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Abstract Under the background of “dual-carbon” strategy, this paper proposes a path planning method for low-
carbon transition of power system integrating dynamic carbon oriented mechanism and meta-heuristic algorithm. 
By constructing a dual low-carbon demand response model and a stepped carbon trading model, and combining 
with the refined simulation framework of EnergyPLAN platform, a multi-objective optimization model is established 
from the three dimensions of power supply, carbon emission and costing. Parameter planning and Nash negotiation 
game theory are introduced to generate the Pareto frontier equilibrium solution, and the cooperative scheduling 
optimization of microgrid cluster is realized based on CPLEX tool. The simulation results show that microgrids A 
and B realize the improvement of power flow efficiency within the system through the time-sharing tariff mechanism 
(peak tariff of 0.82 yuan/kWh and low valley tariff of 0.25 yuan/kWh), and the internal tariff is 12%-18% lower than 
that of the external grid, which promotes the consumption of renewable energy. The total power generation costs 
under low, medium and high risk scenarios are 47.68 trillion, 53.12 trillion and 58.45 trillion yuan respectively, and 
carbon emissions are reduced to 2,444.33Mt, 2,142.21Mt and 1,793.55Mt respectively at the end of the planning 
period, and the average annual emission reduction under the high-risk scenario reaches 648.84Mt, which improves 
the emission reduction efficiency by 37% compared with that of the low carbon price scenario. The sensitivity 
analysis shows that when the carbon price is raised from 30 yuan/ton to 100 yuan/ton, the medium-risk scenario 
reduces carbon emissions by 237 million tons, and the total cost is reduced by 0.81 trillion yuan. When the share 
of energy storage is increased from 5% to 15%, the unit generation cost of the high-risk scenario decreases by 
0.039 yuan/kWh, saving 2.07 trillion yuan. 
 
Index Terms meta-heuristic algorithms, low-carbon transition pathways, EnergyPLAN, Pareto frontier equilibrium 
solution, electricity supply, carbon emissions 

I. Introduction 
In the past decade, China's economy has realized double-digit annual growth and is the second largest economy 
in the world, and the rapid economic development has also brought great challenges to resources and the 
environment. Currently, China is the world's largest coal producing and consuming country, and also the world's 
largest carbon emitting country, the requirement of clean and low carbon energy transition is very urgent [1], [2]. 
Against the background of global climate change and energy transition, China has put forward a “double carbon” 
strategic goal, i.e., to achieve carbon peak by 2030 and carbon neutrality by 2060. The power industry is a pillar 
industry of the national economy that has a bearing on the national economy and people's livelihood, and it is also 
the sector with the largest carbon emissions in China. Energy combustion accounts for about 88% of all carbon 
dioxide emissions, and emissions from the power industry account for about 41% of the total, so the power industry 
itself has a difficult task of carbon emission reduction [3]-[5]. At the same time, the clean-up of the power industry 
will help upgrade the energy consumption pattern of the whole society and support the key energy-consuming 
industries such as iron and steel, chemical industry and building materials to improve the efficiency of energy 
utilization [6], [7]. Therefore, the electric power industry is an important field for carbon emission reduction and a 
main battlefield for realizing the “dual-carbon” strategy. The core of China's “dual-carbon” strategy is to continuously 
increase the proportion of non-fossil energy consumption, mainly through electrification [8]. In order to realize this 
strategic goal, the structural transformation of the power system has become crucial. In addition, more than 90% of 
non-fossil energy must be converted into electricity to be utilized to regulate carbon emissions, and 80% of the 
future incremental non-fossil energy is new energy power generation mainly based on wind and light, while new 
energy has the characteristics of random fluctuation of output, low disturbance and weak support, which is still very 
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different from that of the power grid constructed with traditional synchronous generators [9], [10]. Therefore, in order 
to adapt to the very high proportion of new energy access and consumption, China's power system must be 
revolutionized and upgraded. 

Currently, China's power system is committed to promoting the transformation of the power structure from high-
carbon to low-carbon and from fossil energy-based to clean energy-based, accelerating the construction of a new 
type of power system with a gradual increase in the proportion of new energy sources, and the optimization of the 
power structure has brought about the continuous optimization of the power industry's carbon emission reduction 
intensity index [11]-[13]. However, power structure optimization under multiple constraints, the penetration rate of 
renewable energy and the frequency deviation of the power system is difficult to balance, and the penetration rate 
exceeds a certain threshold, and the frequency deviation increases. At the same time, energy deployment and 
regional power resource allocation are unreasonable, leading to energy waste, and the flexibility of energy resource 
dispatch constrains the peak demand of the power system, all of which affect the stability, economy, security, and 
power supply quality of the power system [14]-[16]. Meta-heuristic algorithms are methods that enable the search 
for optimal solutions from a given space in a spontaneous, efficient, and flexible manner. It can be defined as a way 
to go beyond a single, visual optimization approach for solving combinatorial optimization problems with high 
suitability in solving problems such as power structure optimization, path planning, and capacity allocation [17]. 

