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Abstract This paper addresses the multi-objective optimization problem of grid scheduling under multi-terminal 
information interaction architecture, and proposes a grid scheduling optimization model based on adaptive dynamic 
planning under grid-connected mode. Taking operation cost and environmental cost as the core objectives, the 
multi-objective optimization scheduling model of microgrid under grid-connected mode is constructed. The idea of 
adaptive dynamic planning is introduced, and an improved iterative ADP algorithm is designed by combining neural 
networks. The model is verified by examples to generate a scheduling scheme that takes into account both economy 
and environmental protection: in 24-hour scheduling, the discounted solution operating cost is RMB 395.6, the 
environmental cost is RMB 216.0, and the storage charging and discharging strategy interacts with the main grid to 
dynamically match the loads and the fluctuation of electricity price. Comparative analysis shows that the iterative 
ADP algorithm reaches the optimal value at 250, 440, and 150 iterations, respectively, and the scheduling results 
satisfy the power balance and unit operation constraints while outperforming the traditional ADP algorithm. 
 
Index Terms grid scheduling, multi-objective optimization, neural network, ADP algorithm 

I. Introduction 
In recent years the world's environmental problems have become increasingly severe, most countries in the world 
are implementing carbon neutrality, and accelerating the development of new energy sources such as solar energy, 
hydrogen energy, wind energy, etc. is the key to promote the world's energy development [1], [2]. At present, we 
need to actively carry out research on new power systems and accelerate the establishment of new power systems 
in order to improve the adjustable capacity of urban power systems and the stable operation of power grids [3], [4]. 

Although China's new energy has caught the fast train of large-scale and high-quality development, the inherent 
stochastic and unpredictable drawbacks of renewable energy output have brought great challenges to its grid 
operation and consumption [5]-[7]. In order to overcome the inherent drawbacks of renewable energy, energy 
storage systems are seen as a widely accepted solution. On the one hand, the vast majority of energy storage 
systems are geographically independent and can be controlled over different time scales [8], [9]. On the other hand, 
energy storage systems act as “mobile chargers” that can temporarily store and release power, smoothing out 
fluctuations in renewable energy output [10], [11]. However, although the rational configuration of the energy storage 
system can improve the operational performance of renewable energy and promote the friendly interaction between 
renewable energy and the power grid, the time-coupling characteristics of the energy storage system will increase 
the computational difficulty of the power system energy management [12]-[14]. Meanwhile, the emergence of highly 
penetrated renewable energy sources and flexible resources represented by energy storage and electric vehicles 
will change the original tidal current distribution [15], [16]. Bidirectional tidal currents may bring problems of 
overvoltage, reduced power supply reliability, and complicated relay protection adjustment, thus further complicating 
the calculation of power system optimal dispatch [17], [18]. At the same time, unlike the traditional thermal power 
unit-dominated traditional power system, the access of multiple devices such as renewable energy, energy storage, 
and demand response loads makes the power system optimal scheduling more complex [19], [20]. Based on this, 
a multi-terminal information interaction architecture is established, and by developing a hierarchical and distributed 
coordination mechanism adapted to it, the scheduling scheme with the highest overall interest of the cooperative 
alliance is formulated by taking into account the interests of all parties while safeguarding the information privacy 
between the subjects [21]-[23]. 
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In this paper, we first deeply analyze the operation mode of grid-connected microgrids and construct the 
corresponding optimal scheduling model. Further elaborating the basic idea of dynamic planning, the ADP algorithm 
is integrated with neural network, and the iterative ADP algorithm is adopted to optimize the scheduling of microgrid. 
Simulation experiments are designed for the algorithms, the Pareto solution set is obtained by solving, and the 
compromise solution is selected by using the TOPSIS method. The output of each distributed power source under 
different objective functions is simulated to verify the effectiveness of the iterative ADP algorithm. The optimized 
scheduling results are visualized and analyzed to test the reasonableness of the scheduling scheme. 

II. Construction of grid dispatch optimization model based on adaptive dynamic 
planning in grid-connected mode 

With the rapid development of energy transition and smart grid, grid scheduling under the multi-terminal information 
interaction architecture faces the challenge of multi-objective optimization. Traditional scheduling methods are 
prone to “dimensional disaster” when dealing with high-dimensional state space and multi-objective co-optimization, 
and it is difficult to balance the economic and environmental requirements. In this paper, we propose an optimization 
model based on Adaptive Dynamic Programming (ADP) for the dynamic scheduling of microgrids in grid-connected 
mode, which effectively reduces the computational complexity by integrating neural network function approximation 
and multi-stage decision-making methods. 
 
