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Abstract Research on the treatment of Alzheimer's disease based on the analysis of EEG signals can help to cope 
with the aging of the population. In this paper, the EEG signals of patients were collected as research data by 
combining channel sampling methods. For the existence of interference artifacts, downsampling method combined 
with bandpass filter, and independent component analysis are used for signal preprocessing. A time series channel 
complex network based on deep optimization algorithm is constructed to explore the nonlinear features of EEG 
signals, and the t-test reveals the pathogenesis of different EEG signal frequency bands. EEG signal acquisition of 
Alzheimer's disease patients, the characterization of time-level changes in sub-brain regions, and cognitive therapy 
control-related practices are carried out to verify the validity of the method in this paper. The results showed that 
the brain regions with more obvious changes in music stimulation were located in the parietal lobe and temporal 
lobe for the three indexes of arrangement entropy, sample entropy, and Lz complexity in mild to moderate patients 
(p<0.05). The regions with more pronounced changes in severe patients were located only in the temporal lobe. 
The relative power of the frequency band EEG signals of the patients in the experimental group after treatment 
were significantly higher than those of the control group and before treatment (p<0.05). 
 
Index Terms channel sampling, deep optimization algorithm, time series channel network, EEG signal, Alzheimer's 
disease 

I. Introduction 
Alzheimer's disease (AD), also known as dementia, is a primary degenerative brain degenerative disease of the 
central nervous system, the etiology of which is still unknown. Epidemiologic surveys in China have shown that the 
prevalence of Alzheimer's disease is about 5%, and AD is the main subtype of dementia in China, with a higher 
prevalence than vascular dementia and other types of dementia, which has brought a heavy burden to 
socioeconomic development and health care [1]-[3]. The prevalence of Alzheimer's disease in China has reached 
10 million cases, the highest in the world. It is predicted that by 2050, 1 in 85 patients will have Alzheimer's disease, 
and the number of dementia cases in China will soar to 280 million [4]. Global spending on dementia has increased 
from $604 billion in 2010 to $818 billion in 2015, a 35.4% increase, and it is expected that spending on dementia-
related aspects will increase to $1 trillion in three years [5]. As one of the most common types of dementia in old 
age, AD is bound to become an important medical and social problem and has received high attention from countries 
around the world. However, the etiology of AD is still unclear and the pathogenesis is very complex, and experts in 
the field still believe that it is the result of a combination of factors but is not a normal phenomenon in old age [6]. 
The disease is often not easy to detect in the early stage, and then the disease will continue to progress slowly, so 
that the patient's memory, the ability to understand and judge things, sense of direction, common sense, 
computation and other aspects will be impaired to varying degrees. This is accompanied by changes in sexual 
behavior, such as a continuous decline in visuospatial function, verbal communication ability, abstract thinking ability, 
learning and working ability, and self-care ability [7], [8]. When a family member suffers from Alzheimer's disease, 
it not only affects the patient's own life, but also brings a heavy burden to the whole family. 

The diagnosis of Alzheimer's disease has undergone significant changes in the last decade. Traditional diagnosis 
relies on the assessment of clinical symptoms, such as memory loss, cognitive function decline and other 
manifestations, combined with neuropsychological tests and imaging to rule out other diseases, but there is a 
significant lag in this model, and patients are often in the middle to late stages of the disease when they develop 
typical symptoms, thus missing the optimal window for intervention [9], [10]. In recent years, EEG has been widely 
used in neuroscience research, such as the study of brain cognitive function, emotion regulation, and state of 
consciousness. By analyzing EEG under different tasks, EEG signals can reflect the cognitive activity changes of 
the brain in both time and space dimensions, which directly records the brain neural activity, and EEG signals are 
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multidimensional signals, and the spatial distribution of multi-electrodes can explore the characteristic changes of 
different brain regions [11]. It can reveal the relationship between brain activity and behavior, and deeply understand 
the functional mechanism of the brain, and it shows a big potential in the diagnosis and treatment of AD due to its 
high efficiency temporal resolution, ability to capture transient EEG activity, and low cost, non-invasive, and 
convenient features [12]-[14]. 

