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Abstract Global climate change has become the focus of the international community's attention, and in order to 
cope with the challenges it brings, China has set the goal of striving to achieve carbon peaking by 2030 and carbon 
neutrality by 2060. Based on the sparrow search algorithm, this paper proposes a least squares support vector 
machine method to solve the problems of predictive pattern classification and function estimation, and simplify the 
complexity of calculation. The carbon emission boundary of the power system is clarified, and the fitting function of 
the carbon emission of the power industry based on the night lighting data is constructed, taking into account the 
night lighting problem of the power system, to further improve the carbon emission prediction accuracy of 
ISSA-LSSVM. The prediction effect of ISSA-LSSVM is validated using ten-fold cross validation, and the 
experimental results show that the model has the highest fit, with a residual square of 0.08821 and a Pearson of 
0.98876, which is better than other models. Predicting the predicted carbon emissions of the subject provinces 
under four scenarios, namely, green development scenario, low carbon scenario, baseline scenario and high 
carbon scenario, it is found by analyzing the data in 2030 that under the baseline scenario, the carbon emissions 
are 118.979Mt, which is an increase of 30.8427Mt compared to 2022, an increase of 34.994%, and the annual 
growth rate of the carbon emissions is 3.888%, and the baseline scenario dominates in carbon emissions. 
 
Index Terms Sparrow Search Algorithm, Least Squares Support Vector Machine, Carbon Emission Boundary, 
Nighttime Lighting Data, Carbon Emission Forecasting 

I. Introduction 
Environmental problems caused by carbon emissions are becoming increasingly serious in today's world, and with 
the introduction of the dual-carbon target, carbon reduction and carbon measurement in the process industry have 
become very important [1]. Due to the rising energy demand and the increasingly significant impact of carbon 
emissions on the environment, the global power industry is accelerating its transformation towards cleaner and 
lower carbon development [2], [3]. As an important part of the power industry, the power market coordinates and 
manages power generation, power sales, power transmission, and customer relations in the power system [4]. 
Among many industries, the power industry is often regarded as the largest user of coal and the most important 
source of carbon emissions, and the proportion of electricity in the end-use energy consumption has been 
increasing year by year, in which the power system plays an important role as the main force [5]-[7]. A large 
number of new energy sources connected to the power system in high proportion will reduce the dependence of 
the power system on traditional energy sources, reduce the CO2 gas emission of the system, and greatly change 
the distribution of power system currents, but the distribution of currents has a close relationship with the 
transmission of carbon emissions from the power system, which in turn generates the problems of carbon 
measurement, carbon reduction and optimization of the power system brought about by new energy sources 
connected to the power system [8]-[11]. 

In response to the above research problems, carbon emission prediction models for power systems with the 
themes of formulating and implementing low-carbon policy measures, increasing low-carbon constraints to 
optimize power system operation, and researching and applying low-carbon technologies have been put forward in 
large numbers. Yu, H. et al. constructed an early warning system for carbon emission in a community based on the 
Support Vector Regression (SVR) model and Genetic Optimization Algorithm (GA), which helps to assist in the 
formulation of strategies related to carbon emission reduction in the community by obtaining the dynamic emission 
coefficient of power system curve, and make reasonable prediction of the carbon emission trend of the 
community's future electricity consumption, which helps to assist the formulation of strategies related to community 
carbon emission reduction [12]. Wu, Z. et al. simulated and analyzed carbon emissions under different scenarios 
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based on a system dynamics model, so as to predict the time of the peak carbon value of the electric power 
industry and the specific peak value, and help the electric power system to achieve the goal of “double carbon” [13]. 
Luo, J. et al. combined multiverse quantum and acoustic search algorithms and dynamic fuzzy system integration 
methods to form a composite prediction model to forecast carbon emissions and low-carbon economic 
development in the energy market, which provides scientific support for future decision-making in energy structure 
optimization and other aspects [14]. Bao, X., et al. In order to address the problems of large carbon emissions and 
high energy consumption in the thermal power industry, a system dynamics model was used to simulate the carbon 
emissions and development trends of the thermal power industry under different scenarios, and to promote the 
implementation of carbon emission reduction measures in the thermal power industry [15]. Wang, X. et al. 
introduced methods such as Extreme Gradient Boosting Algorithm (XG-Boost) to design carbon emission 
influencing factor indicators for coal-fired power plants, and at the same time, utilized Sparrow Search-Long and 
Short-Term Memory Network Hybrid Algorithm to establish a generalized regression prediction model of carbon 
emission, which provides a reference to formulate a targeted carbon emission reduction strategy [16]. Chen, Z. et 
al. showed that accurate load forecasting is an important basis for integrated energy systems to reduce carbon 
emissions while improving energy efficiency, and proposed the construction of a multi-scale fusion convolutional 
neural network to extract the multi-scale features of the energy system data so as to guide the energy industry to 
carry out low-carbon production and storage [17]. Wang, H. et al. proposed the improved stochastic impact 
regression population, affluence and technology (STIRPAT) model, which was applied to the carbon emission 
prediction of the electric energy market, effectively guaranteeing the electric power industry to produce electricity in 
a low-carbon and clean form [18]. It is not difficult to see that the use of machine learning algorithms to construct a 
carbon emission assessment model of the power system is of practical significance for determining emission 
reduction strategies, optimizing the energy structure, improving the efficiency of energy use, and promoting energy 
conservation and emission reduction. 

In this paper, three accounting methods for carbon emissions are summarized and generalized according to the 
different conditions of use. Distinguishing from the traditional accounting methods, this paper proposes a novel 
machine learning optimization algorithm, which performs local and global search through the behavior of individual 
sparrows, and demonstrates the steps of using the SSA algorithm. In order to simplify the computational 
complexity of this algorithm, a least squares support vector machine model is introduced and the boundaries of 
carbon emission measurement are defined. The influencing factors of the power industry system are identified, the 
indicator set of carbon emission influencing factors in the power industry is established, and the extended STIRPAT 
model for carbon emission forecasting in the power industry is constructed. The ten-fold cross-validation method is 
used to evaluate the performance and interpretability of the model through simulation experiments. Different 
carbon emission scenarios are set up, and the model is used to predict the carbon emissions under these 
scenarios. Countermeasures are proposed to address the problems of carbon emissions in terms of resources, 
system security and economic constraints. 