II. A. Multi-objective optimal scheduling of microgrids in grid-connected mode 
II. A. 1) Objective function 
Set the expression for the objective function Z  as shown in equation (1): 

 1 2Z f f   (1) 

where: Z  is the total cost of the microgrid system in the parallel operation mode; 1f  is the operating cost of the 
microgrid system in the parallel operation mode; and 2f  is the cost of protecting the environment of the microgrid 
system in the parallel operation mode. 

(1) Microgrid operation cost function in grid-connected mode 
Under the grid-connected operation model, the objective function for minimizing the operating cost of the 

microgrid system is as shown in Equation (2): 

 1
1

( ) ( ) ( ) ( )
T

grid MT DE bess
t

f C t C t C t C t


     (2) 

where: ( )gridC t  is the total cost of microgrid interaction with the main grid at time t ; ( )MTC t  is the total operating 
cost of the microgas turbine at time t ; ( )DEC t  is the total operating cost of the diesel generator at time t ; ( )bessC t  
is the cost of maintenance of the energy storage at time t ; ( )bessP t  is the power of energy storage at time t ; ( )sellP t  
is the power sold by the microgrid and the large grid at time t ; ( )buyP t  is the power purchased by the microgrid 
and the large grid at time t ; ( )buyc t  is the power purchase tariff of the microgrid and the large grid at time t ; ( )sellc t  
is the electricity selling price between the microgrid and the big grid at t  moment; ,bess OMK  is the operation and 
maintenance cost coefficient of energy storage. 

1) The expression for the interaction cost 

 ( ) ( ) ( )grid buy sellC t C t C t   (3) 

 
( ) ( ) ( )

( ) ( ) ( )
buy buy buy

sell sell sell

C t c t P t
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 (4) 

2) Expression for the total operating cost of the micro gas turbine 

 , ,( ) ( ) ( )MT MT OM MT FC t C t C t   (5) 

3) Expression for total operating cost of diesel generator 

 , ,( ) ( ) ( )DE DE OM DE FC t C t C t   (6) 

4) Expression for the maintenance cost of energy storage 

 ,( ) | ( ) |bess bess OM bessC t K P t  (7) 
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(2) Microgrid protection environment cost function under the grid-connected model 
Under the grid-connected operation model, the objective function for minimizing the cost of protecting the 

environment of the microgrid system is as shown in Eqs. (8) and (9): 

 2 , , ,
1

( ) ( ) ( )
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grid EN MT EN DE EN
t

f C t C t C t


    (8) 

 , ,
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( ) ( ) ( )
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C t C P t


  (9) 

where: , ( )grid ENC t  is the pollutant treatment cost of the large power grid at the t  moment; ,grid k  is the emission 
of k  pollutants generated by the operation of the large power grid; kC  is the cost coefficient of treating k  
pollutants. 
 
II. A. 2) Constraints 
(1) An expression for the total power balance constraint of the system 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )PV WT grid DE MT L bessP t P t P t P t P t P t P t        (10) 

(2) Expression for the diesel generator constraint 

 
min max( ) ( ) ( )

| ( ) ( 1) |
DE DE DE

DE DE DE

P t P t P t

P t P t r

  


  
 (11) 

Where: min ( )DEP t  is t  moment, the lower limit of diesel engine output; max ( )DEP t  is t  moment, the upper limit of 
diesel engine output; DEr  is t  moment, the upper limit of diesel engine climbing power. 

(3) The expression of the micro gas turbine output power constraints 

 
min max( ) ( ) ( )

| ( ) ( 1) |
MT MT MT

MT MT MT

P t P t P t

P t P t r

  


  
 (12) 

where: min ( )MTP t  is t  moment, the lower limit of micro-gas turbine power; max ( )MTP t  is t  moment, the upper limit of 
micro-gas turbine power; MTr  is the upper limit of micro-gas turbine climbing power. 

(4) The expression for the transmission power constraint of the contact line 

 min max( ) ( ) ( )grid grid gridP t P t P t   (13) 

where: min ( )gridP t  is the lower limit of the transmission power of the contact line at t  moment; max ( )gridP t  is the upper 
limit of the transmission power of the contact line at t  moment. 

