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Abstract Aiming at the problems of low accuracy and missing information when UAVs utilize a single sensor for 
obstacle avoidance, this paper designs and proposes an autonomous UAV obstacle avoidance method based on 
multi-sensor fusion. The improved Bayesian fusion algorithm contributes to the multi-sensor fusion, considers the 
use of multiple UAVs to perform power system inspection tasks collaboratively, and utilizes deep reinforcement 
learning for multi-UAV inspection path optimization. On the basis of the AnoGAN anomaly detection algorithm, the 
performance enhancement optimization of the anomaly detection technology is carried out, and a SE-f-AnoGAN 
model for anomaly detection of UAV power inspection images is designed. The model draws on the idea of attention 
mechanism, and introduces a compressed activation network based on channel attention into the encoder of f-
AnoGAN, which captures the information of each channel from the global field of view category, so as to improve 
the accuracy of anomaly detection. Deep reinforcement learning multi-drone optimization path and multi-drone 
inspection image anomaly detection techniques are performed for model training and performance analysis, 
respectively.The DQN algorithm is designed to enable mobile drones to complete collision-free inspection path 
planning, and can continuously shorten the inspection path through training and learning to save inspection time.The 
SE-f-AnoGAN model has a high accuracy and precision rate in different dataset categories. 
 
Index Terms multi-sensor fusion, Bayesian fusion algorithm, UAV inspection path, attention mechanism, anomaly 
detection 

I. Introduction 
In today's society, with the continuous advancement of industrialization and urbanization, the power system, as one 
of the infrastructures of the modern society, has a direct impact on the stable transmission and distribution of electric 
energy [1], [2]. However, due to long-term exposure to variable and harsh outdoor climatic conditions, the power 
system often faces a variety of abnormal conditions, posing a serious threat to the safe operation of the power grid 
[3], [4]. With the increasing demand for electricity, the traditional power system inspection methods have been 
difficult to meet the increasing task demands [5]. In the traditional inspection method, manual inspection is one of 
the main ways, which not only faces very high security risks, but also has many problems including high inspection 
cost, slow inspection speed, high task difficulty, etc [6]. 

With the rapid development of UAV technology, the use of UAVs for power line inspection has become an efficient 
and fast alternative [7]. UAVs have a strong flexibility and mobility can meet including mountainous areas, forests, 
waters, and areas that are difficult for humans to reach for filming and inspection, as well as the economic benefits 
of this portable equipment and real-time monitoring is widely used by modern society [8]-[11]. With the support of 
image processing, machine learning and other technologies, compared with traditional methods, the power drone 
inspection method has a higher degree of automation and recognition accuracy, which can effectively improve the 
efficiency and safety of power line inspection [12]-[15]. Therefore, the proposed intelligent inspection technology 
based on multi-source sensor data fusion and deep reinforcement learning can provide a new technical way for the 
intelligent operation and maintenance of the power system, which has important theoretical and practical 
significance. 

This paper designs the UAV transmission line inspection system composed of UAV control system, data 
acquisition system, data transmission system, ground station control platform and so on. The 2D LiDAR and depth 
camera are synchronized in time and space under the mechanism of the ROS platform's helping role is completed. 
Introduce A* algorithm and propose UAV obstacle avoidance path search based on A* algorithm. Planning the UAV 



Multi-source Sensor Data Fusion and Deep Reinforcement Learning Anomaly Detection Method for Power UAV Inspection 

1998 

swarm power system inspection model, using deep reinforcement learning model for UAV swarm inspection path 
optimization. From generative adversarial network, further propose SE-f-AnoGAN model for UAV power inspection 
image anomaly detection. Analyze the UAV inspection path method optimized for the deep reinforcement learning 
model, and analyze the anomaly detection results of the SE-f-AnoGAN model. 

II. Multi-UAV inspection collaboration on deep reinforcement learning 
II. A. UAV transmission line inspection system 
The transmission line inspection system based on UAV is shown in Fig. 1, which is mainly composed of UAV control 
system, data acquisition system, data transmission system and ground station control platform. The automatic 
online detection of abnormal state is realized in the inspection data intelligent analysis system. In this paper, we 
mainly process the images collected by the UAV, extract effective information, and realize the abnormal detection 
of transmission lines [16]. 
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Figure 1: Uav based transmission line inspection system 

