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Abstract Heating, ventilation, and air-conditioning (HVAC) systems play a pivotal role in demand response (DR) by 
enabling load modulation to enhance energy flexibility. However, traditional strategies often optimize only a single 
variable—such as indoor temperature or chilled water temperature—limiting coordinated system control. In addition, 
the influence of dynamic occupant distribution on building energy performance and flexibility is rarely considered, 
especially in high-occupancy spaces like libraries.To address these limitations, this study proposes a multidimen-
sional synergistic control strategy that simultaneously optimizes indoor temperature setpoints, chilled water supply 
temperature, and fresh air unit operation to enhance energy efficiency and DR performance. A TRNSYS-based 
simulation model of a university library in Hunan Province was developed to evaluate the strategy. Key performance 
indicators included peak load reduction, energy savings, and indoor thermal comfort, benchmarked against a base-
line control strategy. The impact of occupant seating patterns on control effectiveness was also examined.Results 
show that, compared to the baseline strategy (ST1), the proposed strategy (ST6) reduces energy consumption 
during DR periods by 34.3%, daily energy use by 14.92%, and electricity costs by 20.00%. Concentrated occupant 
distribution further improves load regulation and system efficiency. This study demonstrates that integrating occu-
pant behavior into multidimensional HVAC control offers a scalable and effective solution for enhancing DR capacity, 
building energy performance, and operational cost savings. 
 
Index Terms Multi-dimensional Coordinated Optimization, Demand Response, Fresh Air Flexibility, Multi-objective 
optimization control, differential occupancy 

I. Introduction 
The rapid development of society and the economy has exacerbated the imbalance between electricity supply and 
demand, posing significant challenges to grid stability and energy efficiency. Building energy consumption consti-
tutes a major portion of the overall electricity load, among which heating, ventilation, and air conditioning (HVAC) 
systems account for approximately 48% of the total energy consumption in public buildings. This issue becomes 
even more critical during summer, when rising ambient temperatures substantially increase cooling demand, making 
HVAC systems the primary driver of peak electricity consumption. Therefore, optimizing the operation of HVAC 
systems is essential for alleviating supply-demand imbalances and improving energy efficiency. 

Demand Response (DR) strategies, as an effective demand-side management tool, aim to guide consumers to 
adjust their electricity usage patterns via flexible control mechanisms, thereby reducing loads during peak periods 
and achieving optimal power consumption. Currently, two types of DR strategies are commonly adopted in HVAC 
systems: load shifting and load shedding[1]. Load shifting refers to the transfer of all or part of the peak load to off-
peak periods by utilizing energy storage systems or the thermal inertia of buildings [2]. Load shedding, on the other 
hand, directly reduces power consumption through end-use control[3], source-side regulation [4] , or ventilation 
system adjustments [5]. 

In terms of terminal control, studies have shown that increasing indoor temperature by 1°C during DR periods 
can reduce HVAC energy consumption by approximately 10% [6]. Both experimental and simulation studies [7]have 
demonstrated that, compared to fixed temperature setpoints, dynamic adjustments can reduce energy consumption 
by 2.8% and operating costs by 3.73%, while maintaining thermal comfort within a temperature deviation of 1–2°C. 
Moreover, combining pre-cooling strategies with optimization algorithms can reduce peak loads by up to 80%, while 
still meeting thermal comfort and time-of-use (TOU) pricing constraints [8]. Li et al.[9] employed a neural network-
optimized reinforcement learning algorithm to enhance robustness and used TOU pricing to control thermostats 
during DR periods, achieving a 9.17% reduction in operating costs compared to fixed temperature settings. Li et al. 
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[10] also proposed an improved HVAC indoor temperature prediction strategy that simplifies computation for real-
time control. However, their method did not support dynamic adjustment of indoor temperature setpoints.Although 
these studies emphasize indoor temperature control, such strategies may reduce occupant comfort—particularly in 
large buildings or residential environments—where temperature adjustments may result in overheating or overcool-
ing in different zones. In addition, load reduction capacity is often constrained by Predicted Mean Vote (PMV) limits. 
While many centralized HVAC systems are equipped with automatic control devices at the design stage, in practice, 
a considerable number of these systems have degraded or become nonfunctional. Even in functional systems, 
conservative control parameters—such as low proportional gain and high integral gain in PI control—are typically 
configured during initial commissioning to ensure system stability [11], which can result in a time lag of several hours 
from temperature setpoint adjustment to noticeable changes in chiller energy consumption. This delayed response 
clearly falls short of the rapid adjustment requirements of modern DR programs, especially during peak grid demand. 