(5) Expression for the constraint of the energy storage device 

 
min max

min max

( ) ( ) ( )

( ) ( ) ( )
bess bess bessP t P t P t

SOC t SOC t SOC t

  


 
 (14) 

where: ( )bessP t  is the power output of the energy storage device, its value is positive means power input, energy 
storage charging; its value is negative means power output, energy storage discharging; min ( )bessP t  is the lower limit 
of the power output of the energy storage device in the t  moment; max ( )bessP t  is the upper limit of the power output 
of the energy storage device in the t  moment; min ( )SOC t  is the lower limit of the remaining capacity of the energy 
storage device at t  moment; max ( )SOC t  is the upper limit of the remaining capacity of the energy storage device 
at t  moment. 
 
II. B. Microgrid optimization model based on adaptive dynamic planning 
II. B. 1) Basic Ideas of Dynamic Programming 
(1) The key to the dynamic programming method is to correctly write the basic recurrence relations and appropriate 
boundary conditions (in short, the basic equations). To do this, the problem process must be divided into several 
interrelated stages, the appropriate selection of state variables and decision variables and the definition of the 
optimal value function, so that a large problem into a family of the same type of subproblems, and then solved one 
by one. That is, starting from the boundary conditions, recursive search for the optimal segment by segment, in the 
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solution of each sub-problem, are used in its previous sub-problems of the optimization results, in turn, the optimal 
solution of the last sub-problem, is the optimal solution of the whole problem. 

(2) In the multi-stage decision-making process, the dynamic planning method is an optimization method that 
separates the current segment from future segments and combines the current and future benefits. Therefore, the 
selection of each segment of the decision is considered from the global perspective and is generally different from 
the optimal choice of the answer for that segment. 

(3) In the search for the optimal strategy of the whole problem, because the initial state is known, and the decision 
of each segment is a function of the state of the segment, so the optimal strategy through the state of the segments 
can be transformed one by one to obtain, so as to determine the optimal route. 

After clarifying the basic concepts and basic ideas of dynamic programming, we see that the following five points 
must be done when building a dynamic programming model for a real problem: 

1) Divide the process of the problem into appropriate stages; 
2) Selecting the state variable ks  correctly so that it both describes the evolution of the process and satisfies no 

posteriority; 
3) Determine the decision variable ku  and the set of allowed decisions ( )k kD s  for each stage; 
4) Write the state transfer equation correctly; 
5) Correctly write the relationship of the indicator function ,k nV , which should satisfy the following three properties: 
(a) Be a quantitative function defined on the full process and all posterior subprocesses; 
(b) It should be separable and satisfy the recurrence relation. 
(c) The function ,( , , )k k k k ns u V  should be strictly monotonic with respect to the variables 1,k nV  . 
The above five points are the basis for constructing a dynamic programming model, and are essential for correctly 

writing the basic equations of dynamic programming. 
And whether the dynamic programming model of a problem is correctly given, it is centrally reflected in the proper 

definition of the optimal value function and correctly write the recurrence relation equation and boundary conditions. 
In short, the basic equations of dynamic programming should be written correctly. 

According to the dynamic planning method there are reverse order solution method and sequential solution 
method, their basic equations of dynamic planning should be as follows: 

Let the indicator function be in the form of taking the sum of the indicators of each stage, i.e.: 

 , 1 1 , 1 1( , , , , ) [ , , ( , , )]k n k k k n k k k k n k nV s u s s s u V s s       (15) 

where ( , )j j jV s u  denotes the indicator of the j th segment. It obviously satisfies the three properties of the 
indicator function. So the above equation can be written as: 

 , 1, 1 1( , ) [ , , ]k n k k k k n k nV V s u V s s      (16) 

When the initial state is given, the strategy of the process is determined, then the indicator function is determined. 
Thus, the indicator function is a function of the initial state and the strategy. It can be written as , ,[ , ( )]k n k k n kV s p s . 

Therefore, the above recurrence relation can be written again as 

 , , 1, 1 1,[ , ] ( , ) [ , ]k n k k n k k k k n k k nV s p V s u V s p     (17) 

Its sub-strategy , ( )k n kp s  can be viewed as a combination of decisions ( )k ku s  and 1, 1( )k n kp s  . i.e. 

 , 1, 1{ ( ), ( )}k n k k k n kp u s p s   (18) 

If *
, ( )k n kp s  is used to denote the optimal sub-strategy among all sub-strategies of the posterior sub-process with 

initial state ks , the optimal value function is: 
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and: 
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But: 
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1 1 1, 1 1,( ) ( , )
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k k k n k k n
p
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So: 

 1 1
( )

( ) [ ( , ) ( )] , 1, ,1
k k k

k k k k k k k
u D s

f s opt V s u f s k n n 


      (22) 

The boundary condition is 1 1( ) 0n nf s   . 
 