II. B. Autonomous UAV obstacle avoidance method based on multi-sensor fusion 
In view of the limitations of single sensor, an autonomous UAV obstacle avoidance method based on multi-sensor 
fusion is proposed and implemented under the Robot Operating System (ROS) platform. The indoor environment 
information is collected using a 2D LiDAR and a depth camera, and the fused point cloud is obtained after multi-
sensor fusion processing. The fused point cloud data can be used to generate an octree map to support UAV 
trajectory replanning to realize autonomous obstacle avoidance for UAVs in unknown environments. The flowchart 
of the autonomous UAV obstacle avoidance method based on multi-sensor fusion is shown in Fig. 2. 
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Figure 2: The flow diagram of unmanned uav based on multi-sensor fusion 

II. B. 1) Multi-sensor fusion 
(1) Time synchronization and space synchronization 

Since the 2D LiDAR and the depth camera are mounted on different positions of the UAV, it is necessary to 
transform the sensors on the UAV to the same coordinate system before performing the multi-sensor fusion. 
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Joint calibration of the 2D LiDAR and depth camera can be performed to obtain the transformation relationship 
between them. Using 2D LiDAR and depth camera to observe the same position P  in the space at the same time, 
let the coordinates of point P  be ( , , )C C Cx y z  under the coordinate system of the depth camera, and the 

coordinates of point P  be ( , , )L L Lx y z  under the coordinate system of the 2D LiDAR. The conversion relation 

between depth camera coordinates and 2D LiDAR coordinates can be derived as follows: 
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 (1) 

where R  denotes the transformation rotation matrix from the depth camera coordinate system to the 2D LiDAR 
coordinate system. T  denotes the transformation translation matrix from the depth camera coordinate system to 
the 2D LiDAR coordinate system. The ,R T  matrix is solved by the least squares method, and then the rotation 
and translation relationship between the 2D Lidar coordinate system and the depth camera coordinate system can 
be determined to complete the joint calibration. Under the ROS platform, the static coordinate transformation is 
carried out using the tf2_ros software tool to transform the 2D Lidar and depth camera to the same coordinate 
system, thus realizing spatial synchronization. 

When a sensor acquires data, a timestamp of the current time is obtained. And compared with the timestamp of 
another sensor data, it is necessary to select the sensor data whose difference between the two timestamps is less 
than a predetermined threshold as a single data set for fusion processing. The message_filters function package 
provided by ROS is utilized for time synchronization processing of multiple sensors. 

(2) Improved Bayesian fusion algorithm 
Bayesian estimation is a multi-sensor fusion algorithm based on Bayes' theorem [17]. It uses the observation 

vector Z  to infer the unknown state vector X . Suppose that in a state space, the known observation 

1| , |k kZ z z  , and the probability of the state vector X  at moment k  is 
kx , and its posterior distribution is as 

follows: 
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where ( | )k kp z x  denotes the likelihood function of the observed model, 
1( | )k kp x z 

 denotes the prior distribution 

function of the transformed system model, and 
1( | )k kp z z 

 denotes the normalized probability density function. 

When updating the point cloud data using Bayesian estimation, O  denotes that the point cloud is observed to 
exist, O  denotes that the point cloud is observed to be absent, E  denotes that the point cloud is real, and E  
denotes that the point cloud does not exist. Then the posterior probabilities are as follows: 
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2D LIDAR can work stably under various light conditions, providing highly accurate distance and angle 
measurements in indoor environments. However, it can only scan in the horizontal direction and cannot acquire 
information in the vertical direction. In contrast, depth cameras are able to detect three-dimensional information in 
the environment, but their ranging accuracy is greatly affected by environmental factors. Therefore, based on the 
point cloud information of 2D LiDAR, the point cloud information of depth camera is fused. Thereby, the 2D LiDAR 
detection range problem is compensated and the redundant information can be handled effectively. The probability 
formula for updating the fused point cloud is as follows: 

 
(1 )(1 )
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where P  denotes the probability value of the fused point cloud update, 
mP  and 1 mP  denote the a priori 

probability of the existence of the point cloud in the indoor environment with the size of 0.5, and P, denotes the 
likelihood probability of the presence of the point cloud detected by the depth camera, respectively. 
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Starting from the indoor environment and sensor characteristics, the fused point cloud is updated with the point 
cloud information of the 2D LIDAR, and the depth camera point cloud information is utilized to compensate for the 
regions not detected by the 2D LIDAR. Let a point cloud coordinate ( , , )i i ix y z  of LiDAR and a point cloud 
coordinate ( , , )c c cx y z  of depth camera, then the distance 

distx  between the two point clouds is: 

 2 2 2( ) ( ) ( )dist l c l c l cx x x y y z z       (6) 

The likelihood function of the improved Bayesian fusion algorithm is transformed from the sigmoid function as: 
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where 
maxx  denotes the maximum distance value with a size of 0.lm. When the distance between two point 

clouds is greater than the maximum distance, the fused point cloud is updated with the point cloud information from 
the depth camera. 