With the gradual increase in the number of AD patients, researchers have proposed a variety of methods to more 
accurately analyze the temporal characteristics of their EEG signals. Literature [15] based on wavelet coherence, 
quantile map, fractal dimension, quadratic entropy, wavelet energy, and visibility map for the temporal analysis of 
EEG signals in AD showed that the first two analysis methods were stable and effective in identifying whether an 
elderly individual suffered from AD. Literature [16] applied two methods, multi-scale entropy analysis and multiple 
fractal analysis, to analyze the AD EEG signal time series separately, which improved the classification accuracy of 
AD. With the development of algorithmic models, literature [17] used Fourier transform and wavelet transform to 
capture the time-frequency features of EEG signals, combined with tree-supervised model to classify them, and the 
classification accuracy of AD was as high as 79%-83%, in which wavelet transform was better than Fourier transform. 
Literature [18] used the K-nearest neighbor algorithm to classify the frequency and time-frequency features of AD 
EEG signals to determine whether the experimenter had AD, and the method had a 99% correct rate in short 
dynamic (eye-opening) behavior. In deep learning algorithms, literature [19] detects AD by generating AD features 
and predicting AD prevalence based on spatiotemporal AD EEG signals under a convolutional neural network (CNN) 
model with two convolutional and softmax layers with fewer network parameters. Literature [20] extracted AD spatio-
temporal features by recurrent neural network and multi-scale expansion CNN, combined with enhanced wild goose 
lemur optimization algorithm to determine the feature weights, and finally used the optimizer's attentional long and 
short-term memory for AD detection. In terms of optimization algorithms, literature [21] combined principal 
component analysis, particle swarm optimization algorithm, and gated recurrent unit to analyze AD EEG signal 
temporal features, and the classification accuracy of diagnosing AD was as high as 93.51%. Although the accuracy 
of deep learning and optimization algorithms in the timing analysis of AD EEG signals is more than 90%, the 
generalization of these analysis methods for data collected by different EEG signal devices is not high, and lack of 
interpretability and high requirements for computational storage space, which leads to a reduction in the effect of 
timing analysis in depth. In contrast, deep optimization algorithms, which embed optimization algorithms in deep 
learning to strengthen the model performance with its minimization loss function, excel in global feature search and 
abstract feature analysis, providing a superior analysis method for EEG signal timing analysis [22]. 

In this paper, EEG signals and related data information of patients are collected by EEG instruments to establish 
a research dataset. Using a combination of filter techniques and signal decomposition methods, the EEG signals 
are preprocessed with interference artifacts to obtain clean EEG data. The nonlinear characteristic parameters such 
as Petrosian fractal dimension, Hurst coefficient, Lempel-Ziv complexity, etc. of the EEG signals are calculated to 
analyze the correlation between the EEG signals and the time series, and to explore the causes of the onset of the 
disease. Patient data collected from hospitals were used as the basis of the study to analyze whether the EEG 
channel acquisition was effective. The EEG signals were divided into brain regions to study the nonlinear 
characteristic parameters. According to the different degrees of disease, analyze the differences in stimulation 
response of corresponding brain regions. Combine the mining results with the treatment to verify the practical value 
of the method in this paper. 

II. Technical support related to EEG signal timing analysis 
This chapter analyzes the objects and methods involved in the study. It details how a complex network model of 
time series channels, based on deep optimization algorithms, can be applied to the analysis of EEG signals in 
patients with Alzheimer's disease. 
 