II. B. 2) Adaptive Dynamic Planning Based Grid Optimization 
Dynamic programming is excellent at handling multi-stage problems, but in practice the storage and computational 
resources required climb rapidly with the increase of states and control variables, which causes the thorny problem 
of “dimensionality catastrophe”. The development of adaptive dynamic programming theory can overcome this 
problem. This theory simulates the performance index function and control strategy with the help of function 
approximation structure in dynamic planning, so that the optimal control strategy can be effectively approximated 
and realized, and the problem of “dimensional disaster” can be alleviated to a large extent. This approach maintains 
high computational efficiency and is more accurate in solving the problem. 

For the above microgrid model, the state transfer equation is shown as follows: 

 
 

,

( ) ( ) ( ) ( )
( 1) ( )

k k k
b grid IL ILk k

b cap

P t P t U t P t
SOC t SOC t t

E

 
     (23) 

The state of the microgrid system is 

 1( ) ( ( ), , ( ))kx t SOC t SOC t   (24) 

The amount of microgrid system control is 

 1 1 1 2 2 2( ) ( ( ), ( ), ( ), ( ), ( ), ( ), , ( ), ( ), ( ))k k k
b grid IL b grid IL b grid ILu t P t P t P t P t P t P t P t P t P t   (25) 

In adaptive dynamic programming, the cost function can be written as: 

 ( ) ( )i t

i t

J t U t






  (26) 

where ( )U t  is the t -time period utility function,   is the discount factor, and 0 1  , in this paper 0.8  . 
According to equation (26), it can be concluded that 

 ( ) ( ) ( 1)J t U t J t    (27) 

Assuming that * ( 1)J t   is known, by Bellman's principle, * ( )J t  can be written as 

  * *

( )
( ) min ( ) ( 1)

u t
J t U t J t    (28) 

The optimal control *( )u t  can be obtained by the following equation 

  * *

( )
( ) argmin ( ) ( 1)

u t
u t U t J t    (29) 

However, since * ( 1)J t   is unknown and *( )u t  cannot be derived directly from Eq. (30), this paper utilizes 
adaptive dynamic programming to solve the optimal control problem described by Eq. (29). 

Based on Eqs. (26)-(29), the utility function can be defined as: 

 ( ) ( ) ( )TU t u t Ru t  (30) 

where R  represents the weight matrix consisting of the unit price of energy storage charging and discharging, the 
unit price of power purchased from the grid, and the unit price of load interruption compensation. 

ADP algorithms usually need to compute or approximate value functions or strategy functions. Neural networks, 
as a powerful function approximator, can be used to approximate these functions, especially when they are very 
complex or difficult to obtain by other means. The combination of neural networks and ADP allows for online learning 
and adaptation, since neural networks can continuously update their parameters to approximate the latest value 
function or policy function as the system runs. 
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In this paper, an adaptive dynamic planning algorithm is fused with a neural network. In this fusion model 
evaluates the system state ( )x t  of the microgrid of the network, while its output is a cost function ˆ( )J t , and 
denotes the weight matrix of the hidden layer of the evaluating network and the weight matrix of the hidden layer to 
the output layer by 1cW  and 2cW , respectively. The structure of the evaluation neural network is shown in Fig. 1. 

soc1(t)

socn(t)

wa1 wa2

J(t)

 

Figure 1: Evaluate neural networks 

In this paper, the gradient descent method is used to train the evaluation network with the error formula expressed 
as follows 

 ˆ ˆ( ) [ ( 1) ( )]ce t J J t U t     (31) 

 21
( ) ( )

2c cE t e t  (32) 

The weight matrix of the evaluation network is updated as follows 

 
ˆ( )

( ) ( )
( )c c c

c

J t
W t l e t

W t

 
    

 (33) 

 ( 1) ( ) ( )c c cW t W t W t    (34) 

where cl  is the learning rate of the evaluation network, in this paper, 0.001cl  . 
The input of the execution network is the system state ( )x t , while its output is the system control ( )u t . Where 
1aW  represents the weight matrix from the input layer to the hidden layer, and 2aW  represents the weight matrix 

from the hidden layer to the output layer. The specific structure of the executive neural network is shown in Fig. 2. 
The state transfer function can be written as: 

 ( 1) ( ) ( ) px t x t u t C     (35) 

where pC  is the matrix of weights associated with the system control to the system state. 
The partial differential equation of the utility function with respect to the system control variables at moment t  is: 