 
II. B. 2) Autonomous UAV obstacle avoidance 
(1) OctoMap 

OctoMap utilizes an octree data structure to partition the environment into voxels of different sizes and binarizes 
each voxel to represent its occupancy status. The octree map stored in this way can visually represent the occupied 
or idle state in the environment, which is conducive to the realization of UAV trajectory planning. Under the ROS 
platform, the fused point cloud can be converted into an octree map by calling the octomap_server function package 
to facilitate autonomous obstacle avoidance of the UAV. 

(2) UAV obstacle avoidance path search based on A* algorithm  
In the UAV obstacle avoidance path and route planning, it is necessary to find the completion of the obstacle 

avoidance path search in order to realize the subsequent route planning. To address this problem, the study 
introduces the A* algorithm, which is a fusion algorithm based on a depth-first algorithm and a breadth-first algorithm 
[18]. The algorithm creates a cost function mainly based on the heuristic function, which considers not only the cost 
of the new node's distance from the starting point, but also its distance from the goal point. The cost function of the 
A* algorithm is shown in Eq: 

 ( ) ( ) ( )f n g n h n   (8) 

where n  denotes the point to be searched ( )f n  denotes the path cost of the point to be searched, ( )g n  denotes 
the path cost from the current node to the starting point, and ( )h n  represents the estimated path cost from the 
current node to the target point. For the calculation of ( )h n , the study mainly uses the Euclidean distance to 
calculate, compared with the Manhattan distance, the method can better reflect the distance of the spatial points, 
and its specific calculation is as follows: 

 2 2(( ) ( ) )i j i jd sqrt x x y y     (9) 

The implementation process of the A-name algorithm in the 2D plane is the same as that in 3D space, except for 
the different coordinate dimensions of the computed points. 

In the intelligent obstacle avoidance and route planning of UAVs, how to convert the route points searched by the 
A∗ algorithm into obstacle avoidance Dubins paths is a key step. Among them, the Dubins path represents the 
shortest path between two positional points. The Dubins path is obtained by choosing one of the tangents to the 
two circles. The start and end points of this path are on the arcs of the circles. Thus, the path planning problem for 
UAVs can be ultimately converted into finding the common tangent of two circular arcs. At a particular bit attitude 
point, the UAV has the ability to turn left and right. Given a particular bit attitude point, its direction vector is 
represented as: 

  cos sinv  
  (10) 

where   denotes the angle between the orientation vector of the attitude point and the x -positive axis. 
The centroid coordinates of the turning circle are calculated as: 

 ( , ) ( cos( ), sin( ))c cp x y x r y r       (11) 
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where ( , )c cx y  denotes the coordinates of the center of the circle, r  is the radius, and   is the angle of the point 
on the circle. There exist two ways of turning the point. Thus, there correspond to two tangent circles. If the arc 
segment C2 of the left turn is labeled L. It is computed as: 

 ( , ) ( cos( / 2 ), sin( / 2 ))c cL x y x r v y r v             (12) 

where   denotes the amount of angular change. 
The arc segment C1 in the right turn is labeled R and is calculated as: 

 ( , ) ( cos( / 2 ), sin( / 2 ))c cR x y x r v y r v             (13) 

Four Dubins paths can be generated for a single bit position point. 
 

II. C. Deep Reinforcement Learning Based Multi-UAV Inspection Path Planning 
II. C. 1) Planning Model for UAV Power System Inspections 
Consider the construction of a power system that uses drones for inspection, including multiple power towers, with 
any one of the power towers serving as a charging station point for the drone. From any charging station point, the 
UAV is required to inspect the transmission line between any two power towers in order to accomplish the inspection 
task. 

The UAV has a range of L  and a speed of v , and it takes a budget of S  to send out a fully charged UAV, and 

it needs to eventually return to any one of the stations for recharging. There are n  power towers with coordinates 

 
1

,
n

j j j j
D x y


 , where l  towers are used as charging stations. In the inspection planning of the power system, 

the path of the UAV should minimize the total traveling length to reduce the energy consumption and time cost. At 
the same time, for a single UAV, the time required to complete the inspection task should also be minimized to 
improve the inspection efficiency. In addition, considering the economic cost, deploying more drones will increase 
the budget expenditure, so the number of drones needs to be minimized as much as possible. 

Multiple UAVs are considered to perform power system inspection tasks collaboratively, so, as mentioned above, 
for n  power towers in an area, m  inspection UAVs take off from their respective departure points, inspect all the 
towers under their responsibility 

in  sequentially in a planned order, and eventually return to any one of the 
departure sites. Where, in order to simplify the problem, the influence of the current environmental wind field on the 
UAV range is not considered. The objective function is shown in Eq. (14) to Eq. (16): 
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where ,i jx  is an indicative state scalar. When , 1i jx  , it represents that this UAV flies from power tower i  to 

power tower j . Conversely, when it is 0, it represents that the UAV does not fly from power tower i  to power 

tower j . ,i jC  is the distance between power tower i  and power tower j . v  is the speed after setting the speed 

of all drones constant. 
 