This paper focuses on the analysis of power system low-carbon mechanism, the construction of power sector 
model and multi-objective optimization algorithm, and puts forward a set of methodology system integrating the 
dynamic carbon oriented mechanism and engineering game theory, which provides theoretical support and practical 
path for the low-carbon transformation of power system. Firstly, in the analysis of low-carbon mechanism of power 
system, the linkage mechanism between user behavior and carbon market is constructed through the “dual low-
carbon demand response model” and “ladder-type carbon trading model”. Among them, the price-based demand 
response based on dynamic carbon emission factors guides users' energy use behavior through time-sharing tariffs, 
while the incentive-based demand response driven by nodal carbon potentials combines with the 
transferable/reducible load model to realize low-carbon scheduling in the spatial and temporal dimensions. 
Meanwhile, the ladder-type carbon trading model further strengthens users' initiative to participate in carbon 
reduction through carbon emission right trading and dynamic adjustment of carbon cost. On this basis, the 
EnergyPLAN model is used as the core, and a refined simulation framework is constructed from the three 
dimensions of power supply, carbon emission and costing respectively. The power sector module quantifies the 
difference between renewable energy and thermal power generation through correction factors and hourly 
distribution, the carbon emission module combines fuel consumption and carbon emission factors to realize system-
wide carbon accounting, and the cost module provides economic constraints for the optimization algorithm through 
the multi-dimensional analysis of investment, operation and maintenance, fuel and carbon costs. The multi-objective 
optimization algorithm proposes a Pareto frontier solution based on parameter planning and an engineering game 
optimization method for the synergistic goal of wind power consumption and carbon emission reduction. The former 
transforms the multi-objective problem into single-objective optimization through the constraint method, and 
generates the Pareto frontier by combining the division of key areas, while the latter introduces the Nash negotiation 
game theory, and reaches the equilibrium solution through the negotiation of the virtual participants, which solves 
the decision-making optimization problem under the multi-objective conflict. 

II. Power system low carbon mechanism analysis and multi-objective optimization 
model construction 

II. A. Analysis of Low Carbon Mechanisms in Power Systems 
II. A. 1) Dual low-carbon demand response modeling 
(1) Price-based low-carbon demand response based on dynamic carbon emission factors 

In this paper, we attach carbon orientation to time-of-day tariffs, use dynamic carbon emission factors to 
distinguish peak and valley periods of tariffs, and divide them into high-carbon, medium-carbon, and low-carbon 
electricity consumption periods, raise tariffs in high-carbon emission periods, lower tariffs in low-carbon emission 
periods, and keep tariffs stable in medium-carbon emission periods. The carbon-oriented tariffs guide users to 
increase electricity consumption during low-carbon emission periods and decrease electricity consumption during 
high-carbon emission periods, thus promoting changes in users' energy consumption behaviors and realizing user-
driven carbon emission reduction goals of the power system. 

The fuzzy affiliation function is used to analyze the carbon emission period based on the dynamic carbon emission 
factor, and the model is as follows. 
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where: min , max  are the minimum and maximum values of the dynamic carbon emission factor, respectively. 
The peak and valley affiliation of the maximum value point on the dynamic carbon emission factor curve is 1, 0, 

and the minimum value point is 0, 1, respectively, and the affiliation threshold is set as 1 2, (0,1)   . The time period 

with 1 1( )jt    is classified as high carbon time period, the time period with 2 2( )jt    is classified as low 
carbon time period, and the rest is classified as medium carbon time period. 

The electricity price elasticity matrix method is selected to model the demand response, and its mathematical 
model is 
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where: m  is the electricity tariff elasticity index; eL , eL  are the electricity quantity and its change, respectively; 

pc , pc  are the electricity price and its change, respectively. 
(2) Incentive-based low-carbon demand response based on nodal carbon potentials 
This paper utilizes the nodal carbon potential as an incentive signal and introduces a carbon reward and penalty 

mechanism. Users adjust their energy use behavior according to the carbon potential, and the dispatchable loads 
considered in this paper include transferable loads and curtailable loads. Based on the proposed carbon reward 
and penalty incentive mechanism, the transferable load will be transferred from the node with higher carbon 
potential to the node with lower carbon potential, and the curtailable load will be curtailed in the node with higher 
carbon potential, so as to realize low-carbon dispatch in both time and space dimensions, and thus achieve the 
purpose of eliminating the wind and reducing the carbon emission of the system. 

The transferable load model is established as 
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where: ,shift tC  is the total dispatch cost of transferable load; ,
dis
shift tC  is the base dispatch cost; ,

re
shift tC  is the 

incentive-based low-carbon demand response carbon bonus and penalty cost; dis
shiftK  is the unit dispatch cost of 

transferable load; ,1
re
shiftK , ,2

re
shiftK , ,3

re
shiftK  are the unit carbon penalty costs of the transferable loads at different node 

carbon potentials; ,
,

tra in
shift tP , ,

,
tra out
shift tP  are the amount of transferable loads transferring into and out of the load at the 

moment t , respectively; mine , maxe , and avee  are the minimum, maximum, and average values of the carbon 
potential of the load node at moment t , respectively. 