 
( )

2 ( )
( )

U t
u t R

u t





 (36) 

*( )sP t

*( )gP t

* ( )pvP t

*( )eP t

* ( )evP t

*( )eP t

soc1(t)

sock(t)

wa1

wa2

 

Figure 2: Execution neural network 
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The partial differential equation of the cost function at moment 1t   with respect to the control variables at 
moment t  is 

 
ˆ ˆ ˆ( 1) ( 1) ( 1) ( 1)

( ) ( 1) ( ) ( 1)
T
p

J t J t x t J t
C

u t x t u t x t

       
 

     
 (37) 

The partial differential equation of the cost function at moment t  with respect to the control variable at moment 
t  is 

 
ˆ ˆ ˆ( ) ( 1) ( ) ( 1)

2 ( )
( ) ( ) ( ) ( 1)

T
p

J t J t U t J t
C u t R

u t u t u t x t

     
   

    
 (38) 

According to the optimality theory, ˆ( )J t  is minimized when ( )u t  is the optimal control. 

 
*( ) ( )

ˆ( )
0

( )
u t u t

J t

u t





  (39) 

 * 1
ˆ1 ( 1)

( )
2 ( 1)

T
p

J t
u t C R

x t
 

 
 

 (40) 

A gradient descent method can be used to train the execution network to minimize the error, which is expressed 
as 

 *( ) ( ) ( )ae t u t u t   (41) 

 
1

( ) ( ) ( )
2

T
a a aE t e t e t  (42) 

The implementation network weights are updated to 

 
( )

( ) ( )
( )a a a

a

u t
W t l e t

W t

 
    

 (43) 

 ( 1) ( ) ( )a a aW t W t W t     (44) 

where al  is the learning rate of the execution network, in this paper, 0.001al   . 

III. Adaptive dynamic planning-based grid dispatch optimization model solution in grid-
connected mode 

III. A. Multi-objective optimal scheduling solution 
The microgrid in this paper's algorithm contains PV, WT, battery storage, MT, and loads, and is connected to the 
distribution grid through a PCC. The battery storage has SOC upper and lower limits of SOCmax=0.8, SOCmin=0.3, 
capacity of 130kWh, charge/discharge efficiency of 0.8, and the number of scheduling time periods in a day, T, is 
24 and ∆t is 1, respectively. 

Using the iterative ADP algorithm proposed in this paper to solve the above environmental-economic multi-
objective model, the Pareto solution set obtained is shown in Fig. 3. Fig. 3 shows the Pareto frontier of the model 
solved by the MOPSO algorithm, with the horizontal coordinate representing the operating cost of the microgrid and 
the vertical coordinate representing the environmental cost incurred during the operation of this microgrid, and the 
compromise solution is selected according to the TOPSIS method, with an operating cost of 395.6 yuan and an 
environmental cost of 216.0 yuan; when the environmental cost is taken to be the minimum value of 191.3 yuan, 
the corresponding operating cost is 489.1; when the operating cost takes the minimum value of 364.5 yuan, the 
corresponding environmental cost is 242.7 yuan, and in this paper, the compromise solution is taken to take into 
account the operating cost and environmental cost of the microgrid. 
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Figure 3: Microgrid multi-objective Pareto solution set 

As shown in Figure 4, the dispatch result based on the iterative ADP algorithm can meet the power balance 
constraint in any scheduling period, where the power is positive means wind and solar output, energy storage 
discharge, MT output or power purchase from the distribution network, all of which belong to the situation where the 
microgrid obtains power, and the negative power indicates that the battery is stored and charged or sold to the 
distribution network. 

 

Figure 4: Output optimization results of each microgrid unit 

III. B. Adaptation analysis 
The microgrid unit parameters and time-of-use tariffs of the proposed grid-connected microgrid system are shown 
in Tables 1 and 2, respectively. 