II. C. 2) Deep Reinforcement Learning-based Optimization for UAV Inspection 
Deep reinforcement learning is a method that combines deep learning and reinforcement learning, and its core idea 
is to learn through the interaction between the intelligent body and the environment so that the intelligent body can 
find the optimal behavioral strategy. In the multi-site UAV power system inspection planning model, the UAV can be 
regarded as the intelligent body and the power system environment as the environment, and the optimal inspection 
path planning strategy can be learned through the interaction between the intelligent body and the environment. 

(1) State Representation 
In UAV power system inspection planning, the selection of states is crucial for the effect of deep Q-learning. The 

state should accurately reflect the information of the environment where the UAV is located so that the intelligent 
body can make appropriate decisions. Considering that the UAV needs to start from any charging station point and 



Multi-source Sensor Data Fusion and Deep Reinforcement Learning Anomaly Detection Method for Power UAV Inspection 

2002 

pass through the transmission line between any two power towers, the state can be represented as a three-
dimensional matrix. 

The state s  can be represented as a 3D matrix of ( 1)n n l   , where n  is the number of power towers and l  

is the number of charging station points. The element ijks  in the matrix is the case where the UAV flies from the 

power tower i  to the power tower j  while considering the charging station point k , 1ijks   means that the UAV 

flies from the power tower i  to the power tower j  and passes through the charging station point k , and 0ijks   

means the negative case. 
(2) Action space 
The action space defines the actions that the UAV can take in the current state. In this model, the action space 

can be represented as all possible actions to fly from the current power tower to other power towers. 
The action space A  is a binary group  ,p D , where p  is the number of the power tower where the current 

UAV is located. D  is a set containing the numbers of the target power towers that the UAV can fly to. With such 
an action space definition, it is possible to clearly understand what are the feasible flight targets for the UAV under 
the current position, providing a clear range of choices for the intelligent body's decision-making. 

(3) Reward function design 
The design of the reward function is a crucial part of the deep Q learning model (DQN), which directly affects the 

behavior and learning effect of the intelligences. In the UAV power system inspection planning model, the objectives 
are to minimize the total travel length, minimize the time required for the UAV to complete the inspection task, and 
minimize the total budget consumption. Therefore, the following reward function can be designed. 

Traveling distance reward. A reward function can be designed to penalize the UAV for choosing a long distance 
path. Specifically, the reward function 

dR  is as follows: 

 ( , )d ij ijR i j C x    (17) 

where ijC  is the distance between power tower i  and power tower j . ijx  is an indicative state scalar indicating 

whether the UAV chooses to fly from power tower i  to power tower j  for inspection or not, 1ijx   means that 

the path is chosen and 0ijx   means that the path is not chosen. 

Range Penalty. In order to ensure that the inspection path of the UAV does not exceed its range distance L , it 
is necessary to penalize the path selection that exceeds the range distance. Specifically, a penalty function 

lP  can 
be designed to penalize the path selection that exceeds the range distance. The penalty function is as follows: 

 1 1

0 if 
( , )

otherwise

n n

ij ij
i ji

x C L
P i j  

  


  (18) 

The total reward function is designed as: 

 ( , ) ( , ) ( , )d lR i j R i j t P i j S     (19) 

where ( , )dR i j  is the distance traveled reward. t  is the time-to-completion reward, ( , )lP i j  is the range penalty. 

S  is the total budget consumption penalty. 

III. Deep learning-based anomaly detection for UAV inspection images 
III. A. Generating Adversarial Networks 
Generative Adversarial Network (GAN) is a generative model composed of deep learning models.The basic 
structure of GAN consists of two neural networks: generator and discriminator. The role of the generator is to 
transform the input random noise into data similar to the real data, while the discriminator determines whether the 
input data is real or not based on the input data. The core idea is to make the generator capable of generating high-
quality and realistic fake data while the discriminator can accurately distinguish between real and fake data through 
the adversarial training of the two modules. 