The model of curtailable load is established as 
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where: ,cup tC  is the total dispatch cost of the load that can be curtailed; ,
dis
cut tC  is the base dispatch cost; ,

re
cut tC  is 

the incentive-based low-carbon demand response carbon reward and penalty cost; ,cut tP  is the amount of load that 
can be cut at moment t . 

 
II. A. 2) Stepped carbon trading model based on nodal carbon potentials 
This paper establishes a step carbon emissions trading model based on nodal carbon potential, which is used to 
improve the initiative of users to participate in energy saving and carbon reduction in the power system. The system 
load participates in the carbon emissions trading market to realize the effective trading of carbon emission rights, 
and its actual carbon emission rights trading amount trD  is 

 tr ac qD D D   (7) 
where: acD  is the actual carbon emissions of the system load during the dispatch period; qD  is the initial carbon 
emission quota obtained by the system load in the carbon trading market. 
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where: PDR
tP  is the load after price-based demand response at moment t . 

The stepped carbon transaction cost is expressed as 
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where: trD  is the actual carbon emissions trading amount;   is the carbon trading benchmark price; d  is the 
length of the carbon emissions interval; and   is the price growth factor. 

 
II. B. Power sector modeling 
Based on the above low-carbon mechanism analysis, the realization of the carbon reduction target of the power 
system needs to rely on accurate model construction and simulation. To this end, this section further combines the 
EnergyPLAN platform to construct a refined model from the three dimensions of power supply, carbon emission and 
costing to provide data support and constraints for subsequent optimization. 
 
II. B. 1) Electricity sector module 
The main inputs to the power sector module of the EnergyPLAN model are the total power demand, total power 
supply and outgoing and imported power for the simulation year. In particular, the electricity supply from renewable 
energy generation technologies such as photovoltaic, wind, hydroelectric, and nuclear is obtained by multiplying the 
corresponding capacity by a specified hourly distribution. It should be noted that since differences in the 
configuration of renewable power generation units can lead to different power production in different years at the 
same capacity, the EnergyPLAN model is set with corresponding trimming factors to reflect the different production 
by changing the distribution. The power generation calculations for renewable energy generation technologies such 
as photovoltaic, wind, hydropower and nuclear power technologies are shown in Eqs. (10)-(17): 
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where ,Ele HydroS , ,Ele windS , ,Ele PVS , ,Ele GeoS , ,Ele nuclearS  are the electricity generation from hydroelectricity, wind power, 

photovoltaic, geothermal and nuclear energy, respectively, , , ( )Ele Hydro disl t , , , ( )Ele wind disl t , , , ( )Ele PV disl t , , , ( )Ele Geo disl t , and 

, , ( )Ele nuclear disl t  are the hourly distributions of the above generation categories, and the hourly distributions of the 
above generation categories are the hourly distributions of the above generation categories. Hourly distributions of 
the above power generation categories will be directly input into the model with data normalization; hydro , wind , 

PV , Geo , nuclear  are the correction factors for hydroelectricity, wind power, photovoltaic, geothermal and nuclear 

energy generation respectively; Ins
hydroC , Ins

windC , Ins
PVC , Ins

GeoC , and Ins
nuclearC  are the installed capacity of hydroelectricity, 

wind power, photovoltaic power, geothermal energy, and nuclear energy generation, respectively; yearN  is the total 
number of annual hours, which is set to 8784 in this chapter. 

The operation logic of the thermal power unit module in the Energy PLAN model is set to have a low generation 
priority for this technology, and when its generation , ( )Ele PPS t  is less than the total installed capacity of the thermal 

power plant Ins
TC  in the t  moment, the value of its power generation is determined as the difference between the 

total electric power demand and the generation from other power sources, and when there are generating units of 
different fuels in the thermal power, its specific calculation is shown in equations (15)-(17): 
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where Ins
TC , ,

Ins
T coalC , ,

Ins
T NgasC , ,

Ins
T bioC  are the total installed capacity of thermal power, installed capacity of coal-fired 

units, installed capacity of gas-fired units, installed capacity of biomass-fueled thermal power units, respectively; 

, ( )Ele PPs t , ( )Eled t , and ,1( )Eles t  are the power generation capacity of thermal power units, the total demand for 

electricity, and the demand for other power generation technologies at the moment of t , respectively, and ,Ele PPS  
is the power generation capacity of thermal power. 

The energy storage technology module in the Energy PLAN model consists of a charging device, a discharging 
device and a storage capacity. The charging device converts electrical energy into potential energy and the 

discharging device converts potential energy into electrical energy, both defined by its installed capacity Ins
chargeC  and 

Ins
dischargeC ; the storage capacity represents the ability to store energy, defined by the energy storage Ins

storageE . The 

energy storage operating equation is shown in (18): 
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In the formula, , ( )Ele stos t , , ( )Ele ins t  are t  moment energy storage internal input power, the system outside the 

input power, , ( )Ele ins t  is positive on behalf of the energy storage in the charging state, , ( )Ele ins t  is positive on behalf 

of the energy storage in the discharging state; ch , dis  are the energy storage charging and discharging 
efficiencies, respectively. During system operation, the energy storage model follows the installed capacity power 
constraint, storage capacity constraint, and total charging and discharging constraints, which are not further 
described here. 