II. A. Study population and methodology 
II. A. 1) Subject of the study 
We collected all patients with a diagnosis of mild cognitive impairment (MCI) and Alzheimer's disease (AD) who 
attended a university hospital from February 2019 to September 2024 and completed resting-state EEG 
examinations. The subjects were of Han Chinese ethnicity, and MCI patients were enrolled as those diagnosed with 
“MCI meeting the core clinical diagnostic criteria” according to the criteria of the Alzheimer's Disease Association 
(NIA-AA). Patients with AD were enrolled as those diagnosed with “probable AD” according to the NIA-AA criteria. 
The diagnosis and classification of epileptic seizures were based on the criteria proposed by the International 
League Against Epilepsy (ILAE). All diagnoses were made by 2 experienced neurologists. Patients with any of the 
following characteristics were excluded: 
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(1) History of distant epileptic seizures (defined as epileptic seizures occurring 4 years before the onset of 
cognitive impairment); 

(2) Patients with previous seizures caused by cortical lesions, acute metabolic disorders, or subdural hematomas; 
(3) Other causes of dementia: such as dementia caused by Lewy body dementia, frontotemporal lobe dementia, 

Parkinson's disease dementia and other degenerative dementias, central nervous system infections (e.g., AIDS, 
syphilis, etc.), Creutzfeldt-Jakob disease, autoimmune encephalopathies, traumatic brain injuries, intracranial 
tumors, Huntington's disease of chorea, dementia caused by drugs, alcohol, and CO intoxication, and other causes 
of dementia caused by severe somatic illnesses (e.g., hepatic encephalopathy, pulmonary encephalopathy, etc.). 
Dementia caused by other reasons such as severe physical diseases (e.g. hepatic encephalopathy, pulmonary 
encephalopathy) 

(4) Those who did not agree to sign the informed consent form. 
The above exclusion criteria were referenced from previous exclusion criteria in similar studies investigating 

epileptic seizures in patients with dementia. All participants signed an informed consent form before inclusion in the 
study, on the premise of informing the patients themselves and their families in detail about the contents of the study. 
Patients were queried for epileptic seizures through the electronic medical record system and telephonically asked 
if they and their caregivers had epileptic seizures. A total of 200 patients with MCI and 300 patients with AD were 
finally included in this study. The study followed the basic principles of the Declaration of Helsinki, an international 
code of medical ethics, and was reviewed by the hospital ethics committee. 

Clinical information about each patient was collected, including demographic data such as gender, year of birth, 
and education level, general clinical data including personal and family history, cardiovascular risk factors 
(hypertension, dyslipidemia, diabetes mellitus), magnetic resonance results of the head, medications 
(anticholinergic, anti-NMDA, and psychotropic), epileptic seizures with or without epileptic episodes, duration of 
epileptic episodes, type of epileptic episodes, medication, the As well as a neuropsychological assessment of all 
MCI and AD patients, which consisted mainly of the clinically widely used Brief Mental Status Examination Scale 
(MMSE), Montreal Cognitive Assessment Scale (MoCA), and Clinical Dementia Rating Scale (CDR). We collected 
and evaluated resting-state EEG data for all MCI and AD patients. 

 
II. A. 2) EEG acquisition and analysis methods 
A Nicolet EEG (V32-20020130) instrument according to the 10-20 International System using standard 19-channel 
leads (Fp1, Fp2, F3, Fz, F4, F7, F8, T3, T4, T5, T6, C3, Cz, C4, P3, Pz, P4, O1, O2) was used with a sampling rate 
of 205 Hz under resting conditions with eyes closed to The participants' EEG signals were recorded for 15 minutes. 
Figure 1 shows the locations of the 19 electrode placements for the International 10-20 system. Participants were 
asked to remain awake throughout the monitoring. 