During the training process, the generator and the discriminator are trained alternately, the generator tries to 
generate more realistic forged images, while the discriminator tries to distinguish the forged images from the real 
ones. The training process of the two networks can be given by Eq: 

 ~ ( ) ~ ( )min max ( , ) [log ( )] [log(1 ( ( )))]
dea zG D x p x z p zL D G E D x E D G z    (20) 
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Where D denotes the discriminator, G denotes the generator, x  denotes the real image, z  denotes the random 
noise vector, ( )datap x  denotes the real data distribution, and ( )zp z  denotes the noise distribution. The loss 
function consists of two parts, the first part represents the probability that a real image is recognized as real and the 
second part represents the probability that a fake image is recognized as real. The objective of the generator is to 
minimize the probability that the discriminator discriminates a forged image as a forgery, i.e., to maximize 
log(1 ( ( )))D G z , whereas the objective of the discriminator is to maximize the probability that the discriminator 
discriminates a real image as a real image as well as the probability that a forged image is determined as a forgery, 
i.e.,: 

 log ( ) log(1 ( ( )))D x D G z   (21) 

III. B. AnoGAN anomaly detection algorithm 
The AnoGAN anomaly detection algorithm is a DCGAN based approach for image anomaly detection. The model 
consists of two parts, a generator and a discriminator. The generator network employs a series of anti-convolutional 
layers to map a latent vector Z  to an image similar to the training data. A batch normalization layer and an 
activation function are added after each of the deconvolutional layers to speed up training and improve the stability 
of the model. The discriminator network employs a series of convolutional layers that can classify the input image 
to determine whether the image is real training data or fake data generated by the generator. After each 
convolutional layer, a batch normalization layer and an activation function are added to improve the stability and 
generalization of the model. 

The basic idea of the algorithm is that during training, DCGAN is utilized to learn the streaming distribution of 
normal samples in the latent space by using only normal samples. During testing, the input vector Z  that is closest 
to representing the input image is trained by back-propagation iterations of the already defined loss function, and 
the anomalies can be localized by feeding the already trained ideal vector Z  into the generator in order to 
generate the recovered image, and comparing the generated image with the original image. The anomaly score is 
then defined by the following loss function, above a certain threshold the original image is considered to have 
anomalies: 

 ( ) (1 ) ( ) ( )R DL Z L Z L Z         (22) 

where   is the weight parameter. 
RL  is defined as shown in equation (23) for the L1 loss of the original and 

generated images, where G is the generator. The definition of 
DL  is shown in equation (24), where f is the output 

of a feature layer of the discriminator and G is the generator. Namely: 

 ( ) ( )RL Z x G Z    (23) 

 ( ) ( ) ( ( ))DL Z f x f G Z    (24) 

However, the algorithm also has some drawbacks. First, the training process of GAN is very unstable and 
problems such as gradient vanishing and pattern crashing may occur, which can lead to the need for time-
consuming adjustments to the model architecture and hyperparameters. Second, since the images generated by 
GAN are generated from a random noise vector, it is difficult to infer this noise vector by inverse operations, which 
makes it difficult to control and interpret in certain tasks. In addition, the algorithm needs to find the mapping of the 
image to be tested x to the input vector Z  when performing the inference, which is a cumbersome process that 
requires additional computational resources and time. Finally, since the algorithm directly employs a difference-
making approach to compare the original and generated images for anomaly detection, this is prone to false 
detection due to the poor quality of the generated images. 

 
III. C. SE-f-AnoGAN based anomaly detection 
For this reason, f-AnoGAN optimizes the model structure and training process on this basis, respectively. Different 
from AnoGAN, the model introduces an encoder before the generator, which enables the images to be quickly 
mapped to get the feature representations in the latent space, eliminating the process of constant iterative 
optimization in the inference stage to find the best mapping, which greatly improves the detection speed. In addition, 
since the KL scatter in GAN cannot measure the distance between two non-overlapping distributions, f-AnoGAN 
introduces a Wasserstein generative adversarial network with a gradient penalty. Namely: 

 2
~ ~ ~[ ( )] [ ( )] ( ( ) 1)

G dea peakyWGAN GP x P x P x P xL E D x E D x E D x       (25) 
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where the combination of the first two terms is the WGAN loss and the latter term is the gradient penalty loss. penaltyP  
is the penalized distribution that lies between the distribution of real images and the distribution of generated images. 

( )xD x  is the gradient of the discriminator and   is the tradeoff parameter. The Wasserstein distance is used 
instead of the KL scatter and a gradient penalty is added to the loss function to smooth the objective function, which 
solves the problems of training instability, pattern runout, and vanishing gradient in GAN. 

In f-AnoGAN, the encoder loss function 
EL  consists of two parts: image reconstruction loss and feature residual 

loss. Namely: 

 2 21 1
ˆ ˆ( ) ( ) ( ( ))E

d

L x G z f x f G z
n n

     (26) 

where the first term denotes the picture reconstruction loss and the second term denotes the residual loss. G  is 
the generative network. x  is the original image ẑ  is the feature vector after the encoding network. 

dn  is the 
length of the vector after passing through the intermediate layer of the discriminator, and f  is a nonlinear function. 
n  is the original image size and   is the hyperparameter. 