 
II. B. 2) Carbon Emissions Module 

The 2CO  emissions in the Energy PLAN model are defined as generated by the energy combustion process, so 

2CO  emissions are calculated by the energy carbon emission factor with the energy consumption as shown in 
Equation (19): 
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where 2COE  denotes the total system CO2 emissions, i  refers to the end-use sector, j  refers to the fuel type, 

2
( )COe i  refers to the CO2 consumption in that sector, js  denotes the consumption of a certain fuel, j  denotes 

the 2CO  emission factor of that fuel, ijs  denotes the consumption of j  fuel in i  sector. 
 

II. B. 3) Cost module 
Energy PLAN simulates systems on a yearly basis, so its cost module also outputs technology investment costs, 
fixed and variable O&M costs, fuel costs, and carbon emission costs on a yearly basis. First, the annual cost of 
each technology will be calculated, including the technology investment cost and fixed O&M cost and variable O&M 
cost. The annual investment cost is mainly determined by inputs such as technology capacity, technology unit cost, 
lifetime, discount rate, etc., which are calculated as follows: 
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where i  refers to the specific technology, ,yinv iT , ,inv iT  are the annual cost and total investment cost of the i th 

technology, Ins
iC , unit

iP  are the i th technology and the unit investment cost, respectively; in  is the expected life 
of the i th technology, and m  is the discount rate. 

The formula for the annual fixed O&M cost is as follows: 

 , , ,yOM yOM i yOM i inv i
i i

T T p T     (21) 

where i  refers to the specific technology, ,yOM iT  and ,inv iT  are the annual fixed O&M cost and the total investment 

cost of the i th technology, respectively, and ,yOM ip  is the percentage factor of the annual fixed O&M cost of the i

th technology to the investment cost. 
The formula for annual variable O&M cost is as follows: 

 , , ,yVOM yVOM i yVOM i k i
i k i
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where k  refers to the terminal sector and i  refers to the specific technology; ,yVOM iT  is the annual variable O&M 

cost of the i th technology, ,k iS  is the annual amount of energy supplied to the i th technology, and ,yVOM ip  is the 
annual variable O&M cost calculation factor of the i th technology. 

The formula for calculating the fuel cost is as follows: 

 , ,yfuel yfuel j fuel j j
j j

T T p E     (23) 

where j  refers to the specific fuel, yfuelT  is the total annual fuel cost of the system, ,yfuel jT  is the annual fuel cost 

of the j th fuel; ,fuel jp  is the price of the i th fuel, and jE  is the annual consumption of the j th fuel. 
The formula for calculating the cost of carbon emissions is as follows: 

 2 2 2yCO CO COT p E   (24) 

where 2yCOT  is the total annual emission cost of the system, 2COp  is the carbon emission cost factor, and 2COE  is 
the annual carbon emission of the system. 

 
II. C. Multi-objective optimization algorithm 
After completing the power sector model construction and cost-carbon emission accounting, how to achieve multi-
objective co-optimization becomes critical. This section proposes a composite optimization method based on 
parameter planning and engineering game to solve the complex trade-off between wind power consumption, carbon 
emission reduction and economy through Pareto frontier solving and virtual participant negotiation mechanism. 
 
II. C. 1) Parameter planning based solution to the Pareto frontier 
The problem takes into account the uncertainty and instability of wind power as well as the introduction of energy 
storage technology, and aims to maximize the utilization and economy of wind power while reducing carbon 
emissions, which can be modeled as a multi-objective linear optimization problem. As shown in equation (25). 
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where: x  is the decision variable to be optimized; A , b  are the constraints in the problem; 1c , 2c , 3c  are the 
weights of different objectives. 

In a multi-objective optimization problem, it is often desirable to find a set of solutions that are optimal under 
multiple objective functions. The  -constraint method is a commonly used method to transform a multi-objective 
optimization problem into a single-objective optimization problem by introducing  -constraints. Specifically, a   
value is introduced for each objective function, which constrains the objective function to a   range. By adjusting 
the   value to a range of solutions, these solutions constitute the Pareto frontier. Parameter programming, on the 
other hand, is a special type of optimization problem in which some of the coefficients in the optimization problem 
are functions with respect to a set of parameters. This is shown in equation (26). 
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where: c  determines the coefficients of the objective function; B  is the coefficients of the constraints; and   
takes values in the domain of definition  . The constraints B   limit the range of values of the variable x , 
which can ensure that the solution satisfies the actual constraints of the problem. Solving the problem yields the 
corresponding optimal solution * ( )x   and optimal value * ( )v  . Different aspects of the problem are investigated 
by varying the value of   to understand the optimal solution and optimal value in different cases. 

The critical region is a subset of the parameter space   which is defined by a specific set of constraints. The 
  constraint based method is shown in equation (27). 

 

1 1

2 2

3 3

min

. .

T

x

T

T

v c x

s t A b

c x

c x




 
 



 

 (27) 

where: 2 , 3  are regarded as the parameters of the problem, and their values affect the optimal solution and 
optimal value of the problem, whose parameter space is shown in Equation (28). 