In source-side control, one commonly adopted method is directly turning off one or more chillers during peak 
demand periods to quickly reduce system power consumption. However, this may lead to hydraulic imbalance, 
uneven cooling distribution, and non-uniform temperature increases [12]. In contrast, optimizing the chilled water 
supply temperature can address these issues. This approach is recognized as one of the most effective energy-
saving strategies, capable of reducing base load energy consumption by up to 14.2% [13]. Ran et al. [14] developed 
a virtual flowmeter model and a self-regulating flow monitoring system to estimate chilled water flow in each AHU 
in real time, ensuring balanced distribution among units and reducing power demand during DR events. Dai et al.[15] 
proposed an event-driven control mechanism that adjusts AHU valve positions based on indoor temperature devi-
ation thresholds, enabling uniform temperature rise while minimizing valve actuator movement. A feedback control 
strategy based on adaptive utility functions was also introduced, incorporating both global and local cooling demand 
allocators to dynamically reset chilled water flow and air supply volume across different zones, thereby addressing 
the issue of uneven temperature increase during DR events [16]. Compared to direct on-off control, adjusting chilled 
water supply temperature is a more gradual approach, avoiding frequent cycling of chillers and their associated 
pumps or cooling towers, which can otherwise impair system performance and reduce equipment lifespan. However, 
this approach still relies on modulating cooling capacity and may lead to internal energy offset by other devices (e.g., 
pumps, fans), potentially weakening the intended load reduction. 

In ventilation-side management, existing studies have explored supply air temperature control, static pressure 
reduction, and fan operation optimization. For instance, reinforcement learning has been applied to optimize dy-
namic static pressure control, reducing fan energy consumption by 38.5% and electricity costs by 18.5% compared 
to fixed settings. Vand et al. investigated a CO₂-based feedback control strategy for educational offices in cold 
climates, showing that its energy and cost-saving potential increases with occupant density, as CO₂ concentrations 
fluctuate between 800–1200 ppm [17]. Rotger et al. [18] found that demand-controlled ventilation (DCV) can 
achieve up to 2% peak-period electricity savings. The varying DR potential of HVAC systems is partly due to current 
research focusing primarily on sensible load management, while latent load contributions are often overlooked. Ma 
et al. [19] analyzed the impact of latent cooling loads in four representative humid climate zones, showing that 
ventilation control could provide 30%–40% flexibility in total cooling demand, with latent loads accounting for 56%–
66.4% of this flexibility. Luo et al. [20] proposed a CO₂-based ventilation adjustment strategy for office buildings, 
demonstrating that due to its fast response and low inertia, CO₂ feedback control is highly suitable for short-term 
DR applications, achieving an average 34% reduction in ventilation load during summer peak hours. 

In summary, existing research on HVAC-related DR strategies predominantly focuses on single-variable control, 
such as temperature, cooling source, or ventilation adjustments, and lacks practical implementations of integrated 
control schemes. For instance, temperature and humidity joint control (T&H) strategies have been proposed to 
simultaneously manage sensible and latent loads, achieving a 29.15% reduction in electricity consumption and a 
46.11% decrease in daily operational costs during DR periods [21]. Wang et al. [22]introduced a coordinated control 
strategy that adjusts both chilled water supply temperature and indoor temperature setpoints to enhance power 
response speed while balancing cooling demand. This approach synchronizes supply and demand from the source, 
improving response time and reducing internal energy offset. However, the feasibility and real-world effectiveness 
of such methods still require further experimental validation. Yuan et al. [23] proposed a T&H control strategy that 
synchronously adjusts supply air temperature and chilled water temperature to manage both sensible and latent 
loads. Compared to traditional approaches, this method improved energy savings to 39.0% and peak load reduction 
to 37.1%, particularly in high-latent-load scenarios. These findings indicate that integrated control strategies outper-
form conventional approaches in terms of energy savings, responsiveness, and occupant comfort, and are espe-
cially well-suited for modern buildings participating in DR programs. 
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Nevertheless, existing integrated strategies often overlook indoor environmental quality and human thermal com-
fort in their control logic. Therefore, incorporating the fresh air system into DR strategies represents a promising 
direction for optimizing overall system performance. 

These studies collectively indicate that a wide range of DR strategies related to load shifting and load shedding 
have been explored in buildings and HVAC systems. However, there remain the following key research gaps: 

(1) Limited control dimensions and insufficient response flexibility: 
Most existing DR strategies for HVAC systems focus on single-variable control, such as adjusting indoor tempera-
ture setpoints or chilled water supply temperatures. These approaches lack coordination among the cooling source, 
terminal load, and air-side subsystems. As a result, they often exhibit limited flexibility in load regulation and may 
lead to internal energy offset due to compensatory operation of other components such as pumps and fans, thereby 
reducing the net load reduction potential. 