All EEG monitoring was done by the same experienced EEG practitioner who was uncertain about the subject's 
diagnosis. All EEG data were diagnostically graded by 2 experienced EEG physicians who were unclear about the 
diagnosis according to the diagnostic grading criteria, which grades background abnormalities only, and can be 
categorized as normal EEG, borderline state EEG, mildly abnormal EEG, moderately abnormal EEG, and severely 
abnormal EEG; paroxysmal abnormalities (epileptiform discharges) are described separately, and epileptiform 
discharges primarily Epileptiform discharges include spikes or sharp waves. 
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Figure 1: Positions where 19 electrodes of the International 10-20 system are placed 
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II. B. EEG signal preprocessing 
In the process of EEG signal acquisition, subjects will be subjected to external interference and artifacts, which can 
be mainly categorized into environmental artifacts, electromagnetic artifacts and biological artifacts. Environmental 
artifacts mainly include 45 Hz IF interference from AC power, signal jumps caused by building vibration, and 
geomagnetic noise from nearby elevators, cell phones, and geomagnetic fields. Electromagnetic artifacts include 
electromagnetic interference from stimulus presentation, continuous oscillations of the head position indicator coil 
at a specific frequency, and random high amplitude fluctuations due to sensor malfunction. Biological artifacts 
contain periodic signal disturbances caused by cardiac activity, transient deflections of signals induced by eye 
movements and blinking, and EMG artifacts caused by muscle activity during swallowing jerks. In the experiments, 
the most significant effects on EEG signal analysis were IF interference, cardiac artifacts, and EMG artifacts. 

Since the EEG signal acquisition process is inevitably interfered by external factors to produce artifacts, the raw 
EEG signal data acquired need to be preprocessed before using the EEG signal for model training. Commonly used 
methods in the pre-processing stage are re-referencing, filter techniques, and signal decomposition methods. Re-
referencing means using the average potential of the left mastoid as a reference to solve the problem of asymmetry 
between left and right brain activities, or using the average potential of all electrodes as a reference to solve the 
problem of displaying EEG activities at some electrodes. The filter technique is based on the fact that the effective 
components of the EEG signal are mainly located in the 1-40 Hz frequency band, and a better de-artifactualization 
effect can be achieved by filtering the signal to a certain range using a band-pass filter. Signal decomposition 
methods include methods such as independent component analysis (ICA) and signal space projection (SSP).ICA 
is a technique for estimating independent source signals from a set of recordings in which the individual source 
signals are mixed in unknown proportions, and is commonly used in the problem of blind source separation.The 
SSP technique is a technique that removes the noise by projecting the EEG signal into a low-dimensional space.The 
average pattern of the signal is computed to select the subspaces and to construct a subspace orthogonal to the 
direction of the noise, and the noise is removed by projecting the signal into the subspace. 

In the experiments of this paper, the dataset used to collect signals with channel Fz as the reference electrode, 
which can effectively represent the EEG activity at each electrode, so there is no need to re-reference the EEG 
signals. In this paper, a downsampling method is used to remove the high frequency components, and then a band-
pass filter is used to filter the EEG signals obtained from 1 Hz to 40 Hz. However, there are still artifacts in the low 
frequency band in the signal recording, in order to get clean EEG data, this paper also uses independent component 
analysis for processing. The specific steps of independent component analysis are as follows: receive the observed 
signals, standardization of the mean value of the data recommendations, principal component analysis processing 
of the observed data matrix, and then align the whitening process, through the calculation of each independent 
component, and finally through the independent component reconstruction to eliminate the components that are 
close to the frequency band of the EEG signals, with the following specific formulas: 

where m nX R   is the data matrix, m  is the number of measured variables, n  is the total number of samples, 
m nA R   is the mixing matrix, n ns R   is the matrix composed of the independent components, m nE R   is the 

residual matrix. 
 

II. C. Time series channel complex network construction 
II. C. 1) Nonlinear characteristics 
1) Petrosian Fractal Dimension (PFD) 

Petrosian Fractal Dimension (PFD) Fractal dimension is a chaotic method of calculating the complexity of a 
signal.PFD helps in calculating the fractal dimension quickly.PFD performs this process by converting the signal 
into a binary sequence. It can be estimated by the following expression: 
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where k  is the number of signal sampling points and N  is the number of signal variations. 
2) Hurst Exponent (HE) 
The Hurst exponent is used to measure the long-range dependence within the signal, ranging from 0-1. The Hurst 

coefficient is used in EEG time-series analysis to present the non-smooth/antistatic EGG states observed during 
sleep. HE  was defined: 
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Here, T is the data sampling rate and R/S is the value of the rescaling range. In Hurst exponent, H=0.55 denotes 
a signal with the property of random wandering or Brownian motion. H<0.55 the length of time series has a negative 
correlation with memory, while the value H>0.55 indicates that the time series is characterized by long-term memory. 