  2 3 2 2 2 3 3 3( , ) | ,l u l u              (28) 

where: 3
u  is the upper bound of 3 , i.e., the value of 3  can not be taken more than 3

u ; 3
l  is the lower bound 

of 3  is the lower bound of 3 , i.e., the value of 3  cannot be taken less than 3
l . Limit the value of 3  to be 

taken between 3
l  and 3

u . 

The optimal solution *x  satisfies Equation (29) when 2 3( , )   . 
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By definition, a solution lies on the Pareto front if it cannot be dominated by any other solution in the objective 
function space. Thus, 1 2 3( , , )v    is a point on the Pareto front. Within each key region, the optimal value *v  is 
represented by a linear function of a linear combination of the parameters  . Each hyperplane corresponds to a 
critical region within the parameter space. These hyperplanes represent optimal solutions at different values of the 
parameters and form Pareto fronts between them. Different values of the parameters lead to different hyperplanes 
and thus different optimal solutions. Multiple optimal solutions on the Pareto front are obtained by exploring different 
regions in the parameter space. 

 
II. C. 2) Engineering game-based multi-objective optimization approach 
The Nash Negotiation Game Method is a solution in game theory that utilizes negotiation and cooperation to find 
an equilibrium between participants. Each subject has its own cost function and wants to achieve the goal of 
minimizing its own cost through negotiation and cooperation. Consider the multi-objective optimization problem as 
a negotiation game with three virtual participants. Each virtual participant's negotiation goal is to minimize its own 
cost function, and through the game and negotiation to reach an agreement and find an equilibrium point. This 
equilibrium point corresponds to the optimal solution of the multi-objective optimization problem.The topology of the 
5-node system is schematically shown in Fig. 1. 
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Figure 1: The topological structure diagram of the 5-node system 

Equation (30) is shown. 
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A parameter planning algorithm is used to solve the multi-objective optimization problem. The parameter planning 
algorithm is an optimization method based on parameter space search, which searches for the optimal solution by 
adjusting the values of the parameters, as shown in Equation (31). 

 1 2 3 2 3, ( , )
ii i i Rv p v q v r v v C     (31) 

The analytic expressions for 1v  with respect to 2 3( , )v v  in the key regions are obtained by computation. These 

analytic expressions describe the relationship between 1v  and the other objective variables 2v  and 3v  in each 
critical region. 

In a multi-objective optimization problem, each critical region iCR  is considered as an engineering game problem. 
An engineering game is a solution in game theory that treats the decision problem as a game problem between 
multiple participants, as shown in Equation (32). 
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Check if the condition 0i ip q   is satisfied and  * * *
2 3,

iR
v v C  is satisfied. If it is satisfied, then  * *

2 3,v v  is the 

optimal solution. 

If the above condition is not satisfied, it means that the optimal solution is obtained on the boundary of iR
C . In 

this case, it is necessary to take 3v  to be an affine function with respect to 2v . Using this affine function, the 
problem is transformed into a single objective optimization problem. Solve this single-objective optimization problem 

to find the optimal solution of  * *
2 3,v v . This optimal solution corresponds to the optimal decision point on the 

boundary of iCR . The computational procedure is shown in Eq. (33). 
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Calculate the optimal values iJ  for the engineering game problem corresponding to each critical region iCR . 
These optimal values describe the optimal decision scheme within each critical region. The largest optimal value 

*J  is identified from these optimal values and its corresponding objective value * * *
1 2 3( , , )v v v  is determined. This 

objective value is the final decision point, which represents the optimal solution in a multi-objective optimization 
problem. 

III. Validation of microgrid modeling and multi-objective co-optimization based on meta-
heuristic algorithm 

After completing the analysis of the low-carbon mechanism of power system and the theoretical construction of the 
multi-objective optimization model, this chapter focuses on the practice of microgrid system under the dual-carbon 
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strategy, combines the EnergyPLAN platform with the improved snake optimization algorithm to design the multi-
microgrid cooperative scheduling model, and verifies the practical effect of the dynamic carbon-directed mechanism 
and the game optimization method through simulation. 
 
III. A. Solution approach 
In this paper, three microgrids are designed, and the parameter design of each microgrid is specifically shown in 
Table 1, on the basis of which the EnergyPLAN system is established. 

Table 1: Parameter design of each microgrid 

Power supply type 
Microgrid Set Operation and maintenance cost coefficient / 

(Yuan /kWh) A B C Upper limit /kW Lower limit /kW 

Wind turbine 1 1 1 200 0 0.0374 

Photovoltaic unit 1 1 2 150 0 0.088 

Battery 1 0 1 100 -100 0.0011 

Gas turbine 1 1 1 100 0 0.0452 

Fuel engine 1 1 1 100 0 0.0813 

 
To verify the validity of the experiments, the microgrid model EnergyPLAN modeling is carried out using CPLEX 

tool in the environment of Matlab 2018b. The outer layer of this paper utilizes the improved snake optimization 
algorithm for pricing as well as setting of various optimization parameters. The inner layer utilizes the solver to 
optimize the upper EnergyPLAN model and the lower microgrid cluster model respectively. In the simulation, a 600 
kWh battery is selected, the initial state of charge is 200 kWh, the maximum power for the energy storage included 
in EnergyPLAN is 100 kW, the operating efficiency ηch,i and ηdis,i are taken as 0.9, and the maximum capacity is 
600 kWh; the maximum capacity of the hydrogen storage is 150 kg, and the external tariffs of the grid use time-of-
day tariffs as shown in Fig. 2. 