(2) Lack of multi-parameter coordinated control strategies that incorporate fresh air systems: 
The fresh air system plays a crucial role in latent load regulation, ventilation demand adjustment, and rapid DR 
response. However, it is often oversimplified or neglected in existing DR strategies. Although temperature and hu-
midity (T&H) joint control methods consider latent load, they generally underutilize the potential of fresh air system 
regulation and may involve high implementation complexity. Therefore, there is an urgent need to develop an inte-
grated control strategy that combines fresh air system operation, chilled water supply temperature, and indoor tem-
perature setpoint adjustments, in order to enhance the overall energy efficiency and DR performance of HVAC 
systems. 

To address the existing limitations in energy management, this study proposes an integrated DR framework for a 
university library in Hengyang, which adopts a hierarchical control strategy across multiple subsystems. This ap-
proach enables coordinated optimization of terminal unit operation, cooling source scheduling, and fresh air regu-
lation to improve energy efficiency and indoor comfort. The optimization framework employs the Non-dominated 
Sorting Genetic Algorithm II (NSGA-II)[24], a well-established multi-objective optimization method in building energy 
studies, known for effectively handling nonlinear trade-offs. The proposed method explicitly accounts for subsystem 
coupling effects, including: Chilled water temperature regulation, which influences the dehumidification capacity of 
terminal units; Variable-frequency fresh air control, dynamically adjusting ventilation rates based on real-time CO₂ 
concentration to balance indoor air quality and cooling loads. By integrating these strategies, the framework en-
hances system-wide energy efficiency while ensuring occupant comfort. 

 

Figure 1: Multidimensional Collaborative Load Optimization Framework 

The structure of this paper is organized as follows: Section 2 presents the framework for multidimensional collab-
orative load optimization. Section 3 describes the energy consumption characteristics of the university library and 
the modeling approach for the HVAC. Section 4 introduces the DR based multi-objective optimization model and 
which is applied to the library as a case study considering energy flexibility, economic efficiency, and human thermal 
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comfort. Section 5 analyzed the performance of the multidimensional optimization strategy which is compared with 
a single optimization method in terms of peak demand, thermal comfort, and energy savings. Section 6 discusses 
the strengths and limitations of the proposed approach, followed by the conclusions. Section 7 provides a summary 
of the conclusions. 

II. Methodology 
This study presents a multidimensional collaborative load optimization framework for HVAC demand response, 
which primarily consists of two key components: (1) a simulation model of the building and its air-conditioning sys-
tem, and (2) a multi-objective optimization model as shown in Figure 1. The design parameters govern multiple 
dimensions through a synergistic optimization approach to achieve optimal operation of the air-conditioning system. 

III. Building and HVAC system simulation model 
This section may be divided by subheadings. It should provide a concise and precise description of the experimental 
results, their interpretation, as well as the experimental conclusions that can be drawn. 
 
III. A. Building information and cooling load calculation 
This study focuses on a university library located in Hengyang City, which consists of two subterranean levels and 
ten aboveground levels, encompassing a total floor area of 39,552.5 m² and a height of 47.50 m. The central air-
conditioning system serves the first through eighth floors, covering an area of 26,465 m². The first floor features a 
spacious hall, while the second through eighth floors function as reading rooms. The second floor has a height of 
6.3 meters, whereas the remaining floors each have a height of 4.5 meters The window-to-wall ratios for the east, 
south, west, and north facades are 0.54, 0.55, 0.51, and 0.54, respectively. In contrast to conventional buildings, 
university libraries generally remain closed during the winter and summer seasons. The architectural design draw-
ings of the library indicate that SketchUp is utilized to create a three-dimensional model of the library, as illustrated 
in Figure 2. The layout distribution is presented in Figure 3, while the materials used for the enclosure structure are 
detailed in Table 1. 

 

Figure 2: 3D model diagram 

 

Figure 3: Standard floor plan layout diagram  
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Table 1: Envelope Structure Material Table 

Envelope Fabric 
Heat transfer coeffi-

cient/(w·(m2·K)-1) 

External 

wall 

Mixed mortar (20 mm) + sintered shale porous brick (200 mm) + cement mortar (20 mm) + 

rock wool board (40 mm) + anti-cracking polymer mortar (5 mm) 
0.46 

Roof 
Mixed mortar (20 mm) + reinforced concrete (120 mm) + cement mortar (20 mm) + extruded 

polystyrene board (60 mm) + fine stone concrete (70 mm) 
0.488 

Floor Cement mortar (20 mm) + reinforced concrete (120 mm) + cement mortar (20 mm) 0.688 

Interior wall Cement mortar (20 mm) + sintered shale porous brick (200 mm) + Cement mortar (20 mm) 1.67 

External 

window 

Aluminum alloy with a solar heat gain coefficient of 0.29 and a visible light transmission ratio 

of 0.62. 
2.39 

 
Indoor heat gain primarily arises from three sources: occupants, equipment, and lighting. The relevant parameters 

are established in accordance with the 'Energy Saving Design Code for Public Buildings '[25].The seating capacities 
for the first to eighth floors are 25, 254, 456, 424, 400, 336, 460, and 296, respectively. The seating capacities for 
the first to eighth floors are 25, 254, 456, 424, 400, 336, 460, and 296, respectively. The maximum heat dissipation 
rates are 9 W/m² for lighting and 15 W/m² for equipment. The usage schedules for occupants, lighting, and electrical 
appliances are illustrated in Figure 4. The variation trends of personnel, equipment, and lighting usage provide 
valuable insights into energy optimization opportunities. The key observations are as follows: 