In this paper, the SE-f-AnoGAN model for anomaly detection of UAV power inspection images is proposed on the 
basis of f-AnoGAN. The SE-f-AnoGAN model consists of a channel attention-based encoder, generator, 
discriminator, and binary classifier. Drawing on the idea of attention mechanism, a channel attention-based 
compression activation network (SENet) is introduced into the encoder of f-AnoGAN to expand the sensory field by 
aggregating spatial information and capture the important information of each channel in the high-dimensional 
feature map from a global perspective. 

The SENet network structure consists of three parts: compression, activation, and weight assignment. 
Firstly, the compression operation is carried out as follows. Namely: 
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where ( , )cu i j  is the pixel value at position ( , )i j  on the feature map of the c th channel. ,H W  are the length 
and width of the feature map, respectively, and 

cz  is the global average pooling result for the c th channel. cR  
denotes the set of all channel feature maps real numbers. 

Then comes the activation operation, which introduces two fully connected layers to automatically learn the 
weights of different channels. Namely: 
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where 
1W  and 

2W  are the weight parameters of the fully connected layer. z is the semantic information value of 
the feature map channel. 

Since the number of abnormal power images in the dataset is small while the number of normal power images is 
large, if a dataset with a highly unbalanced number of categories is used to train the binary classifier directly. It 
usually leads to the normal class gradient generated by the model during backpropagation to overwhelm the 
abnormal class, which ultimately makes the model's prediction more skewed towards the normal class, while the 
discriminative ability of the abnormal class is weaker. Therefore, in this paper, we refer to the classifier training 
methods based on long-tailed distribution datasets, and conduct research in terms of resampling and reweighting 
respectively. 

Resampling is one of the most effective ways to solve the problem of category imbalance in long-tailed datasets, 
which is a method to achieve relative balance by readjusting the number of samples of different categories in each 
round of training of the network. The generalized formula for resampling is as follows: 
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where 
ip  is the sampling frequency of the i th category, 

in  and jn  are the number of samples of the i th and 
j th categories, respectively, c  is the total number of categories, and m  takes the value range of [0,1]. 

The reweighting method is a method that adjusts the weights of the loss function according to the proportion of 
the number of samples in each category. Since this method needs to update the feature centers during each round 
of training, resulting in a larger computational effort during model training, it is more suitable for small-scale datasets. 
In addition, individual sample noise will shift the feature center, which ultimately has some impact on the detection 
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results. The learnable parameter tuning method is similar to the classifier retraining method, where a normalization 
term with hyperparameters is introduced on the basis of the original parameters of the network, and the optimal 
hyperparameters are obtained through the network autonomous learning training. Namely: 
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where 
iw  is the original parameters of the network, 

if  is the normalization term,   is the hyperparameter, and 

itw  is the optimized parameter. 

IV. Power UAV inspection anomaly detection algorithm analysis 
IV. A. Deep Reinforcement Learning Patrol Optimization 
IV. A. 1) Model training 
For the path planning of multi-inspection UAVs, Tensorflow2.0 is used to construct the DQN model, and the model 
training is carried out with NVIDIA RTX 3060 GPU and CUDA11.0 GPU acceleration library. 

The dimensions of the input and output layers of the DQN model are set according to the dimensions of the actual 
state space and action space of the case, and the intermediate layer adopts a typical structure. The relevant training 
parameters are adjusted according to the computer memory and computing speed, and the parameter settings are 
shown in Table 1. 

Table 1: Parameter setting 

 Parameter Value 

Parameter setting 
Discount factor   0.93 

Learning rate 0.005 

Network structure 

Input layer - the first dimension 80*265 

The first layer - the second dimension 265*265 

The second - third layer dimension 265*64 

Third layer - output layer dimension 64*9 

Training Settings 

The maximum number of steps for each training 1800 

The size of each batch of training data 20 

Experience pool size 300 

 
The process of reward value change during training is shown in Fig. 3. When the model starts training, there are 

no records in the experience pool, so it keeps exploring in the beginning stage, and the reward value is low and in 
an oscillating state.After the 400th training, it starts to optimize the network parameters by randomly taking out the 
records in the experience pool, and the reward value rises slowly thereafter. At about the 500th to 700th iterations, 
the model once fell into a local optimum. When the number of iterations approaches 1800 the model converges and 
the reward value stabilizes. This indicates a gradual decrease in the number of useless actions required to complete 
the path planning. 