II. Introduction to theories related to carbon emissions 
II. A. Theories related to carbon emission projections 
II. A. 1) Emission factor approach 
Carbon emission accounting can quantify the emission of carbon dioxide, through the carbon emission data can be 
targeted to find out the possibility of carbon emission reduction, which is of great significance for realizing the 
dual-carbon target [19]. At present, there is no uniform standard for the accounting method of carbon emissions, 
according to the different conditions of use, the main methods of measurement are emission factor method, mass 
balance method and actual measurement method. 

Carbon emission factor method is the earliest accounting method and is widely used. The carbon emission factor 
method is based on the carbon emission factors in the IPCC Guidelines for National Greenhouse Gas Inventories 
and the consumption of various types of energy to determine carbon emissions. The formula is as follows: 

 E AD EF   (1) 

Where E  is the amount of carbon emissions, and AD  is the amount of each type of production and 
consumption activity that generates carbon emissions, such as the consumption of fossil fuels. EF  is the carbon 
emission factor corresponding to each type of energy activity. According to the assumption of IPCC, the carbon 
emission factor is constant in the process of energy consumption. 

Based on the carbon emission factor, the carbon emission of energy can be calculated, indicating the carbon 
elements contained in each ton of standard coal. The carbon emission in this paper refers to the emission of 
carbon dioxide, so it is necessary to get the amount of carbon dioxide dispatched per unit of energy after full 
combustion. The National Development and Reform Commission stipulates that the emission coefficient of carbon 
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dioxide is 2.4567, indicating that each ton of standard coal will produce 2.4567 tons of carbon dioxide after full 
combustion. Therefore, carbon dioxide emissions can be obtained by combining the carbon emission factors 
obtained for each type of energy source with the carbon dioxide emission factor. 

 
II. A. 2) Mass balance method 
The mass balance approach is a new method of accounting for carbon emissions that has emerged in recent years. 
The mass balance method allows for the calculation of the share of new chemical substances consumed to meet 
the capacity of new equipment or to replace removed gases, based on the new chemical substances and 
equipment used in the country's productive life each year. The formula is as follows: 

 
2

44
( )

12CO l o wE I C O C W C        (2) 

where 2COE  is the carbon dioxide emission, I  is the input of raw materials, O  is the output of products, W  is 

the output of wastes, and ,I OC C  and WC  are the carbon content of the raw materials, products and wastes, 

respectively. The 
44

12
 is the coefficient of conversion of carbon to CO2. 

The method needs to take the emission process into account and is prone to errors. It is mainly used to measure 
carbon emissions from industrial production processes. 

 
II. A. 3) Actual measurement method 
The measurement method is a method of measuring carbon emissions by analyzing the summary of measured 
data of carbon emissions, which is divided into two methods: on-site measurement and off-site measurement. 
On-site measurements are generally made by using carbon emission monitoring systems such as CEMS 
(Continuous Emission Monitoring System) to monitor carbon emissions on site. Off-site measurement refers to the 
analysis and measurement of carbon emissions by testing samples. Off-site measurements are less accurate than 
on-site measurement methods because problems such as contamination may occur with the samples. 

The on-site measurement method has fewer intermediate links and is currently the most accurate method of 
carbon emission accounting, but the data requirements of the on-site measurement method are high and it is more 
difficult to obtain data. At present, the application of on-site measurement method is relatively small, and most of 
them are off-site measurements. 

 
II. B. Related machine algorithms 
II. B. 1) Sparrow Search Algorithm 
Sparrow Search Algorithm (SSA) is a new optimization algorithm, the principle of SSA is to simulate the foraging 
and anti-predator behaviors of sparrows for parameter optimization, local and global search through the behaviors 
of individual sparrows, with stronger optimization ability and faster convergence [20]. There are three types of 
sparrows in SSA population, which are the discoverer, joiner and scout. Sparrows as discoverers are well adapted 
and are responsible for discovering food and providing foraging areas for the entire sparrow population. The joiners 
use the information provided by the discoverers to find food. Scouts provide scouting warning signals to the 
population and when a predator is detected, the sparrow population will give up the food and make anti-predator 
behavior. The steps of SSA algorithm are as follows: 

The sparrow population X  consisting of n sparrows can be described as: 
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where d  is the dimension of the variables of the optimization problem. 
(1) Initialize the sparrow population position and fitness: 
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where f  is the fitness value. 

(2) Sort to derive the current optimal individual position and best fitness 
(3) Update the discoverer position: 
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where t  denotes the number of iterations currently performed, j  represents the dimension, ,
t
i jX  denotes the 

j -dimensional position of the i th sparrow in the population at the t th iteration,   is a uniform random number 

in the interval (0, 1], maxI  denotes the maximum number of iterations, 2R  is the value of alert Kan , ST  is the set 

warning Kan value, Q  is the standard normally distributed random number, and L  denotes the 1 d
-dimensional all-1 matrix. 

(4) Update the predator position: 
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where t
worstX  is the location of the worst adapted individual in the t th iteration, 1t

pX   is the location of the 

optimally adapted individual in the 1t  th iteration, and A  is a 1 d -dimensional matrix where the elements are 

preconditioned to be either 1 or -1, and 1( )T TA A AA  . 
(5) Update the scout position: 
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where t
bestX  denotes the global optimal position in the t th iteration,   is a random number obeying a normal 

distribution representing the control step, if  is the fitness value of the current individual, gf  is the fitness value 

of the current global optimal individual, wf  is the current global fitness value of the worst individual, K  is a 
random number in the interval [-1, 1], and   is set as a constant to prevent the denominator from taking the value 
0. 

(6) Calculate the fitness and update the sparrow position. 
(7) Determine whether the iteration satisfies the stopping condition, output the optimal sparrow position after 

satisfying the stopping condition, and return to step 2 if the stopping condition is not satisfied. 
Sparrow search algorithm has fast iteration speed and strong optimization ability, and is often used in path 

planning and image processing, etc. Sparrow search algorithm takes into account all the factors within the 
population, so that the sparrows of the population move to the optimum, and ultimately converge near the optimal 
value. However, the sparrow search algorithm tends to fall into the local optimum at the late convergence stage, 
leading to premature maturation of the algorithm, which results in poor accuracy and stability of the algorithm. 
Therefore, if the initial selection of the population can be optimized and the position of the population can be 
perturbed when the population gets the optimal value, the accuracy of the sparrow search algorithm will be 
improved. 