3) Lempel-Ziv complexity (Lz) 
The Lempel-Ziv complexity algorithm is a method to characterize the rate of emergence of new patterns in a time 

series, which is highly robust to interference and noise, and has a great advantage for characterizing highly unstable 
brainwaves, and can reveal the correlation patterns of the human brain to a certain extent.The steps for calculating 
the Lz complexity are: 

(1) Calculate the mean value of the EEG time series, and divide the time series into two parts according to the 
size of the EEG time series in relation to the mean value, and if you want to divide the already divided part of the 
EEG time series again, you can use the same method to divide it. 

(2) Compare the first value of the sequence with the average value, if it is greater than the average value it is 1, 
if it is not greater than the average value it is 0; the formula is: 
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Starting from the second value of the EEG time series, the result of binarization is related to the previous point of 
the comparison and is assigned a value of 1 if it increases to another region, 0 if it decreases to another region, and 
stays the same value as the previous point if there is no change from the previous value with the formula: 
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Using Lz complexity for feature extraction of EEG signal can retain more detailed information of EEG time series 
and can improve the accuracy of feature extraction. The normalized Lz complexity formula is: 
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where ( )c n  is the Lz complexity of the EEG time series, and n  is the length of the EEG time series. i  is the 
number of coarse-grained segments of the time series. Figure 2 shows the specific process. 
II. C. 2) Time series network property analysis 
In this section, we mainly want to analyze the characteristics between normal people and patients' attributes by 
studying the attributes of the constructed networks, and find out their differential attributes to discover the differences 
of their constructed networks. 

According to the existing research in the subject group, it is known that normal people and patients have 
significant differences in the   band and   band, and the differential channels are different in different bands at 
different stages. In this thesis, by constructing networks for these channels and analyzing the differences of their 
networks constructed on time series through network properties, we provide a basis for further revealing their 
pathogenesis. 

By finding the attributes such as average clustering coefficient, global efficiency, average local efficiency, module 
value and average path length of each network of each channel, the t-test is performed on the requested attributes. 
t-test is a widely used test for determining whether there is a statistically significant difference between two sets of 
averages. t-test formula is as follows, the upper half of the formula is the mean of the two samples or the difference 
between the means, and the lower half of the formula is the distribution of the variable or the distribution of the data. 
t-test formula is: 
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where 2,i i   and in  denote the mean, variance, and sample size of the i th sample class, respectively. 
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Figure 2: The calculation process of Lempel-Ziv complexity 

III. Deep optimization-based timing analysis practice 
This chapter verifies the application value of the method of this paper through specific EEG signal analysis practice 
and cognitive therapy practice based on EEG signal analysis. 
 
III. A. Experimental data 
Table 1 shows the information of the data related to the top 15 patients for EEG acquisition. The constructed dataset 
is derived from the EEG acquisition of hospital patients, which contains prolonged multichannel EEG recordings of 
500 patients with a sampling frequency of 250 Hz. EEG recordings of all patients were acquired through 19 channels: 
Fp1, Fp2, F3, Fz, F4, F7, F8, T3, T4, T5, T6, C3, Cz, C4, P3, Pz, P4, O1, O2. As can be seen in Table 1, the patients 
were all over 50 and under 70 years of age. The number of seizures ranged from 4-20, with a large variation in the 
number of seizures in different patients. Seizure durations ranged from [154,1990]s and the variation in seizure 
durations was also high in different patients. Non-epileptic durations ranged from 19.73-143.95h. Overall, the 
experimental data contained EEG information from several different patients, meeting the diversity requirements of 
the experiment. 
III. B. EEG channel analysis 
In order to verify the validity of the EEG signal acquisition in this paper and reduce the influence on the subsequent 
experimental analysis, the coherence of the different channels of EEG signal features (MST-CPC) and EMG 
features was analyzed by comparing which channel has a higher degree of correlation with the EMG features, so 
as to determine that the EEG signals are valid.The dimension of the MST-CPC features is 188×130, and that of the 
EMG features is 6×30, and since the number of the number of sampling points are 130 and 30 respectively, the 
data are divided into 3 segments for coherence analysis. The EEG Fz channel was visualized as an example. 