(1) Bimodal Usage Patterns: In work and study environments, a clear "bimodal" usage pattern emerges, with two 
distinct peaks in activity: one in the morning (9:00-12:00) and another in the afternoon (14:00-18:00). These peaks 
correspond to intensive work or study periods, where personnel, equipment, and lighting are heavily utilized, re-
flecting sustained productivity throughout the day. 

(2) Lunch Break Decline: During the lunch break (12:00-14:00), a noticeable reduction in personnel and equip-
ment usage is observed, signaling a shift to rest periods. Despite this, lighting usage remains relatively high, likely 
due to baseline illumination being maintained even when occupancy is lower. This presents an opportunity for en-
ergy optimization by adjusting lighting levels according to actual occupancy. 

(3) Evening and Nighttime Decline: From 18:00-24:00, usage gradually decreases. Between 18:00-21:00, per-
sonnel, equipment, and lighting usage decline gradually, likely reflecting overtime, night shifts, or reduced activity. 
However, between 21:00-24:00, usage drops significantly, approaching zero, indicating that the space is largely 
inactive. This period highlights opportunities to optimize lighting and equipment operation strategies to reduce en-
ergy consumption during these hours. 

(4) Late-Night Hours: During the late-night period (00:00-06:00), usage is minimal, with personnel absent, most 
equipment turned off, and lighting usage close to zero, except for possibly some safety lighting. The space is es-
sentially in a static state during these hours, providing an ideal opportunity to further optimize equipment standby 
modes and minimize unnecessary energy consumption. 

These trends suggest several areas where energy-saving measures can be effectively implemented, particularly 
through more responsive lighting and equipment management strategies based on real-time occupancy patterns. 

The daily attendance data of the spring 2024 semester is presented in Figure 5, with the study spanning from 
June 1 to July 15. This period covers both the summer peak electricity demand period and the final exam preparation 
phase. The data reveal a distinct temporal pattern in peak attendance. From early June to the final exam week 
(June 24-30), the daily average attendance steadily increased, reaching a maximum single-day peak of 2,793 visi-
tors. After July 1, as the summer vacation approached and exam schedules became more dispersed, daily attend-
ance dropped sharply by 42.6%, with a minimum recorded value of 1,249 visitors. Based on these fluctuations, 
attendance levels were subsequently classified into four categories for analysis: high-load days (>2318 visitors, 13 
days), medium-high load days (1756-2318 visitors, 14 days), medium-low load days (1249-1756 visitors, 9 days), 
and low-load days (<1249 visitors, 5 days). This classification facilitates a comparative analysis of how dynamic 
changes in occupant density impact the cooling load. As shown in Figure 6, every 10% reduction in attendance 
results in a decrease of 3.414 kWh/m² in the air-conditioning cooling load. 
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Figure 4: 3D model diagram 

 

Figure 5: Daily library attendance 

 

Figure 6: Standard floor plan layout diagram 

III. B. HVAC system modeling 
The cooling source for the library's air-conditioning system consists of two chiller units: a magnetic levitation unit 
with a cooling capacity of 870 kW and a centrifugal chiller unit with a cooling capacity of 2,450 kW. The chilled water 
inlet and outlet temperatures are 7°C and 12°C, respectively. The system includes two chilled water pumps and two 
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cooling water pumps. The smaller chilled water pump has a flow rate of 170 m³/h, while the larger one has a flow 
rate of 450 m³/h. The smaller cooling water pump operates at a flow rate of 180 m³/h, and the larger cooling water 
pump has a flow rate of 580 m³/h. Additionally, the cooling system also features two cooling towers, which are 
characterized by relatively low and stable fan operating power compared to the chiller units and pump. Therefore, 
this paper assumes their power to be constant and equal to the rated value. 
 
III. B. 1) Chiller 
The mathematical model of the chiller is represented as a multivariate polynomial model [26]in the following format: 

 
2

1 2 3 4 5 6

2
7 8 9 10

2COP ei ci ei

ci ei ci ei ci

a a Q a T a T a Q a T

a T a QT a QT a T T

     
   

 (1) 

The part-load performance of the chiller can be represented by the curve using the following equation: 

 
2

0 1 2

3
3

( )

( )

PLCC C C PLR C PLR

C PLR

    

 
 (2) 

The operating power of the chiller at various load rates is calculated as follows: 

 chiller

Q
P PLCC

COP
  (3) 

where, Pchiller is the power consumption of the chiller,kW; Q is the cooling capacity,kW; Tci is cooling water inlet 
temperature,℃; Tei is chilled water supply temperature,℃; COP is the chiller performance coefficient;a1~a10 are 
coefficients; PLCC is the part-load correction factor,PLR Indicates part load factor, c0~ c3 are partial load fitting 
coefficients. 