 
II. B. 2) Least squares vectors 
Least Squares Support Vector Machine (LSSVM) is a support vector machine method that can be used to solve 
problems such as pattern classification and function estimation [21]. Traditional support vector machines use 
quadratic programming methods, which are difficult to implement for large-scale samples. The LSSVM method, on 
the other hand, chooses the least squares linear system in terms of loss function, which can simplify the complexity 
of calculation. 
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The computational steps of LSSVM are as follows: 
(1) Given a training sample set {( , ), 1,2,..., }i ix y i n , ix  is the input vector and iy  is the prediction value: 

 ( )i iy x xi b   (8) 

where   is the weight vector and b  is the bias. 
(2) The LSSVM optimization function is solved as: 
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where ( )ix  is the kernel function, c  is the penalty parameter, and ie  is the error vector. 
(3) Introduce the Lagrangian vector: 
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where   is the Lagrange multiplier. 
(4) Take the partial derivation of the above equation, eliminate   and e , and use the least squares method to 

solve b  and i , and finally get the optimization function of LSSVM: 
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where ( , )iK x x  is the kernel function. 
In this paper, the radial basis kernel function RBF with wide convergence domain and strong generalization 

ability is selected, and the expression is: 
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where   is the width factor of the kernel function. 
Least squares vector machine is an improved vector machine method based on statistical theory, characterized 

by the ability to transform quadratic optimization problems into the solution of linear systems of equations, 
simplifying the computational process, and is also applicable to the classification and regression tasks in 
high-dimensional input spaces, but the choice of regularization coefficients and parameters of the kernel function in 
the least squares vector machine affects the prediction results of the model, and the parameter values of which are 
too large will lead to the phenomenon of overfitting, while the value of the too small parameter values can lead to 
model underfitting. Therefore, if the two parameters of the least squares vector machine can be optimized, the 
accuracy of the algorithm can be improved. 

 
II. C. Carbon Emission Prediction Model Construction of Electric Power System Based on Multivariate Data 
II. C. 1) Power System Carbon Emission Boundary and Measurement 
Before measuring and analyzing the carbon emissions of the power industry, it is necessary to define its 
boundaries. Carbon emissions from the power industry generally refer to the carbon emissions generated during 
the life cycle of energy and electricity, which includes four stages: power generation, power supply, transmission 
and distribution, and electricity consumption by users, of which the carbon emissions generated by the 
consumption of fossil fuels, such as coal, oil, and natural gas, are the main ones in the power generation process. 
In this paper, only the power generation side is considered when measuring carbon emissions from the electric 
power industry, and the processes of power supply, transmission and distribution, and electricity consumption are 
considered when studying the factors affecting carbon emissions from the electric power industry. 

Secondary energy sources such as electricity are usually calculated using the following conversion formula: 
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where eCE  denotes the total amount of carbon emissions from electric power, ejAD  and ejEF  denote the 

consumption of the i th energy source or material and the carbon emission factor, respectively, and ej  denotes 
the ratio of the first energy source or material in the electric power production process to the total energy source or 
material. 

In this paper, the updated carbon emission factor is adopted, and the updated carbon emission measurement 
formula of the electric power industry is adopted as shown below: 

 
1 1

K L

ue ek ek uk el el el
k l

CE AD EF AD   
 

         (14) 

where K  denotes the number of updated carbon emission factors, L  denotes the number of missing carbon 
emission factors, ukEF  is the updated carbon emission factor, el  denotes the coefficient for converting the l th 
energy source or material to standard coal, and   is the carbon emission factor for standard coal. 

 
II. C. 2) Carbon Emission Prediction Model for Power Systems Based on Nighttime Lighting 
As the new satellite NPP adopts a more advanced detector VIRS, there are big differences between the acquired 
data and DMSP/OLS in terms of precision and resolution, etc. In order to unify the two nighttime lighting data 
formats, it is necessary to preprocess the two kinds of nighttime lighting data in the following steps: 

Step (1): Reproject, resample and recrop the DMSP/OLS data from 1992-2013 to get the light data within the 
target area. For the missing unstable pixel values of some images, their DN  values are replaced with 0, and the 
overly bright noise points present in the image data are removed. 

Step (2): re-project, re-sample and re-crop the NPP/VIIRS data after 2012, and adjust the spatial resolution of 
this data to match the DMSP/OLS data, replace the DN  values of the missing unstable pixels of the image to 0, 
and eliminate the noise points. 

Step (3): Construct the regression model of DN  values of DMSP/OLS and NPP/VIIRS data in 2012 and 2013, 
and the model expression is shown in equation (15): 

 2( )df n an bn c    (15) 

where ( )df n  is the annual DN  value of DMSP/OLS nighttime lighting from 2012 to 2013, n  is the annual DN  

value of NPP/VIIRS nighttime lighting from 2012 to 2013, and ,a b  and c  are the model parameters, the values 
of which are determined by the lighting data of the specific area. 

Step (4): time series correction of the two kinds of nighttime lighting data by fitting the model, and finally get the 
fused lighting dataset. 

 
II. D. Predictive modeling 
Based on the measured carbon emissions from the electric power industry ueCE , a regression prediction model is 
constructed between the total luminance values of nighttime lighting data DN  obtained by fusing and correcting 
the DMSP/OLS and NPP/VIIRS data, where the corrected DN  values range from 0 to 63. By analyzing the trend 
of ueCE  and DN  values in the study area over the historical time period, different expressions of the fitting 
function are established, which can be used as the expression of the carbon emissions prediction model for electric 
power. Be used as the model expression for the prediction of carbon emissions from electricity. The fitting function 
for the carbon emissions of the electric power industry based on the nighttime lighting data is constructed as 
follows: 
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 (16) 

where ny  denotes the measured value of carbon emissions from the electric power industry in millions of tons. 

,A B  and C  are the parameters of the prediction model, respectively. 1r  and 1s  are the coefficients of the DN  
value, because the nighttime light data reflect the consumption of electricity, and the electricity consumption of a 
certain region may partly come from the power supply of the external region, and secondly, only the part of the 
electricity consumption of the thermal power generates carbon emissions, so when constructing the fit function of a 
certain region with the DN  value and the introduction of and the two parameters, which represent the proportion 
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of the regional power supply and the thermal power proportion of the electricity consumption, respectively, the 
proportion of internal power supply and the proportion of thermal power. Therefore, when constructing the fitting 
function with DN  value for a certain region, two parameters are introduced and they represent the proportion of 
regional power supply and the proportion of thermal power in electricity consumption, respectively, and the specific 
value is determined by the trend of the change with DN  value. 