 

Figure 3: The process of winning the value of the training process 
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IV. A. 2) Simulation experiment construction 
Adopting 20*20 square map, square size 40*40, using 35*35 red triangles instead of moving UAVs, setting blue 
dots on behalf of inspection start and end points, green squares on behalf of inspection detection points, and adding 
black obstacles between detection points, the experimental map is shown in Figure 4. In order to verify whether the 
design algorithm can obtain collision-free path planning, the experiment is stopped when the design inspection UAV 
collides with obstacles. Obstacles are set to block between inspection points to verify the ability of inspection UAV 
to bypass obstacles, and narrow channels are set between obstacles to verify whether the algorithm will fall into 
local optimization. Set the end of training after completing the inspection task 300 times. 

When the number of memories stored in the memory pool is greater than 2000, the action-value network starts 
learning. The  -greedy strategy is the initial  probability is set to 1, and the greedy value is 0. Every time the 
action-value network learns, the   probability decreases by g, and the greedy value increases by g. When the 
inspection UAV action decision is made, a 0~1 random number is generated, and when the random number is 
greater than the greedy value, the random action is selected. When the random number is smaller than greedy 
value, the maximum action value corresponding to the action is selected. 

 

Figure 4: Laboratory chart 

The inspection path length is shown in Fig. 5. At the beginning of the inspection task, the mobile UAV has a high 
number of actions, especially at 0~25 tasks, the mobile UAV can reach more than 16,000 actions to avoid obstacles. 

Comprehensive inspection tasks and inspection path length can be concluded that the total length of the training 
path is 185631, the average path length is 637, and the training time is about 430 s. The above DQN algorithm 
design can enable the mobile UAV to complete the collision-free inspection path planning, and can continuously 
shorten the inspection path through training and learning. However, the learning efficiency is low, the training time 
is long, and the optimal path (the actual optimal path is 80 steps) is not learned by the time 300 inspection tasks 
are completed. The main reason is that in the late stage of inspection UAV learning, the path is gradually shortened, 
the number of learning times for completing an inspection task is gradually reduced, and the increase in greedy 
value becomes slower, and when 300 inspection tasks are completed, the greedy value is not increased to 1, and 
the inspection UAV does not choose the optimal action when making decisions about its actions. If the number of 
inspection tasks is increased, the inspection path can be further shortened, but the total path of the inspection UAV 
and the training time also increase. Therefore, further optimization of the above DQN algorithm design can be 
considered to reduce the number of training times, shorten the training time, improve the learning efficiency of the 
inspection UAV, so that the action value network is fully converged, and ultimately, the inspection UAV can learn to 
get the optimal path. 

 

Figure 5: Length of inspection path 
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IV. B. Inspection image anomaly detection analysis 
IV. B. 1) Experimental platforms 
The experimental platform is based on Windows10 operating system, CPU model for the processor 12th Gen Intel(R) 
Core(TM) i7-12700H, GPU model for the NVIDIA GeForce RTX3060, the main frequency of 3.7Ghz, 12 cores and 
24 threads, the operating memory is 32G. Data storage hardware for the 1T solid state drive. 

Programming environment using Windows10 operating system, Python3.7 and Pytorch deep neural network 
development tools, this paper uses Pytorch deep learning framework has been widely used, with a quick start, the 
code is concise and flexible, debugging is convenient and so on. 

 
IV. B. 2) Detection data sets 
In this paper, MVTec AD dataset is used as the main detection dataset. This dataset covers high-definition images 
of different objects and texture types.The MVTec AD dataset contains a wide range of anomaly types, including 15 
different categories. These categories include images with regular patterns, such as carpets and grids, and images 
with irregular patterns, such as leather, tiles and wood. In addition to this, the dataset also covers 10 different object 
categories, covering everything from rigid objects with well-defined shapes, such as zippers, transistors, and screws, 
to deformable objects, such as wires and hazelnuts.The small percentage of anomalous data in the MVTec AD 
dataset allows for a better validation of the capabilities of the SE-f-AnoGAN anomaly detection algorithm. 
 
IV. B. 3) Abnormal detection results 
The results of different types of anomaly detection in the dataset are shown in Fig. 6. The precision and accuracy 
rate of SE-f-AnoGAN model can also maintain high accuracy and precision rate in different data types. And there 
are different types of defects in each data type, which can also be detected accurately. Compared with the original 
DCGAN model, the recall and specificity also maintain high values, reducing the probability of missed and false 
detections. It proves a significant optimization of the DCGAN network model. 