The least squares method was employed to fit the chiller model, and the corresponding fitting results are pre-
sented in Table . 

Table 2: Parameter identification results of chiller performance 

Fitting coefficients Magnetic Levitation Unit Centrifuge unit 

ɑ1 7.9064 -17.8768 

ɑ2 -11.6178 37.7926 

ɑ3 0.3693 -0.8074 

ɑ4 -0.1227 0.1885 

ɑ5 5.5865 -18.0858 

ɑ6 0.0047 -0.0093 

ɑ7 0.0007 -0.0003 

ɑ8 -0.2941 0.8054 

ɑ9 0.0726 -0.2235 

ɑ10 -0.0034 0.0047 

c0 -0.0002 -0.0031 

c1 0.4142 1.2386 

c2 0.3693 -0.8733 

c3 0.2165 0.6347 

R2 0.9931 0.992 

RMSE 0.0133 0.0038 

 
III. B. 2) Pump 
 The energy consumption of a water pump is expressed as a single-valued function of the flow rate, with the fre-
quency conversion regulated by a control signal during operation. This control signal is determined d by the ratio of 
the desired flow rate to the rated flow rate. The pump characteristics are described in Eq. (4). 

 
2 3

0 1 2 3Ppump rated

rated rated rated

m m m
P b b b b

m m m

                
 (4) 
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Where, Ppump is the pump power, kW;b0~ b3is the polynomial coefficient; 𝑚 represents the pump flow rate, 
m3/h; mrated is the rated flow rate of the pump,m3/h;Prated is the rated power of the pump,kW. 

The results of fitting the chilled and cooling water pumps using the least squares method are shown in Table 3. 

Table 3: Parameter identification results of chilled water and cooling water pumps 

Fitting coefficients Chilled water pump Cooling water pump 

b0 0.5881 0.4337 

b1 0.4374 0.9153 

b2 -0.1053 -0.4033 

b3 0.0793 0.0565 

R2 0.9841 0.9689 

RMSE 0.2509 0.4758 

 
III. B. 3) Air-handling units 
The mathematical model of air-handling units is presented in equations(5)~(8): 

 , ,(1 )( )water air bypass air out air outm m f      (5) 

where, mwater is the condensate flow rate through the coil, kg/h,ṁair is the total airflow rate through the coil, 
kg/h;fbypassis the proportion of air passing through the bypass coil ranges from 0 to 1; ωair,in, ωair,out represents 
the absolute humidity of the air before it enters the coil and after it exits the coil, respectively, kg(H20) /kg(air). 

The energy transferred from air to water is: 

 , ,(1 )( )fluid air bypass air in air out cond condQ m f h h m h      (6) 

where, Qwater is the heat transferred from air to water, kg/h,hair,in, hair,out represents the enthalpy of air inlet and 
outlet, kj/k, respectively; condh is the enthalpy of condensate entering the coil,kj/kg; ṁcond is flow rate of condensate 
through the coil, kg/h;hcond is entering enthalpy of the condensate in the coil,kJ/kg. 

The chilled water outlet temperature is: 

 , ,

water

water out water in

water water

Q
T T

m Cp
   (7) 

where, Twater,in,Twater,out represent the condensate inlet and outlet temperatures, respectively. CPwater is the 
specific heat of water,kj/(kg·k)｡ 

The enthalpy of the mixed air is: 

  , , ,1air mix bypass air out bypass air inh f h f h    (8) 

III. B. 4) Modeling of Carbon Dioxide Concentration 
The modelling of the carbon dioxide concentration in the room is described below: 

 sup

node

ret pers misc

dC
n C n C G G

dt
      (9) 

 610
pers

pers

g
G ppm

V
  (10) 

 610
misc

misc

g
G ppm

V
  (11) 

where, n is air changes quantified as 1; Csup､Cret represent CO2 concentration for supply and return air measured 
in parts per million (ppm), respectively. Cnode is CO2 concentration of room. gpers is indoor personnel CO2 pro-
duction rate expressed in cubic meters per hour (m³/h), which correlates with the personnel rate outlined in Section 
2.2. Gpers is total CO2 production by indoor personnel. gmisc is additional carbon dioxide concentration from other 
sources by indoor personnel. Gmisc is total additional carbon dioxide concentration from other source. Vis volume 
of the room expressed in cubic meters (m³). ε is ventilation efficiency, assumed to be 1. 
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III. B. 5) Energy Modeling of Fresh Air Units 
The airflow produced by the fan demonstrates a linear relationship with the control signal. The energy consumption 
can be described by the following mathematical model: 

 fan fanrated 0 1 2 3
2 3(d d d d )P P        (12) 

 
rated

m

m
 




 (13) 

where, Pfan,Pfanrated represent the operating power and rated power of the fan, kJ/h, respectively. d1~ d3 are he 
polynomial coefficients,γ is the fan control signal,ṁfan､ṁrated represent the fan mass flow rate and the rated mass 
flow rate, kg/h, respectively.  