 

Figure 2: Time-of-use electricity purchase and sale prices 

It can be seen that the price of electricity sold to VPP fluctuates from moment to moment, while the price of 
electricity purchased/sold to the higher-level grid is stable most of the time, as detailed analysis below. As far as the 
purchase of electricity from the higher power grid is concerned, the electricity price is 0.25 yuan from 1:00 to 7:00, 
0.53 yuan per kWh from 8:00 to 10:00, 0.82 yuan per kWh from 11:00 to 15:00, 0.53 yuan per kWh from 16:00 to 
18:00, 0.82 yuan per kWh from 19:00 to 21:00, and 0.53 yuan per kWh from 22:00 to 24:00. In the same way, the 
time fluctuation of electricity sales to the higher-level grid is the same as that of power purchase, but the electricity 
price is slightly lower, and the price of electricity is stable at "0.21, 0.4, 0.62, 0.4, 0.62, 0.4" in each period. 

 
III. B. Optimization results 
Based on the microgrid parameter design and EnergyPLAN model building shown in Table 1, this section adopts 
the improved snake optimization algorithm and CPLEX solver to carry out hierarchical optimization, and finally gives 
the scheduling results of microgrids A and B and the power trading strategy, revealing the facilitating effect of the 
low-carbon tariff mechanism on the flow of power in the system. 
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By modeling the microgrid, the multi-objective optimal scheduling results of the lower microgrid are given, and the 
optimal time-sharing tariffs of microgrid A and microgrid B are given after iterative coordination through system 
optimization as shown in Figs. 3 and 4. 

 

Figure 3: Microgrid A optimal dispatching 

 

Figure 4: Microgrid B optimal dispatching 

It can be clearly seen in the figure that at different moments, the microgrid, through its own various energy output, 
circulates electricity with other microgrids, and conducts power purchase and sale transactions with the microgrid 
group, and finally realizes that each microgrid can satisfy its own power load. It can be seen that the price of 
electricity inside the microgrid and EnergyPLAN is always smaller than the price of electricity outside the 
EnergyPLAN and the higher-level grid, which promotes the circulation of electricity in the EnergyPLAN system. 

IV. Optimization of low-carbon transition path of power system 
Through the validation of multi-objective optimization of the microgrid system, this chapter further extends the 
research scale to the power system as a whole, combining the sensitivity analysis of power generation cost, carbon 
emission and key parameters under different risk scenarios, and proposing a transition path planning strategy that 
takes into account the economic and low-carbon objectives. 
 
IV. A. Power generation costs and carbon emissions 
IV. A. 1) Power generation costs 
Figures 5, 6, and 7 show the cost of each generation over the planning period for the generation portfolio for the 
low-risk, medium-risk, and high-risk scenarios, respectively. 

The lowest total generation cost of 47.68 trillion yuan can be found for the planning period under the low-risk 
scenario. Of these, investment and construction costs account for the most significant portion of expenditures, about 
28.93% of the total costs. Similarly, in the medium and high risk scenarios, investment and construction is also the 
most significant cost component, accounting for about 39.20% and 49.51% of the total cost, respectively. This is 
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mainly due to the fact that the medium and high risk scenarios require the construction of more renewable energy 
generating units compared to the low risk scenario to ensure the adequacy of power supply. It is worth noting that 
investment in generating units for China's power system is mainly concentrated in the 2020-2035 period. This further 
illustrates the need for China to complete its investment in renewable energy power plants as early as possible 
before 2035 and to bring them on line earlier to increase its fault tolerance for uncertain risks in the future. At the 
end of the planning horizon, the Low Risk Scenario requires the construction of more CCS equipment to reduce 
carbon emissions, as gas-fired generation still accounts for a larger share of electricity generation in the Low Risk 
Scenario. The cost of CCS in the Low Risk Scenario is as high as 534 million yuan, which is about 400 million yuan 
higher than the cost of CCS in the Medium and High Risk Scenarios. With the decrease in fuel prices, the fuel cost 
of the power generation mix gradually tends to decline. At the end of the planning stage, for the power generation 
combinations in low, medium and high-risk scenarios, their fuel costs were reduced from 1.5 billion yuan in the initial 
stage to 290 million yuan, 120 million yuan and 71 million yuan respectively. From the perspective of the numerical 
value of carbon cost, high-risk scenarios achieve profitability earlier than low-risk scenarios, but the difference is 
not significant. This phenomenon can be traced back to two reasons: On the one hand, as the proportion of power 
generation from renewable energy gradually increases, the differences in carbon emissions among various risk 
scenarios are relatively small; On the other hand, the current carbon price in China is still relatively low. A carbon 
price of 30 yuan per ton is not sufficient to have a significant impact on the total cost. Although high-risk scenarios 
have a slight advantage in terms of carbon costs, the difference between them and low-risk scenarios is not obvious. 
At the end of the planning stage, the environmental costs in all scenarios remained at a relatively low level, and the 
impact on the environment and society was small. 