 
II. D. 1) Factors affecting carbon emissions in the power sector 
The traditional STIRPAT model includes only three indicators of population, wealth and technology, while the actual 
carbon emissions are also constrained by many other influencing factors, thus it is necessary to analyze and 
screen the influencing factors before establishing the extended STIRPAT model of carbon emissions in the electric 
power industry [22]. Considering the processes that may generate carbon emissions in the stages of power supply, 
transmission and distribution, and electricity consumption, a set of factors influencing carbon emissions in the 
power sector is established, as shown in Table 1. 

Table 1: Influencing factors of carbon emissions in the power industry 

Influencing factor Symbol Definition 

Population scale (Ten thousand) P  The number of permanent residents in the region 

Per capita GDP (yuan/per) A  Regional GDP and permanent resident population e 

Urbanization rate sP  
The number of permanent urban residents in a 

region/the number of permanent residents 

Industrial structure sI  
The added value of the secondary industry in the 

region and the regional GDP 

Electricity consumption (billion kilowatt-hours) IE  
The total electricity consumption of the entire society in 

the region 

The proportion of new energy power generation sE  
Regional new energy power generation/power 

generation 

Standard coal consumption for power generation (grams per kilowatt-hour) cE  

The consumption of each 1kwh of electricity generated 

by the regional power enterprise Standard coal 

quantity 

The proportion of new energy installed capacity nE  
The installed capacity of new energy power generation 

in the region is high 

Energy consumption: 10,000 tons of standard coal. eE  Total regional energy consumption 

 
II. D. 2) Predictive modeling 
Based on the set of influencing factors in Table 1, the carbon emission prediction model of the power industry can 
be constructed, and based on the traditional model, the quadratic term of GDP per capita is introduced, and the 
extended STIRPAT model for carbon emission prediction of the power industry is constructed, with the following 
expressions: 

 
 2
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   

     

    
 (17) 

where cy  denotes the measured value of carbon emissions from the electric power industry in millions of tons, 1  

to 9  are the elasticity coefficients of the influencing factors, and e  is the model error term. 
However, due to the differences in socio-economic and energy data of each country or region, the influencing 

indicators involved in the above model may not always have the greatest impact on carbon emissions, and thus it is 
necessary to screen the importance of the selected indicators, this paper utilizes the degree of importance of the 
indicators and screens them, and the screened indicators are used as the independent variables in the final 
extended STIRPAT model for carbon emission prediction. 

In the process of ordinary regression of the extended STIRPAT model, there may be multicollinearity between 
multiple independent variables, which is easy to interfere with the relationship between the independent variables 
and the dependent variable, thus leading to errors in the prediction results. Thus, this paper adopts the ridge 
regression method to analyze the extended STIRPAT model. The main idea of the ridge regression method is to 
first convert the log-linear equation of Eq. (17) into matrix form as follows: 

 ln ln lncy X a e    (18) 
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where ln X  is the independent variable matrix, a  is the coefficient matrix, and lne  is the constant matrix. 
Usually linear regression is estimated by ordinary least squares method with the following formula: 

 ' 1 '((ln ) ln ) (ln ) ln ca X X X y  (19) 

When there is covariance between the independent variables, the change in the values of ln X  tends to 
converge resulting in the rank of the matrix (ln ) lnX X  being less than n , making   meaningless. To solve this 

problem, the ridge regression method adds a constant matrix Kc  to this matrix, where K  is positive, so that the 
independent variable covariance problem can be handled. The estimation formula based on ridge regression is as 
follows: 

 '1'( ) ((ln ) ln ) (ln ) ln ca K X X Kc X y   (20) 

where, where is the ridge regression parameter, by adjusting the K  value can be obtained under different ridge 
regression estimation of a , when adjusting the value to no longer change tends to stabilize, you can choose this 
value as the final coefficient matrix, can be largely eliminated ordinary least squares estimation of the regression 
equation caused by the covariance between the independent variables. 

 
II. D. 3) Carbon Emission Forecasting Model for the Electricity Sector 
In order to further improve the accuracy of carbon emission prediction, this section constructs a carbon emission 
prediction model for the power industry based on multi-source data. Based on the advantage of the power demand 
forecasting model in dealing with high-dimensional multi-source data, this section also adopts the improved 
LSSVM model to forecast carbon emissions from the power industry. 

The main idea of the model is to input the nighttime lighting data and the filtered indicator data as well as the 
residual value (the difference between the real value and the predicted value) in the respective prediction model 
into the prediction model as the new carbon emission impact indicator of the power industry. On the one hand, the 
model in this section takes into account the prediction residuals of the models in the previous two sections, which 
can be used to correct the prediction model, thus reducing the error of the prediction process, and on the other 
hand, it takes into account the influence of multi-source data on the carbon emissions of the electric power industry, 
which allows the model to learn more comprehensive and comprehensive sample information, thus improving the 
prediction accuracy of the model. The main flow chart of the model is shown in Figure 1, and the main steps are as 
follows: 
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Figure 1: Main flowchart 

The residual values of the predicted and true values of the prediction model are calculated separately, and the 
two columns of values are used as the new feature data sources, followed by the socio-economic data sources 
with the nighttime light brightness values DN  and those screened by the random forest algorithm as the model 
data inputs, and all the input data sources of the model are normalized. The main prediction model expression is: 

 1 d realy y y    (21) 

 2 c realy y y    (22) 
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 1 2( , , , , , )m ILSSVM DN ei eny f y y x x x     (23) 

Among them, my  represents the estimated value of carbon emissions in the power industry in million tons, 

( )ILSSVMf x  represents the ISSA-LSSVM model proposed in this paper, 1y  and 2y  represent the difference 

between the predicted value and the actual measured value of carbon emissions in the power industry, DNx  is the 

nighttime light brightness value, and eix  is the difference between the predicted value of carbon emissions in the 

power industry and the actual measured value, eix  to enx  indicates the filtered socio-economic and energy 
statistical indicators. 

III. Prediction of carbon emissions from power systems based on machine learning 
algorithms 

III. A. Analysis of model prediction results 
III. A. 1) Analysis of machine learning model prediction results 
Cross-validation is suitable for training optimization models when there is insufficient data, and in the paper, 
ten-fold cross-validation is used to assess the prediction effect of each machine learning model using R² as the 
evaluation index. The entire sample is divided into 10 equal-sized sample subsets, 9 copies are randomly selected 
as the training set each time, and the remaining 1 copy is used as the test set, which is repeated for ten times, and 
the results of these 10 independent tests are averaged as an indicator for evaluating the model performance. 