 
III. B. 6) Performance evaluation metrics 
To quantify the system performance under the multidimensional collaborative strategy, energy savings, peak load 
reduction, PMV (Predicted Mean Vote), and Operating Cost were used as evaluation metrics. 

Energy savings 
The energy savings represent the percentage reduction in daily energy consumption due to the demand response 

(DR) strategy, as shown in the equation. 

 
( , ) ( , )

( , )

before DR after DR

befor
s

e DR
avingE

E E

E


  (14) 

where E(before,DR) and E(after,DR) represent the daily energy consumption before and after the implementation 
of the DR strategy, respectively, kW·h. 

Peak load sheding 
Peak load reduction refers to the percentage decrease in peak power load following a DR event, as shown in the 

equation. 

 
( , ) ( , )

( , )
peakshedd

abefore DR fte

r
i

r DR

befo e
gn

DR
P

P P

P


  (15) 

PMV(Predicted Mean Vote) 
PMV is an index used to predict an individual's average vote on a 7-point thermal sensation scale, where “+3” 

represents extremely hot and “-3” represents extremely cold [27]. It quantifies the deviation between the actual heat 
flux of the human body in a given environment and the optimal comfort heat flux, as shown in Equation (3). 

 

     4 48

[0.303 ( 0.036 ) 0.028] { 3.05 [5.733 0.007 ( ) ]

0.42 ( 58.2) 0.0173 (5.867 ) 0.0014 (34 )

3.96 10 [ 273 273 }

a

a

cl cl r cl c cl a

PMV exp M M W M W p

M W M p M ta

f t t f h t t

            
           

         
 (16) 

where M is the rate of metabolic heat production, W/m2; tsk is the skin surface temperature, set at 33.5℃; to is 
room temperature, ℃;Icl is thermal resistance of clothing,set at 0.5clo;Ia/Icl is ratio of air layer thermal resistance to 
garment thermal resistance,set at 0.1 (m2·℃)/W. 

 
III. C. TRNSYS Simulation Model 
The library's HVAC system is modeled using TRNSYS, as illustrated in Figure. 7. It primarily consists of chillers, 
chilled water pumps, cooling pumps, cooling towers, air handling units (AHU), and fresh air units. The dark blue line 
represents the chilled water system, the red line indicates the cooling water system, the green line signifies the end 
fan coil loop, and the light blue line depicts the fresh air unit loop. The light green dotted line illustrates the trans-
mission of the control and output signals.  
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Figure 7: TRNSYS model of air conditioning system 

III. D. Pre-processing inputs 
This study utilizes weather data for Hengyang, sourced from the EnergyPlus website . Electricity pricing in Heng-
yang follows the time-of-use (TOU) tariff policy established by the China Southern Power Grid, which incentivizes 
users to optimize electricity consumption by shifting loads to off-peak hours, thereby alleviating peak demand pres-
sure on the grid. The dynamic electricity pricing structure is illustrated in Figure 8, where the highest tariff of 0.94 
CNY/(kW·h) applies during peak hours (8:30–11:30, 15:00–20:00), while the lowest tariff of 0.28 CNY/(kW·h) is in 
effect during off-peak hours (22:00–6:00, 22:00–24:00). 

 

Figure 8: Time-of-use tariff in Hengyang city 
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IV. Multi-objective optimization model 
A NSGA-II based-multi-objective optimization model considering energy flexibility, economic efficiency, and human 
thermal comfort is proposed in Figure 9. The objective functions, decision variables, constraints, and solution meth-
odology are described in the following subsections. 

 

Figure 9: Flowchart of NSGA-Ⅱ 

IV. A. Objective Function 
Flexible load optimization scheduling involves multiple stakeholders, including electricity consumers, grid operators, 
and society at large. Electricity consumers are primarily concerned about their daily electricity bills, load manage-
ment, and dissatisfaction arising from adjustments to air-conditioning temperature settings. Meanwhile, grid opera-
tors are focused on the impact of electricity consumption on the public grid. This paper aims to reconcile the needs 
of these diverse stakeholders as part of an optimization objective. The total operating cost throughout the day, 
human thermal comfort, and overall energy consumption have been established as the key objective functions. 

Minimum daily electricity cost 
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where C represents the daily operating cost of the air-conditioning system, in CNY. TOU represents the time-of-day 
tariff, Δt is a time step denoting as 0.05 h. By implementing  different electricity prices for different time periods, 
users are incentivized to shift their electricity consumption to low-cost periods and reduce demand during peak 
hours, thereby enhancing the overall flexibility and efficiency of the energy system. 