 

Figure 5: Power generation costs under low-risk scenarios 

 

Figure 6: Power generation costs under medium-risk scenarios 
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Figure 7: Power generation costs under high-risk scenarios 

 
IV. A. 2) Carbon emissions 
After clarifying the structural differences in the cost of power generation under different risk scenarios, this section 
further cuts through the dynamic changes in carbon emissions and analyzes the phase characteristics of the 
extreme emission reduction period, rapid emission reduction period and stable emission reduction period in the 
planning period, revealing the differential impacts of the proportion of renewable energy deployment and gas-fired 
power generation on the process of carbon neutrality. 

The carbon emissions of the power generation mix under different risk scenarios are shown in Figure 8. In this 
paper, a total of eight planning phases are set up, and one planning phase covers five years, which is in line with 
the real development plan of China. 

 

Figure 8: The carbon emissions under different risk scenarios 

From the figure, it can be seen that the planning period can be divided into three stages according to the speed 
of carbon emission reduction, i.e., the extremely rapid emission reduction period, the rapid emission reduction 
period and the stable emission reduction period. Specifically, 2020-2030 is the period of extremely rapid emission 
reduction in China's power sector. During this period, the total carbon emissions are expected to be reduced by 
more than 4000 Mt, accounting for about 29.46% of the total emissions. The emission reduction effect and the 
percentage of emission reduction in this period reflect the Chinese government's determination and efforts to 
combat climate change and promote green energy transition. Between 2030 and 2045, China's power system will 
enter a period of rapid emission reduction. It is expected that by 2045, according to different risk scenarios, the total 
carbon emissions in this period will be about 1793.55Mt, 2142.21Mt and 2444.33Mt, with an average annual 
emission reduction of 522.64Mt, 570.28Mt and 648.84Mt, respectively.The emission reduction effect in this period 
is relatively significant, and the rate of emission reduction is slightly lower than that of the previous period of rapid 
emission reduction, but it still has a high emission reduction. However, it still has high emission reduction. The 
emission reduction targets for this period imply that the pressure on the power system to reduce emissions is still 
quite high, and the application of carbon emission reduction technologies and policy measures need to be further 
strengthened. During the period 2045-2060, China's power system enters a phase of stabilized emission reduction, 
with a relatively slowing down trend in the annual emission reduction rate. By the end of the planning period, there 
is little difference in total carbon emissions between the high-, medium- and low-risk scenarios, but the rate of 
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emission reduction is faster in the high-risk scenario. This phenomenon can be attributed to the fact that the high-
risk scenario favors more renewable power generation, while gas-fired power generation in the low-risk scenario 
still occupies a certain share at the end of the planning period. During the stabilization period, China's power system 
should continue its efforts to promote the development and application of renewable energy in order to achieve a 
cleaner and low-carbon energy mix. At the same time, gas-fired power generation, as a relatively cleaner form of 
energy, will still maintain a certain share within a certain range. Taken together, the goal of the stabilization and 
emissions reduction period is to balance the use of various forms of energy in order to achieve sustainable 
development while safeguarding the stability of the electricity supply. 

 
IV. B. Sensitivity analysis 
The low-carbon transition pathway for the power system is influenced by a combination of technological, cost, and 
a variety of other factors, and is a complex system that is constantly evolving and changing dynamically. In order to 
provide a comprehensive assessment of low-carbon transition options, we have selected the following two key 
assumptions for sensitivity analysis, namely carbon pricing and energy storage share. Through the sensitivity 
analysis of these key factors, we can more accurately assess and optimize the low-carbon transition pathway of the 
power system, and provide decision makers with references and guidance with practical significance. 
 
IV. B. 1) Carbon pricing 
Figure 9 presents the level of carbon pricing over the planning period for different initial values of the carbon price, 
and Figure 10 illustrates the impact of different carbon price levels on the carbon emissions and generation costs 
of the generation portfolio under the low, medium and high risk scenarios. 

 

Figure 9: Carbon pricing levels with different initial values of carbon prices 

 

Figure 10: The impact on carbon emissions and power generation costs 

It can be observed from the figure that a high carbon price can effectively reduce the carbon emissions of the 
power generation portfolio, which in turn promotes the process of carbon neutrality. Compared to the carbon price 
level with an initial value of 30 Yuan/tonne, the low, medium and high risk scenarios achieve carbon emission 
reductions of 0.35 billion tons, 237 million tons and 147 million tons, respectively, at a carbon price level with an 
initial value of 100 Yuan/tonne. This further indicates that the medium-risk scenario has the highest sensitivity to the 
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carbon price, while the low-risk scenario has the lowest sensitivity to the carbon price. To ensure the safety and 
reliability of the power system, it is necessary to maintain a fossil energy generation share of about 15% under the 
Low Risk Scenario even at the end of the planning horizon. In the medium and high risk scenarios, a reliable supply 
of electricity is ensured by increasing the installed capacity of renewable energy. In addition, the medium-risk 
scenario has the potential to deploy CCS equipment on a larger scale than the high-risk scenario in order to reduce 
the carbon emissions of the system without increasing the overall risk level. 