 

Figure 6: Data set different types of abnormal detection results 

Continuing with the comparison experiments, the activation functions ReLU and GeLU of the DCGAN network 
and the middle generation model of the improved D-DCGAN network are compared in the data enhancement, 
keeping other parameters unchanged. The validity of the generated images is verified by FID and SSIM, while the 
results of evaluating different activation functions with different defects of the same type are chosen as shown in 
Fig. 7. The bars in the figure represent the FID values for different activation functions and the data in the table are 
the AVG-SSIM values for different activation functions. 

It can be found that the FID values of ReLU are 50.26, 35.45, 103.29, and 42.38, while its Avg-SSIM values are 
0.7263, 0.8124, 0.6425, and 0.7893, respectively.Whether it is from the SSIM values or from the FID, it can be 
clearly seen that the performance of the improved D-DCGAN is superior to that of the DCGAN, thus proving that 
the ReLU function improves the quality of the generated images. 

The above discussion confirms the effectiveness of the optimization strategy, and a comprehensive evaluation of 
the detection performance of the SE-f-AnoGAN models is still needed. Therefore, several GAN models that perform 
well in image reconstruction and are able to achieve anomaly detection by training normal samples only are selected, 
including CycleGAN, EBGAN, f-AnoGAN, and MAD-GAN are taken as references for comparison experiments with 
the SE-f-AnoGAN model. The following experiments are conducted to compare their detection performance on the 
dataset of this paper in terms of each evaluation index. The experimental results are shown in Fig. 8. 
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Figure 7: Evaluation of different activation functions 

The results of the SE-f-AnoGAN model for each detection metric are 94.52%, 91.87%, 96.84%, 90.48%, and 
95.54, respectively.Due to CycleGAN's advantage in generating high-quality images, it performs well in 
distinguishing between normal and abnormal samples (specificity), but its accuracy is slightly insufficient.EBGAN is 
trained adversarially to master real data features and combined with the reconstruction error of the self-encoder, it 
has a better ability to recognize abnormal samples, which makes it slightly better in specificity, but the overall 
detection effect still needs to be improved. The SE-f-AnoGAN model proposed in this paper, on the other hand, 
outperforms the other models in terms of precision, recall, and F1 score, showing a more balanced performance, 
thus proving the effectiveness of the improved D-DCGAN in improving the quality of the image generation, and thus 
enhancing the model's generalization ability and detection accuracy. 

 

Figure 8: Experimental results 

 

Figure 9: The comparison of the results after adding the attention mechanism 

Add the attention mechanism to the networks CycleGAN, EBGAN, f-AnoGAN, and MAD-GAN, and continue to 
do comparison experiments on the data and on this paper. The results of the comparison experiments after adding 
the attention mechanism are shown in Fig. 9. The detection results of SE-f-AnoGAN model here are the same as 
the above figure. The accuracy, precision, and recall of the f-AnoGAN model of each comparison algorithm after 
adding the attention mechanism are 74.52%, 72.96%, and 90.63%, respectively, which are 1.27%, 2.33%, and 
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13.11% higher than those before adding. The dataset used in this paper has high quality images, which will directly 
improve the learning effect of the model, which in turn leads to higher quality images reconstructed by the generator. 
In this way, the defective features in the image will be more prominent, which will help to improve the performance 
metrics. So the four algorithms have a significant numerical increase in precision, accuracy, recall, and specificity 
with a large rise after the addition of the attention mechanism. It is proved that the addition of self-attention 
mechanism in the algorithms plays a certain effect of performance improvement. 

V. Conclusion 
In this paper, we design a UAV power inspection system, introduce a multi-sensor fusion algorithm to design an 
autonomous obstacle avoidance method for UAVs, and incorporate a deep reinforcement learning model to co-
optimize the UAV inspection path. The inspection image of the joint UAV swarm proposes deep learning-based 
anomaly detection technology. 

(1) The path planning of the inspection UAV swarm uses Tensorflow2.0 to construct the DQN model, and the 
DQN model converges when the number of iterations is close to 1800, and the reward value tends to stabilize, at 
which time the inspection path of the UAV swarm is optimal, and the useless actions are basically reduced. The 
duration of the UAV swarm completing the inspection task based on the DQN model is about 430s. 

(2) Using the publicly available MVTec AD dataset as the main detection dataset, the deep learning-based UAV 
inspection image anomaly detection technique designed in this paper is able to maintain a high accuracy and 
precision rate even in different data types. That is, the results of the SE-f-AnoGAN model for each detection index 
are 94.52%, 91.87%, 96.84%, 90.48%, and 95.54, respectively. 

Multi-sensor fusion oriented UAV swarm power inspection path planning and deep learning anomaly detection 
technology can not only achieve the best UAV power inspection path, but also optimize the anomaly detection 
accuracy and precision rate, which can provide some substantial help in power UAV inspection. 
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