Minimum daily energy consumption 
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where E represents the total energy consumption of the air-conditioning system; (kW·h); Pcoolingtower denotes the 
power of the cooling tower (kW) and is set to its rated value; t represents time (h). 

Thermal comfort 

 
1

1
min min

n

i
i

PMV PMV
n 

   (19) 

IV. B. Decision variables 
In the terminal air handling unit, various types of fans are included, which can operate at variable frequencies to 
facilitate flexible energy consumption. Additionally, energy use can be adjustable based on the range of control 
parameters of indoor environmental. Practical adjustable parameters, such as indoor temperature, chilled water 
temperature, and fresh air flow, play a crucial role in optimizing the performance of HVAC systems. By fine-tuning 
these parameters, it is possible to achieve a good trade-off between energy efficiency and thermal comfort, thereby 
improving overall system performance and reducing operational costs. Since it is not practical to frequently change 
the temperature settings of central air conditioning, the scheduling interval for the temperature adjustments was 
established at one hour during the optimization process. 
 
IV. C. Constraints 
To ensure optimal system performance and effective dehumidification, the chilled water temperature should be 
maintained between 7°C and 12°C. The comfort specification indicates that the range of indoor temperature should 
be established between 24°C and 27.5°C.  

The chilled water flow rate must remain within the specified limits, ensuring it neither drops below the minimum 
requirement nor exceeds the rated flow rate. The same principle applies to the cooling water flow rate, which should 
be maintained between 0.4 and 1 times the rated flow rate. 

The maximum allowable indoor CO₂ concentration is set at 1200 ppm [20], [28]. A PID controller regulates the 
fresh air unit’s speed to maintain this threshold. When the CO₂ concentration reaches 1200 ppm, the system auto-
matically increases the volume of fresh air; conversely, as the concentration decreases, the fresh air supply is 
reduced. This dynamic regulation ensures indoor air quality while optimizing energy consumption, particularly during 
peak periods. 

 
IV. D. The solution and decision-making method 
This paper utilizes the NSGA-II optimization algorithm integrated within Jeplus software, a prominent tool for multi-
objective optimization known for its effectiveness in addressing nonlinear problems characterized by discontinuities 
and local minima. In each iteration, a new population is generated through genetic operations, including selection, 
crossover, and mutation, progressively converging towards the optimal solution [24]. The parameter settings of the 
NSGA-II in this study include an initial population size of 80, a total of 800 iterations, a crossover probability of 0.9, 
and a mutation probability of 0.01. 

he decision-making process integrates the Technique for Order of Preference by Similarity to Ideal Solution (TOP-
SIS) and the Shannon entropy method. Shannon entropy, proposed by Claude Shannon, is used to quantify the 
uncertainty of target attributes. A higher Shannon entropy value indicates greater data uncertainty and is typically 
used to reduce the weight of the corresponding objective [29], while a lower Shannon entropy value suggests more 
certain information, potentially assigning a higher PMV importance and substantial weight to the objective [30]. The 
final solution is evaluated using the TOPSIS method, which ranks alternatives based on their relative closeness to 
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the positive ideal and negative ideal solutions, selecting the alternative with the highest relative proximity closeness 
as the optimal solution. In this study, the TOPSIS method was implemented in the MATLAB environment. 

The initial step involves creating a decision matrix: 
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 (20) 

where ijr and ijx are the elements of normalized and original decision matrix respectively. 
The second step is to construct a weighted normalized decision matrix: 

 ,ij ij jv r w i j   (21) 

where jw represents the weight assigned to attribute. 
The third step involves identifying the ideal solution (A+) and the negative ideal solution (A-): 
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where I and I  correspond to the benefit and cost attributes, respectively. 
The fourth step is the calculation of separation measures: j  
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The fifth step involves calculating the relative closeness to the ideal solution: 
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The final step involves sorting the optimal solution based on the jC   values. 
 

IV. E. Performance of demand response under various strategies 
To compare and validate the performance of the proposed optimization strategy, the following simulation control 
groups have been established. July 8th has been selected as a representative summer day for analysis. 

Table 4: Simulation strategy settings 

Strat-

egy 
Practical method for accomplishing a task. 

ST1 The temperature remained constant at 25°C throughout the day, while the chilled water was maintained at a steady 7°C. 