The hyperparameters of a machine learning model have a great impact on its regression performance, and 
manual parameter tuning is time-consuming and ineffective, usually with the help of optimization algorithms. 
Bayesian tuning is a hyperparameter tuning method based on the Bayesian optimization algorithm, which, through 
the Gaussian process, takes into account the previous prior information when selecting hyperparameters, 
constitutes new combinations for the next round of attempts, and gradually reduces the search space until the 
optimal hyperparameter combination is reached. 

Fig. 2 shows the machine learning fitting graph, Fig. (a) shows ISSA-LSSVM model, Fig. (b) shows XGboost 
model, Fig. (c) shows LightGBM model, Fig. (d) shows KNN model, Fig. (e) shows Adaboost model, ISSA-LSSVM 
model has the highest fit, the sample of the test set is close to the line of fit, and the residuals squared is 0.08821, 
the Pearson of 0.98876 and adjusted R² = 0.97718, which is better than other models. 

 

(a)ISSA-LSSVM     (b)XGboost 

 

(c)LightGBM     (d)KNN 
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(e)Adaboost 

Figure 2: Machine learning fitting 

Performance evaluation 
In order to compare the prediction level of each model, mean absolute error (MAE), root mean square error 

(RMSE) and coefficient of determination (R²) are used as the evaluation indexes, and the calculations are shown in 
Eqs. (24) to (26). MAE is the average of the absolute values of the errors of the true value and the predicted value, 
which indicates the size of the actual prediction error, and the closer the value is to 0 the better it is, and RMSE is 
the standard deviation of the difference between the true and predicted values. RMSE is the standard deviation of 
the difference between the true value and the predicted value, which indicates the accuracy of the model, and the 
closer its value is to 0, the better it is, R² indicates the goodness-of-fit of the model, and the closer its value is to 1, 
the better it is, and in general, when R² is greater than 0.7, it can be assumed that the model is a better fit to the 
data: 
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where: n  is the number of samples, y  is the true value, 'y  is the predicted value, and meany  is the mean value 
of the true value. 

 

Figure 3: Performance evaluation index of machine learning model 

Five machine learning models are used to predict the carbon emissions of the power system, and the 
performance evaluation indexes of the test set and the training set are obtained as shown in Fig. 3. Analyzing from 
a single model, the ISSA-LSSVM model has the best prediction effect, and it can predict the test set data more 
accurately after learning from the training set, and the data of MAE, RMSE and R² of the ISSA-LSSVM model's 
performance indexes in the test set are 0.0848, 0.1054, and 0.8165, respectively, and the MAE and RMSE are in 
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the 5 kinds of models closest to 0, and R² is greater than 0.7 and closest to 1. The reason for this is analyzed 
because the ISSA-LSSVM model is good at predicting with less training data and relies on random selection of 
dividing points, and has good generalization performance, and in terms of the overall effect analysis, the machine 
learning model is more outstanding, and because it is an integration of a single model, it usually has high accuracy 
and stability, can avoid overfitting problems and reduce variance. 
III. A. 2) Model interpretability 
In order to further obtain the degree and effect of the respective variables, the paper utilizes the SHAP 
interpretability analysis method to conduct an interpretability analysis of the ET model with the optimal predictive 
effect.SHAP is a game theory-based method that links game theory to local interpretation by calculating the 
contribution of an individual in the cooperation to determine the degree of importance of that individual.Let the i th 
sample be ix , the j th feature of the i th sample is ix , the predicted value of the model for this sample is iy , 

the mean value of the target variable of all the samples is meany , and ( )ijf x  is the SHAP value of the current 

feature, which is the predicted value of the feature for the i th sample contribution level, when ( ) 0if x  , the 
feature has a positive impact on the predicted value: conversely, the feature has a negative impact on the predicted 
value, and the SHAP value is denoted as: 

 1 2 3( ) ( ) ( ) ( )i mean i i i iky y f x f x f x f x        (27) 

Fig. 4 shows the SHAP relationship dependency diagram, Fig. (a) shows the industrial structure, Fig. (b) shows 
the electricity consumption, Fig. (c) shows the proportion of new energy power generation, Fig. (d) shows the 
standard coal consumption of power generation, Fig. (e) the proportion of new energy installed capacity, and Fig. (f) 
shows energy consumption, which show the carbon emission influencing factors of the electric power industry, 
respectively. In Figures (a) and (b), the output of the ISSA-LSSVM model is positively affected by the industrial 
structure and electricity consumption, and the larger these eigenvalues are, the higher the prediction value of the 
ISSA-LSSVM model is, and there is a clear relationship between the carbon emission level and the model output, 
especially for the indicator of electricity consumption, and the highest value of the SHAP value reaches about 900 
with the increase of electricity consumption. In Fig. (c), as the proportion of new energy generation increases, the 
carbon emission in the operation phase of the power system also increases, and the highest SHAP value is over 
20 when the proportion is 1. The distribution of data points in Figs. (d)~(f) is relatively more dispersed, and the 
regularity is weaker than that in Figs. (a)~(c), indicating that the standard coal consumption for power generation, 
the proportion of new energy installed capacity, and the energy consumption have less influence on the carbon 
emission prediction output of the ISSA-LSSVM model. 
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(a)Industrial structure     (b)Electricity consumption 

  

(c)New energy generation ratio    (d)Standard coal consumption 

  

(e)New energy assembly ratio    (f)Energy consumption 

Figure 4: SHAP dependencies 

III. B. Carbon emission projections 
III. B. 1) Carbon Emission Projections under Different Scenarios 
In this paper, four carbon emission scenarios are modeled as low carbon, baseline, high carbon, and green 
development. The low-carbon scenario focuses on reducing carbon emissions and assumes that a series of 
low-carbon emission policies and measures are adopted to achieve the goal of reducing carbon emissions. The 
baseline scenario represents the trend in carbon emissions under current policy planning and technology levels 
and serves as a reference for the other scenarios. The high-carbon scenario assumes that the constraints on 
energy consumption and high-carbon industries are weakened, and that the policies and measures adopted are 
not effective enough to control carbon emissions, resulting in a higher level of carbon emissions. The green 
development scenario, on the other hand, further integrates green technology and sustainable development 
policies on the basis of the low-carbon scenario, and considers the impact of technological progress, such as the 
improvement of carbon capture technology and clean and efficient combustion technology, so as to reduce carbon 
emissions to realize the effect of emission reduction. 