Table 1: Unit parameters 

Parameter name PV WT DE MT 

Power limit/kw 80 120 40 40 

Lower power limit/kw 0 0 7 4 

Climbing power limit/kw 0 0 2 2 

Operation and maintenance unit price/(Yuan/(kW·h)) 0 0 0.146 0.0308 

Capacity factor 30.57 25.66 38.15 55.76 

Depreciation life/year 30 20 20 25 

Initial installation cost per unit capacity/(10,000 yuan/kW) 7.050 2.475 4.465 1.708 
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Table 2: Timesheet electricity price 

Time-sharing class Time period Power purchase price/(Yuan/(kw·h)) Electricity price/(Yuan/(kw·h)) 

Peak hour 
10:00~15:00 

1.08 0.82 
18:00~21:00 

Mean time segment 

7:00~10:00 

0.64 0.58 15:00~18:00 

21:00~23:00 

Valley interval 23:00~7:00 the next day 0.29 0.21 

 
In order to compare the effect of the objective function on the scheduling results, the scheduling results for 

different objective functions are discussed. The fitness curves when the objective functions are integrated cost, 
operating cost, and environmental cost are shown in Fig. 5 (a-c), respectively. From Fig. 5, it can be seen that the 
iterative ADP algorithm shows excellent convergence and optimization seeking ability for different objective 
functions set in this paper. Compared with the traditional ADP algorithm, the optimization results of the iterative ADP 
algorithm not only have a better diversity of particles, but also its convergence is significantly better than that of the 
traditional ADP, and it reaches the optimal value at the number of iterations 250, 440, and 150, respectively, when 
the objective function is the integrated cost, the operating cost, and the environmental cost. 

 

(a) Objective function-comprehensive cost   (b) Objective function-running costs 

 

(c) Objective function-cost of pollution remediation 

Figure 5: Fitness curves for different objective functions 

III. C. Analysis of optimization results 
The power interaction between the microgrid and the larger grid is shown in Fig. 6, and the charging and discharging 
of ES is shown in Fig. 7. Combined with Fig. 6 and Fig. 7, it can be seen that the PV and WT are almost in full 
power generation state during the scheduling cycle. From Table 2, it can be seen that, due to the lower electricity 
price from 23:00 to 7:00 the next day, and the lower light intensity during this time period, so the PV generates less 
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power, in order to make up for the lack of power supply capacity, so the microgrid chooses to purchase power from 
the power grid, and at the same time, the ES charging is used to satisfy the supply of power during the other time 
periods. Between 7:00 and 10:00, the PV begins to feed power to the grid as the light intensity increases, and the 
microgrid's power supply capacity increases significantly, but due to the increase in load and the increase in the 
purchase price of power, the microgrid needs to activate the MT to meet the load's power demand, but due to the 
fluctuating power generation of the PV and the WT, the excess power will continue to be stored in the ES. Between 
10:00 and 15:00, the microgrid sells power to the larger grid to improve the economic efficiency of the microgrid, 
while the ES is not recharged due to the high value of the electricity price and the sufficient power generation from 
PV and WT at this time. Between 15:00 and 18:00, the ES is charged because the distributed power generation in 
the microgrid is greater than the demand due to the decrease in electricity price and load demand. Between 18:00 
and 21:00, the electricity price rises again while the load demand increases, at which time the distributed power 
sources in the microgrid are still generating electricity in a maximum manner and the ES starts discharging and sells 
the excess electricity to the larger grid to enhance the economic efficiency of the microgrid. During the period from 
21:00 to 23:00, since the load and the generation power of PV, WT, etc. decrease at the same time, it is necessary 
to choose the power purchase and sale scheme with the big grid according to the actual situation to meet the user's 
power demand. From the above analysis, it can be seen that under the optimization of the iterative ADP algorithm, 
this microgrid achieves the desired scheme optimization results during the scheduling cycle. 

 

Figure 6: Interactive power between the system and the large power grid 

 

Figure 7: Energy storage optimization 

IV. Conclusion 
This paper focuses on the grid scheduling optimization problem under the multi-terminal information interaction 
architecture, and verifies the validity of the proposed model through theoretical modeling and arithmetic examples. 

The proposed iterative ADP algorithm is used to solve the problem, and the compromise solution is selected 
according to the TOPSIS method, with an operating cost of 395.6 yuan and an environmental cost of 216.0 yuan. 
For different objective functions, the iterative ADP algorithm shows excellent convergence and optimization ability, 
compared with the traditional ADP algorithm, not only the diversity of particles is better, but also its convergence is 
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significantly better than the optimization results of the traditional ADP, and the optimal values are reached at the 
number of iterations 250, 440, and 150, respectively, when the objective functions are integrated cost, running cost, 
and environmental cost. Simulation results show that the obtained scheduling scheme can effectively coordinate 
the generation power of each distributed power source. 

This study provides a theoretical framework and practical paradigm for the economic-environmental cooperative 
scheduling of power grids under the multi-terminal interaction architecture, which can be further extended to wide-
area optimization scenarios containing distributed energy clusters in the future. 
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