The impact of the carbon price on the cost of electricity generation also varies across risk scenarios. As the 
carbon price level increases, the total cost of power generation for the medium and high risk scenarios shows a 
significant decreasing trend, while the cost of power generation for the low risk scenario increases. Based on a 
carbon price level with an initial value of 30 yuan per ton, the total costs of the medium and high-risk scenarios 
decrease by 0.16 trillion yuan and 0.81 trillion yuan, respectively, at a carbon price level with an initial value of 100 
yuan per ton, which is mainly attributed to the benefits of increased carbon market revenues. However, the total 
cost of electricity generation in the low-risk scenario increases by 0.45 trillion yuan. On the one hand, this 
phenomenon stems from the increase in carbon price and the decrease in free allowances, resulting in thermal 
power companies in the low-risk scenario having to pay more for carbon allowances. On the other hand, due to the 
increase in carbon price, policy makers need to invest in more CCS units at the planning stage in order to reduce 
the overall carbon emissions of the power generation portfolio. In summary, the carbon pricing mechanism will play 
an important role in the carbon-neutral transition process, and can effectively reduce the carbon emissions of the 
power generation portfolio and the economic costs of renewable energy generation deployment, while at the same 
time significantly contributing to the promotion of low-carbon development and sustainable energy transition. 
However, the current level of carbon pricing in China is on the low side, and a high-level carbon pricing policy should 
be implemented as soon as possible in order to facilitate the low-carbon transition. 

 
IV. B. 2) Share of energy storage 
In order to assess the perturbation effects of key external factors on the transition path, this section further explores 
the impacts of changes in the share of energy storage on the unit cost of electricity generation and carbon emissions 
on the basis of the sensitivity analysis of carbon pricing, and proposes the optimization direction of replacing high-
carbon units through energy storage technology. 

Under different levels of energy storage share, the differences in unit carbon emissions and unit generation costs 
under low, medium and high risk scenarios are shown in Figure 11. 

 

Figure 11: The differences in unit carbon emissions and power generation costs 

As can be seen from the figure, a higher energy storage share has a significant impact on reducing the unit 
generation cost of the generation portfolio. Specifically, increasing the share of energy storage from 5% to 15% 
reduces the unit generation cost of the generation portfolio by 0.027 yuan/kWh, 0.024 yuan/kWh, and 0.039 
yuan/kWh in the low-risk, medium-risk, and high-risk scenarios, respectively, which saves policymakers about 1.51 
trillion, 1.28 trillion, and 2.07 trillion yuan, respectively. Increasing the share of energy storage is most effective in 
reducing costs in the high-risk scenario, but less effective in reducing unit carbon emissions, which are reduced by 
only 0.005 tons/MWh. This may be due to the fact that unit carbon emissions from the generation portfolio are 
inherently relatively low in the high-risk scenario and that the cost of energy storage technologies is significantly 
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lower than the cost of some of the renewable generation equipment. As a result, policymakers are more inclined to 
reduce the investment and O&M costs of renewable energy equipment by increasing the proportion of energy 
storage in the generation mix. With a lower level of risk and no carbon emission pitfalls compared to other generation 
technologies, energy storage can be an important technology for power balancing and peaking. Accordingly, 
policymakers can reduce carbon emissions from the power generation mix by increasing investment in energy 
storage equipment to replace fossil energy generating units with higher carbon emissions. Specifically, when the 
share of energy storage is increased from 5% to 15%, the low-risk scenario has the largest reduction in carbon 
emissions per unit of the generation portfolio, reaching 0.027 tons/MWh, a reduction of 148 million tons of carbon 
emissions. It is worth noting that as energy storage technology continues to advance, its cost will be further reduced, 
which will also further lower the unit cost of electricity generation for the generation portfolio. 

V. Conclusion 
Through multi-scale modeling and multi-objective optimization, this paper systematically analyzes the key paths of 
power structure transformation under the dual-carbon target, and the main conclusions are as follows. 

The incentive-based demand response model based on nodal carbon potential significantly optimizes the spatial 
and temporal distribution of loads, reduces the dispatch cost of transferable loads by 21%, and improves the rate 
of wind and solar energy consumption to 89.2%; and the stepped carbon trading model promotes the increase of 
carbon emissions trading volume by 34% through the price growth coefficient to strengthen the initiative of users to 
reduce carbon emissions. 

Under the high-risk scenario, the proportion of renewable energy installed capacity needs to reach 65% by 2035, 
combined with a 15% share of energy storage can reduce the unit cost of power generation to 0.102 yuan/kWh, 
which is 42% less than the cost of the traditional thermal power-led model. Gas-fired power generation retains a 
15% share and is supported by CCS technology (at a cost of 534 million yuan), which balances system stability and 
emission reduction targets. 

The carbon price level has the most significant impact on the medium-risk scenario, with a 5.2Mt increase in 
average annual emissions reduction for every 10RMB/ton increase in the carbon price; a 10% decrease in the cost 
of energy storage technology reduces unit carbon emissions by 0.008 tons/MWh. 
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