Figure 3 shows the coherence between the MST-CPC features of the EEG Fz channel and the EMG features of 
15 patients. The 3 subplots in Figure 3(a) show the coherence of different 3 segments of feature 1 of the EEG Fz 
channel MST-CPC features with EMG, respectively. The 3 small plots in Fig. 3(b) show the coherence of different 
3 segments in feature 2 of the EEG Fz channel MST-CPC feature with EMG, respectively. As can be seen from Fig. 
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3, the coherence of MST-CPC features 1 and 2 of the EEG Fz channel with EMG features remains highly consistent, 
with the coherence coefficient error not exceeding 0.1, and the trend of the coherence coefficient change of each 
segment of feature 1 and the corresponding segment of feature 2 with EMG features is the same. From this, it is 
judged that the EEG signals acquired using the channel in this paper have usability. 

Table 1: Data information (Top 15) 

Patient Gender Age Number of channels 
Frequency of epileptic 

seizures 

Duration of epilepsy 

/s 

Non-epileptic duration 

/h 

1 F 61 19 8 441 40.45 

2 M 59 19 7 173 35.23 

3 F 62 19 10 404 38.87 

4 M 55 19 5 376 143.95 

5 F 63 19 7 555 38.84 

6 F 61 19 12 154 62.97 

7 F 58 19 4 327 62.94 

8 M 57 19 7 918 19.73 

9 F 66 19 8 275 67.77 

10 M 53 19 6 444 49.91 

11 F 67 19 15 803 34.58 

12 F 68 19 9 1477 23.25 

13 F 65 19 5 532 32.86 

14 F 63 19 7 167 25.97 

15 M 57 19 20 1990 39.44 

 

  

(a) Coherence of 3 different segments    (b) Coherence of 3 different segments  
in Feature 1 with electromyography      in Feature 2 with electromyography 

Figure 3: Coherence between MST-CPC and electromyographic characteristics 

III. C. Sub-brain area time level results based on nonlinear feature parameters 
III. C. 1) Results of changes in time-level alignment entropy in sub-brain regions 
Using the complex network of time series channels constructed in this paper, the results at the time level of sub-
brain regions are studied from the perspective of nonlinear characteristics. Figure 4 shows the results of the change 
in alignment entropy at the time level of sub-brain regions. Compared to pre-stimulation, the regions where more 
significant changes in the alignment entropy values of mild to moderate patients were found in music stimulation 
were located in the parietal and temporal lobes (p<0.05). 

1) Manifested as significantly higher entropy values in the parietal lobe during stimulation compared to pre-
stimulation (p=0.0122), and also significantly higher in the parietal lobe post-stimulation compared to pre-stimulation 
(p=0.00902). Previous studies have shown that Alzheimer's cognitive level is related to parietal lobe activity and 
that entropy values and complexity gradually increase as cognitive ability improves. Therefore, changes in parietal 
lobe arrangement entropy over time can be interpreted as cognitive improvement in mild-to-moderate patients. 
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2) The entropy value of the temporal lobe in mild-to-moderate AD decreased significantly in the stimulus 
compared to the pre-stimulus (p=0.00145). Since emotional dysregulation is associated with abnormal brain activity 
in the right middle temporal gyrus, the temporal lobe may have a function in regulating emotions, and therefore, the 
change in temporal lobe arrangement entropy over time can be interpreted as a relief of emotions during musical 
stimulation in mild-moderate patients. 