In this paper, based on the four scenarios of low carbon type, baseline type, high carbon type and green 
development type, the public factor industrial structure and electricity consumption of conventional coal-fired units 
above 300MW class, conventional coal-fired units of 300MW class and below, and non-conventional coal-fired 
units from 2023 to 2030 are set, and the optimal model for carbon emission prediction of thermal power generating 
units (ISSA-LSSVM) is adopted by the Matlab software to run the model, and the public factor industrial structure 
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and electricity consumption were used as model input data to get the predicted value of carbon emission of each 
coal-fired unit. Figure 5 shows the results of the scenario prediction, Figure (a) is the prediction of carbon 
emissions from generator group A, Figure (b) is the prediction of carbon emissions from generator group B, Figure 
(c) is the prediction of carbon emissions from generator group C, and Figure (d) is the overall prediction of the 
system of electric power enterprises in a certain place. 

The carbon emissions of generator group A under the green development scenario show a trend of slowly 
increasing and then decreasing year by year, and the carbon emissions under this scenario peak in 2025 at 39.548 
Mt. From 2022 to 2030, the carbon emissions decrease year by year from 39.106 Mt to 38.337 Mt, a decrease of 
0.769 Mt. Compared with the baseline scenario, the carbon emissions under the high carbon type scenario in 2030 
increase by an additional 14%, and the carbon emissions under the high carbon type scenario increase by an 
additional 14%, and the carbon emissions under the high carbon type scenario increase by an additional 14%. 
Compared with the baseline scenario, the carbon emissions of the high-carbon scenario in 2030 increase by 
14.333 Mt. On the contrary, the carbon emissions of the green development scenario and the low-carbon scenario 
decrease significantly by 20.464 Mt and 14.661 Mt, respectively, which indicates that the impacts of different 
carbon emission scenarios on the carbon emissions of conventional coal-fired power generation units of 300 MW 
and above are significantly different, and such power generation units in the green development scenario and the 
low-carbon scenario show significant advantages in emission reduction. This shows that there are significant 
differences in the impacts of different carbon emission scenarios on the carbon emissions of conventional 
coal-fired units above 300MW class, and that such generating units in the green development scenario and the low 
carbon scenario show significant advantages in emission reduction. 

Under both the Green Development Scenario and the Low Carbon Scenario, Genset B shows a positive trend in 
emission reduction, and both reach their peak carbon emissions in 2023, at 50.783 Mt and 50.642 Mt, respectively. 
The carbon emissions of these two scenarios start to decrease slightly year by year after reaching the peak, in 
which the carbon emissions of the green development scenario decrease to 49.002Mt in 2030, and the carbon 
emissions of the low carbon scenario decrease to 50.027Mt. 

Among the carbon emission projections under the four scenarios of non-conventional coal-fired units (Group C), 
the carbon emission under the green development scenario starts to decrease year by year after reaching the peak 
of 2.321Mt in 2022, and the carbon emission in 2030 is 1.645Mt, which is a decrease of 0.676Mt compared with 
that in 2022, with an average annual growth rate of -3.236%. In addition, due to the small number of 
non-conventional coal-fired units (Group C) with only 2 units, the total carbon emissions are significantly lower than 
those of Group A and Group B generating units, and its Green Development Scenario and Low Carbon Scenario 
only provide carbon emission reductions of 0.736Mt and 0.414Mt in 2030 compared with the Baseline Scenario. 

In the previous paper, carbon emission projections have been made for the three groups of generating units A, B 
and C. The projections are summarized in the following section. Next, this paper obtains the total carbon emissions 
of the power system as a whole of 18 thermal power generating enterprises in a province during the forecast period 
by summing up the carbon emission projections of these three groups of generating units under four scenarios: the 
green development scenario, the low carbon scenario, the baseline scenario and the high carbon scenario. Under 
the baseline scenario, carbon emissions show a continuous growth. Specifically, the average annual growth rate of 
carbon emissions under the baseline scenario is 3.888%, and it is found by analyzing the data in 2030 that the 
baseline scenario carbon emissions are 118.979 Mt, which is an increase of 30.8427 Mt, or 34.994%, compared 
with 2022. Analyzing the carbon emission share of different unit types, in 2030, the carbon emission share of 
conventional coal-fired units above 300MW class (Group A) is 48.93%, the share of conventional coal-fired units of 
300MW class and below (Group B) is the largest at 49.541%, and the carbon emission share of non-conventional 
coal-fired units (Group C) is the smallest at 2.346%. Conventional coal-fired generating units Group A and Group B 
are the main sources of emissions, with a total share of 97.936%, dominating the carbon emissions of the baseline 
scenario of thermal power generation enterprises in a province. 
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(a)Generator A group carbon        (b)Generator B group carbon  
emission prediction       emission prediction 

  

(c)Generator C group carbon    (d)The overall prediction of a local  
emission prediction    electric enterprise system 

Figure 5: Scenario prediction 

III. B. 2) Social Costs of Carbon Emissions in the Power Sector in a Peak Carbon Scenario 
A total of 18 simulation scenarios were set up by integrating three indicators, namely GDP growth rate, power 
technology breakthrough time, and change in power consumption intensity per unit of GDP. As shown in Table 2, L, 
M, and H represent three kinds of GDP growth rates, low, medium, and high, respectively; EC1, EC2, and EC3 
represent three kinds of scenarios, namely, increase in power consumption intensity per unit of GDP, unchanged 
power consumption intensity per unit of GDP, and decrease in power consumption intensity per unit of GDP, 
respectively; and 2035 and 2050 represent the breakthrough of power technology in 2035 and 2050, respectively. 

Table 2: Simulation scenario setting and code 

GDP growth 
Technology breakthrough 

time 

Increased power 

consumption 

Power consumption intensity is 

constant 

Reduced power 

consumption 

Low GDP 
2035 LEC12035 LEC22035 LEC32035 

2050 LEC12050 LEC22050 LEC32050 

Mid-GDP 

velocity 

2035 MEC12030 MEC22035 MEC32035 

2050 MEC12050 MEC22050 MEC32050 

GDP High 

speed 

2035 HEC12035 HEC22035 HEC32035 

2050 HEC12050 HEC22050 HEC32050 

 
Electricity demand determines the amount of electricity supply, and the amount of electricity supply in the 

representative nine scenarios is shown in Table 3, and analyzing the amount of electricity supply shows that its 
size is consistent with the amount of electricity demand. The rule of change is that in the scenario of higher 
economic growth rate and higher intensity of power consumption, the higher the power demand is, and therefore 
the larger the power supply is. In the scenario of lower economic growth rate and lower intensity of power 
consumption, the power demand is lower, so the power supply is smaller, and the power supply in the scenario of 
LEC32035 in 2060 is 8.1485 trillion kWh. 
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Table 3: Power Supply Volume in Representative Scenarios(Trillion KWh) 

