal operation. 

(2) The PV carrying capacity assessment result of the power supply station area under the stochastic differential 
equation model is 6.73 MW, which is accurate and the calculation time is improved by 23.18% to 71.22% compared 
with the comparison method. 

(3) The prediction error of PV carrying capacity of this paper's method is between 0% and 3%, which is much 
lower than the comparison method. 

(4) The method of this paper predicts that the maximum PV capacity, i.e. 2652kW, is reached when the distributed 
PV acceptance rate of a county is 0.65. 
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