The alignment entropy values in the severe group showed a significant difference only in the temporal lobe during 
musical stimulation (p<0.05), as indicated by a lower entropy value in the temporal lobe stimulation compared to 
the pre-stimulation (p=0.001623). This change is partially similar to the above trend of entropy change in temporal 
lobe arrangement in mild to moderate patients, which can be interpreted as emotional regulation and anxiety relief 
during music stimulation in severe patients. 

Compared to pre-stimulation, the arrangement entropy of the frontal, temporal and parietal lobes in the healthy 
control group were all significantly different during musical stimulation. The difference between the healthy control 
group and the mild-moderate patients is that in addition to the parietal lobe, the EEG arrangement entropy of the 
temporal lobe changed significantly during music stimulation, and the EEG arrangement entropy of the frontal lobe 
of the healthy control group also changed significantly, which is due to the fact that the frontal lobe is responsible 
for higher cognitive functions, and the brain responses of the healthy control group under music stimulation 
possessed high-level cognitive responses in addition to the simple cognitive responses and emotional responses. 

 

Figure 4: Arrange the entropy changes at the temporal level by brain regions 

III. C. 2) Results of changes in sample entropy at the time level of sub-brain regions 
The sample entropy and LZ complexity are similar to the arrangement entropy law. Figure 5 shows the results of 
changes in sample entropy at the temporal level in sub-brain regions. Significant changes in sample entropy values 
were found in the parietal and temporal lobes of the mild-moderate patient group in musical stimulation compared 
to pre-stimulation (p<0.05). The results showed that the entropy values of the parietal lobe were significantly higher 
during and after the stimulation compared to the pre-stimulation (p=0.00008 for pre- and mid-stimulation. p=0.02103 
for pre- and post-stimulation). Entropy values of the temporal lobe were significantly decreased both during and 
after stimulation compared to pre-stimulation (pre-stimulation and stimulation, p=0.0019. pre-stimulation and post-
stimulation, p=0.00064). The only region that showed a significant difference in sample entropy values between 
music stimulation and post-stimulation for the severe group compared to pre-stimulation was located in the temporal 
lobe (p<0.05). Their relative ability profile was consistent with that of the moderate group. The relative energy of the 
temporal lobe was lower in both during and after stimulation compared to pre-stimulation (pre and during stimulation, 
p=0.0019. pre and post stimulation, p=0.00064). Significant changes in entropy entropy of healthy pairs of samples 
during and after musical stimulation compared to pre-stimulation were located in three brain regions (frontal, 
temporal, and parietal lobes). 
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Figure 5: Changes in sample entropy at the temporal level by brain regions 

III. C. 3) Results of changes in LZ complexity at the time level of sub-brain regions 
Figure 6 shows the results of changes in LZ complexity at the temporal level in sub-brain regions. The LZ complexity 
values of the parietal and temporal lobes in the mild-moderate patient group showed significant changes during 
musical stimulation (p<0.05), as evidenced by significantly higher entropy values of the parietal lobes during and 
after stimulation compared to pre-stimulation (pre-stimulation and stimulation, p=0.00007. pre-stimulation and post-
stimulation, p=0.003). The only region that showed a significant difference in LZ complexity values in the heavy 
group during and after musical stimulation compared to pre-stimulation was located in the temporal lobe (p<0.05), 
as evidenced only by a higher relative energy during and after stimulation compared to pre-stimulation (pre-
stimulation and stimulation, p=0.00122. pre-stimulation and post-stimulation, p=0.00043). Significant changes in LZ 
complexity values in the frontal, temporal and parietal lobes of healthy controls occurred during and after musical 
stimulation compared to pre-stimulation in three brain regions (frontal, temporal and parietal lobes). 