Situation 2020 2030 2040 2050 2060 

HEC12035 3.7854 7.6248 12.6148 20.7988 34.7165 

HEC22035 3.7854 5.8536 8.3548 12.3157 19.0654 

HEC32035 3.7854 5.3215 6.4154 8.4652 10.4264 

MEC12035 3.7854 7.1326 11.4987 19.1325 32.7484 

MEC22035 3.7854 5.6487 7.6485 10.8484 16.9487 

MEC32035 3.7854 5.0698 5.8315 7.6187 9.3487 

LEC12035 3.7854 6.0978 10.3264 18.0648 31.1648 

LEC22035 3.7854 5.5487 7.4688 10.7488 16.2448 

LEC32035 3.7854 4.7987 5.6487 6.8265 8.1485 

 
In the simulation scenarios that can reach the peak during the study period, the peak year and peak data of CO2 

emissions are shown in Table 4. A total of five simulation scenarios reach the peak of CO2 emissions in 2030, 
which are LEC32035, LEC32050, MEC32035, MEC32050, and HEC32035. In the peak scenarios, the peak CO2 
emissions of LEC32035 and LEC32050 scenarios are 2,465.5785 Mt and 2,465.5854 Mt, and the peak CO2 
emissions of MEC32035 and MEC32050 scenarios are 2548.6695 Mt and 2548.5854 Mt, respectively. Mt, 
2548.6695Mt and 2549.4853Mt for MEC32035 and MEC32050 scenarios, and 2618.4854Mt for HEC32035 
scenario. It can be seen that a decrease in the intensity of electricity consumption and early breakthroughs in 
electricity technology will contribute to the realization of the goal of peak carbon attainment. The carbon peak time 
of the remaining reachable scenarios is between 2031 and 2041, and the peak CO2 emissions are between 
2628.1554 and 3426.4151Mt. The earlier the peaking time, the smaller the carbon peak. The earlier the peak is 
reached when the economic growth rate is smaller and the intensity of electricity consumption is lower. When the 
economic growth rate and electricity consumption intensity are the same, the early breakthrough of electricity 
technology promotes the realization of carbon peak. 

Table 4: Carbon peak year and carbon dioxide emission peak of 15 simulation scenarios (Mt) 

Situation Peak time Carbon peak 

LEC32035 2030 2465.5785 

LEC32050 2030 2465.5854 

MEC32035 2030 2548.6695 

MEC32050 2030 2549.4853 

HEC32035 2030 2618.4854 

Situation Peak time Carbon peak 

HEC32050 2031 2628.1554 

LEC22035 2031 2718.6485 

MEC22035 2032 2768.6154 

HEC12035 2033 3248.4464 

HEC22035 2034 2865.4621 

Situation Peak time Carbon peak 

LEC12035 2035 2878.4563 

MEC12035 2035 3084.6165 

LEC22050 2040 3148.6364 

MEC22050 2041 3214.3152 

HEC22050 2041 3426.4151 

 
The social cost of power system carbon emissions is analyzed to assess the external costs of different scenarios. 

The social cost includes the capital cost of power generation equipment as well as fixed and variable maintenance 
costs, fuel costs, and the externality cost of CO2 emissions, so that the social cost provides a comprehensive 
picture of the combined cost of carbon emissions from the power system in the specified scenarios. Table 5 shows 
the social cost of carbon emissions for 2020-2060 in each scenario. Among all the simulated scenarios, the 
HEC12050 scenario has the highest social cost of 7.996 trillion yuan. The LEC32035 scenario has a social cost of 
3.945 trillion yuan, which is the lowest cost for the electric power industry in all the scenarios. The later a scenario 
peaks or fails to peak, the faster its economic growth rate and the higher its electricity consumption intensity, and 
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therefore the higher the social cost to its electricity generation sector. The earlier the scenario peaks, the lower the 
social cost. Therefore, promoting the power sector to peak carbon as early as possible has a positive significance 
in reducing the social cost of the power sector. And under the same economic growth rate and power consumption 
intensity, the earlier the power technology breakthrough is realized, the lower its total social cost. For example, 
LEC32035, LEC32050 scenarios, LEC32050 scenarios in 2050 to achieve breakthroughs in power technology, the 
commercialization of CCS technology, renewable energy equipped with energy storage costs down, then its social 
cost of 4.426 trillion yuan. LEC32035 scenarios in 2035 to achieve breakthroughs in power technology, for 3.945 
trillion yuan. Therefore, the government should vigorously support power technology breakthroughs, for CCS 
technology, renewable energy generation and energy storage equipment research and development, as well as the 
cost of technology applications to subsidize, which for the power industry to achieve carbon neutrality as early as 
possible, and to save the social cost of playing a positive role. 

Table 5: Social costs of carbon emissions from electricity in 2020-2060(billion RMB) 

Situation Social cost Situation Social cost Situation Social cost 

HECI2035 7064.4956 MEC12035 6812.4524 LEC12035 6434.6487 

HEC12050 7996.4524 MEC12050 7708.6485 LEC12050 7351.6432 

HEC22035 5862.3452 MEC22035 5532.4894 LEC22035 5463.9848 

HEC22050 6615.4869 MEC22050 6248.3615 LEC22050 6189.6487 

HEC32035 4321.6548 MEC32035 4136.6215 LEC32035 3945.4245 

HEC32050 4839.9548 MEC32050 4563.9887 LEC32050 4426.6487 

 

IV. Analysis of constraints and responses 
In order for the power sector to achieve the goal of carbon neutrality, 75% of the electricity needs to be supplied by 
new energy generation. The following constraints exist in terms of resource development, system security, and 
economics in order to create a new power system with greater capacity to consume new energy in the future. 
 
IV. A. Resource development constraints and responses 
The objectives, tasks and measures of the development plans of different industries have imposed constraints on 
new energy development. For example, the spatial planning and land use control of land resources, some local 
development plans set too many restrictions on the development of the red line, new energy development can be 
utilized to land resources are very limited, the environmental planning on the one hand requires carbon emission 
reduction, but on the other hand, do not allow the development. What's more, some people believe that as long as 
the development is to destroy the environment, environmental protection and resource development in the concept 
of the formation of the antithesis. 