 

Figure 6: Changes of LZ complexity at the temporal level by brain regions 

III. D. Comparison of EEG signals before and after treatment 
The 500 patients included in the dataset were equally divided into two groups for a controlled experiment. The 
experimental group was treated with continuous cognitive therapy using a time series channel complex network 
based on a deep optimization algorithm, and the control group was treated with traditional cognitive therapy methods. 
EEG characterization was performed at the time of enrollment and after 4 months of continuous treatment in both 
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groups. Digital EEG equipment was selected for EEG characterization, and the ratio of EEG signal power changes 
in different frequency bands was determined. The collected data were statistically analyzed by SPSS 18.0 software, 
the count data were tested by x2 test, and all the measurement data were expressed by ( x ±s), and the t-test was 
used for the comparison of the groups, and the difference was considered to be statistically significant when P < 
0.05. 

Table 2 shows the results of the comparison of the relative power ratios of different frequency bands of the EEG 
signals of the two groups of patients before and after treatment ( x ±s). The difference in the relative power of EEG 
signals of α 1, α 2, β 1 and β 2 frequency bands before the treatment of the two groups of patients was not statistically 
significant (P > 0.05), and the relative power of EEG signals of α 1, α 2, β 1 and β 2 frequency bands of the patients 
of the experimental group after the treatment was significantly higher than that of the control group with the pre-
treatment (P < 0.05). According to the comparison results of EEG signals before and after treatment, it can be found 
that the use of the time series channel complex network based on the depth optimization algorithm in this paper to 
analyze the signals of various brain regions of the patients, and to provide targeted cognitive therapy based on the 
results obtained can significantly enhance the activity of EEG signals of the Alzheimer's disease patients and 
improve the cognitive level. 

Table 2: Comparison results of 2 groups of patients before and after treatment 

Group 

α1 α2 

Before 

treatment 
After treatment T-value P-value 

Before 

treatment 
After treatment T-value P-value 

Experimental 

group 
1.156±0.298 1.428±0.216 4.663 0.001 1.117±0.317 1.411±0.146 5.345 0.000 

Control group 1.161±0.255 1.172±0.145 0.236 0.816 1.154±0.293 1.172±0.317 0.267 0.795 

T-value 0.082 6.124 - - 0.540 4.345 - - 

P-value 0.937 0.001 - - 0.593 0.001 - - 

Group 

β1 β2 

Before 

treatment 
After treatment T-value P-value 

Before 

treatment 
After treatment T-value P-value 

Experimental 

group 
0.879±0.214 1.261±0.326 6.125 0.000 0.668±0.424 1.057±0.243 5.167 0.000 

Control group 0.868±0.246 0.854 ±0.273 0.243 0.812 0.672±0.206 0.637±0.107 0.944 0.352 

T-value 0.210 6.037 - - 0.055 10.681 - - 

P-value 0.834 0.001 - - 0.956 0.000 - - 

 

IV. Conclusion 
This paper applies a time series channel network based on a deep optimization algorithm to analyze the specific 
changes in the EEG signals of patients with Alzheimer's disease to achieve targeted cognitive therapy. The brain 
regions of patients with mild to moderate severity were able to respond to musical stimuli. Significant changes in 
EEG signals were located in the parietal and temporal lobes in mild to moderate patients (p<0.05), and only in the 
temporal lobe in severe patients (p<0.05). Based on the results of sub-brain area time series analysis for control 
experiments, the relative power of frequency band EEG signals of patients in the experimental group was 
significantly higher than that of the control group (p<0.05). At the same time, the relative power of frequency band 
EEG signal in the experimental group after treatment was also significantly higher than that before treatment 
(p<0.05). The EEG activity and cognitive ability of Alzheimer's disease patients can be enhanced using the method 
in this paper. In the future, real-time monitoring technology can be further introduced into the time series channel 
network based on deep optimization algorithm to improve the timeliness of EEG signal analysis. 
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