Should further carry out the national wind, solar and other new energy resources survey and assessment, to 
ensure the accurate and efficient use of resources, maximize solar, photovoltaic, biomass, geothermal and other 
new energy forms of power generation of the overall power generation, to meet the future growth of the total 
amount of power generation needs. To form a development pattern combining the scale layout of centralized 
multi-energy complementary renewable energy power generation bases and the deployment of distributed 
production and consumption power forms according to local conditions. Promote new energy power generation 
technology progress, improve the efficiency of new energy resource utilization and power economy, and do a good 
job of key technology research and development and major engineering layout. At the same time as developing 
new energy, optimizing the planning of electrochemical energy storage, pumped storage, gas power stations and 
other flexible power sources to support the continuous improvement of new energy consumption capacity. 

 
IV. B. System security constraints and countermeasures 
The high proportion of new energy access poses a great challenge to grid security and operational stability. With 
the large-scale access of new energy sources, conventional power sources have been replaced in large quantities, 
and the rotational inertia of the system and its frequency and voltage regulation capabilities have been 
continuously reduced, so that the risk of large-scale, wide-band and interlocking failures of the power grid has 
continued to accumulate. In addition, a large number of distributed new energy access to the distribution network 
may cause system power imbalance, line overload, node voltage overruns and other issues, the reliability of the 
power supply has brought great challenges, which shows that China's current power system is not ready for 
large-scale access to renewable energy transformation, more unable to adapt to the future of renewable energy 
installed capacity proportion of the year-on-year increase in the development trend. And China's power system 
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flexible adjustment capacity there are still short boards, pumped storage power plant, gas power generation and 
other flexible adjustment power supply proportion of only 6%, large hydropower, additional carbon capture and 
storage technology of coal power flexibility to transform the capacity benefit of the lack of safeguard policy, 
constraints on the development of renewable energy. 

Fundamentally solve the problem of mismatch between renewable energy development and power system, we 
should fully explore the potential of flexibility resources from the power supply side, grid side and user side, and 
guide the coordinated development of various types of flexibility resources of “source network and load reserve” 
with new planning concepts. 

On the power supply side, it is necessary to increase the proportion of flexible power supply in areas rich in new 
energy resources, plan and build large hydropower stations, pumped storage power stations and gas power 
stations with good regulation performance, use existing hydropower bases, plan and build “water, wind, light and 
storage” clean energy bases, give full play to the advantages of the regulation performance of the group of terraced 
power stations, and optimize the ratio of wind and light resources, on the power supply side, bundle power 
transmission, and optimize the ratio of wind and light resources, on the power supply side. The power supply side 
bundles the power to send out, reducing the impact on the power grid. 

On the grid side, with the help of artificial intelligence, big data and other new technologies, we can improve the 
grid's operation and management capability of new energy power generation equipment, establish a high-precision 
and high-confidence new energy power prediction system, and lay a solid foundation for the optimal operation of a 
high proportion of new energy resources on the grid. On the user side, energy storage technology can solve the 
problem of new energy consumption and volatility, regulate the load, and greatly improve the security and stability 
of the power system. Energy storage system can peak and valley arbitrage, participate in grid demand-side 
response, provide emergency power backup and other functions, in the field of industrial and commercial energy 
storage, demand-side response, distributed photovoltaic optimization, charging station expansion, home energy 
storage and many other user-side has a greater application value. 

 
IV. C. Economic constraints and countermeasures 
From the point of view of the overall development of the power system, it is expected that in the “14th Five-Year 
Plan” and “15th Five-Year Plan” period, the new energy “parity” utilization challenges, but reasonable control of the 
pace of development, will help to Slow down the cost of new energy utilization. At the same time, it is also 
necessary to promote the whole society to share the cost of green development through the market competition 
mechanism. To focus on economic and social benefits synergistic, not only to calculate the “economic accounts”, 
but also to calculate the “people's livelihood accounts”. First, in the consideration of new energy auxiliary 
investment based on accelerating technological progress to reduce the cost of new energy power generation 
further, the second is to take into account the fairness to meet the bottom, to protect the supply of basic public 
services, to properly deal with the cross-subsidization of electricity prices, to ensure that the residents, agriculture, 
important public utilities and public welfare services and other electricity prices are relatively stable, the third is to 
popularize the cost of low-carbon green transformation to the public, and to enhance the understanding and 
support for the social parties to the price reform. Third, popularize the cost of low-carbon green transformation 
among the public, enhance the understanding and support of all social parties for the price reform, and form a 
society-wide synergy to jointly promote the realization of carbon peaking and carbon neutralization. 

V. Conclusion 
This paper applies the emission factor method, mass balance method and actual measurement method in turn to 
account for the carbon emission data of the electric power system, based on which the sparrow search algorithm 
and the least squares support vector machine algorithm are proposed to construct the ISSA-LSSVM model. 
Between the carbon emission measurement and prediction of the electric power system, the carbon emission 
boundary is defined, the STIRPAT model is expanded, the set of carbon emission influencing factors of the electric 
power industry is established, and the prediction research of the carbon emission of the electric power system is 
launched. The research results of this paper are as follows: 

(1) The performance of the model ISSA-LSSVM model constructed in this paper in the test set of MAE, RMSE 
and R² index data were 0.0848, 0.1054, 0.8165, respectively, all of which are the best performance among the five 
models, which can avoid the overfitting problem and reduce the variance. 

(2) Four carbon emission scenario models are set, namely, low carbon, baseline, high carbon and green 
development, based on which carbon emissions are predicted for different power generation groups from 2023 to 
2030. The carbon emission of generator group A under the green development scenario peaks at 39.548 Mt in 
2025, and from 2022 to 2030, the carbon emission decreases from 39.106 Mt to 38.337 Mt year by year, a 
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decrease of 0.769 Mt. This type of generator group under the green development scenario and the low carbon 
scenario shows a significant advantage in emission reduction. 

(3) Integrating the three indicators of GDP growth rate, power technology breakthrough time, and changes in 
power consumption intensity per unit of GDP, the scenario setting is expanded, and a total of 18 simulation 
scenarios are set up. In the scenarios with lower economic growth rate and lower power consumption intensity, the 
demand for electricity is lower, and therefore the supply of electricity is the smaller, and the supply of electricity in 
the scenario of LEC 32035 in 2060 is 8.1485 trillion kilowatt-hours. 

For the power industry to achieve the carbon neutral goal, 75% of the electricity needs to be provided by new 
energy generation, based on this goal, this paper proposes relevant countermeasures from three aspects: 
resource development, system security, and economic constraints. 
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