ST2 Fresh air unit PID control 

ST3 Individual optimization of indoor temperature strategies based on genetic algorithms 

ST4 Individually optimized room temperature strategy and fresh air unit PID control 

ST5 Genetic algorithm strategy for simultaneous optimization of chilled water supply temperature and room temperature 

ST6 
Genetic algorithm for simultaneous optimization of chilled water supply temperature and room temperature and fresh air unit PID 

control 

 
Table 4 presents the baseline conditions for ST1, where the ambient temperature is maintained at a constant 

25°C, and the chilled water temperature remains at 7°C throughout the day. The analysis compares indoor temper-
ature, air conditioning energy consumption, costs, and thermal comfort on a typical day under different control strat-
egies. Among the six control strategies examined, all parameters remain consistent except for indoor temperature, 
chilled water supply temperature, and fresh air blower speed. 
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V. Results and analyses 
V. A. Optimization results 
Figure 10 illustrates the settings of optimal indoor temperature. To achieve better  control, the ST3 to ST6 strate-
gies utilize a genetic algorithm. This approach aims to balance comfort, energy consumption, and electricity costs, 
thereby achieving the dynamic optimal value. The analysis results indicated that, the air conditioning setpoint tem-
perature mainly ranges from 26°C to 27.5°C, with the majority of DR intervals maintaining a setpoint of 27.5°C 
during the DR periods under the ST3 to ST6 strategies. Conversely,  , the temperature setpoint generally falls 
within 23°C to 25.5°C during non-DR periods, with a specific indoor temperature setting of 23°C to 24°C at 13:00, 
Then the temperature gradually increase. This pre-cooling strategy is implemented before the second DR pe-
riod(15:00~20:00) to dissipate residual indoor heat and humidity in advance, which can effectively reduce electricity 
consumption during the upcoming DR event. Additionally, the settings of temperature in the ST6 strategy are signif-
icantly lower than those in other strategies. This is primarily due to the multi-objective optimization, which accounts 
for  various factors such as air conditioning system load, chiller efficiency, fresh air unit performance, and indoor 
air quality, leading to relatively lower indoor temperature setpoints. Based on the above analysis, it can be concluded 
that the NSGA-II algorithm can effectively distinguishes peak electricity demand periods and regular periods.  

The optimized results indicated that Maintaining a higher supply water temperature under low-load operation is 
beneficial for energy savings and reducing equipment wear. when the chiller's part load ratio (PLR) is less than or 
equal to 0.3 and the supply water temperature is set to 12.125°C. a lower supply water temperature can more 
effectively meet cooling demands while maintaining system efficiency, when the part load ratio reaches 1,and the 
supply water temperature is set to 9.5°C. Under high-load conditions, The detailed results are presented in Table 5. 

 

Figure 10: Indoor temperature setpoint 

Table 5: Chilled water temperature Settings 

Partial load rate(%) Original chilled water temperature(℃) Optimized chilled water temperature(℃) 

≤30 7 12.125 

40 7 11.75 

50 7 11.375 

60 7 11 

70 7 10.625 

80 7 10.25 

90 7 9.9875 

100 7 9.5 

 
V. B. Different simulation strategies for DR 
This section assesses the impact of the four proposed experimental strategies by analyzing room temperature, 
predicted mean vote (PMV), indoor CO2 concentration electricity consumption, and operational costs. 

Figure 11 illustrates the comparison of actual operating temperatures under the six implemented strategies. , It 
can be seen that the actual operating temperature significantly exceeds the setpoint during the first hour. This 
phenomenon is primarily attributed to the thermal storage capacity of the building envelope, the large indoor space, 
and occupant movement. During the remaining periods, the temperature fluctuates in response to variations in 
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indoor conditions and setpoint adjustments. The final temperature consistently fluctuates within a ±0.5°C range. 
This indicates that the strategies from ST3 to ST6 can effectively reduce peak power consumption while meeting 
cooling requirements. 

Figure 12 illustrates the variations in indoor temperature and PMV over time under different strategies. The PMV 
values for all strategies stay between 0 and 1, to ensure thermal comfort, except for the first half-hour after system 
startup. The comparison between ST2 and ST3 indicates that adjusting the fresh air volume has minimal impact on 
thermal comfort, whereas changes in indoor temperature significantly affect the PMV index The indoor temperature 
under the ST1 strategy fluctuates between 24.87℃ and 25.84℃with PMV values ranging from 0.21 to 0.333, meet 
the thermal comfort requirements for occupants once the conditioning system is activated., The indoor temperature 
generally ranges from 26.58℃ to 27.71℃ during the first DR period in the optimized strategies ST3–ST6 with PMV 
values varying between 0.21 and 0.96., the indoor temperature fluctuates between 23.8℃ and 25.21℃ during 
normal periods (13:00–15:00), while the PMV values remain within 0.11 to 0.32. It can be observed that, PMV values 
remain below 1with its fluctuating within the range of 0 to 1 under ST3–ST6 strategies, indicating a good level of 
indoor thermal comfort. Only under the ST5 and ST6 strategies do PMV values approach 1, essentially meeting the 
thermal comfort requirements for occupants. It was found that the ST3–ST6 strategies appropriately increased heat 
retention and thermal load while achieving an acceptable balance in indoor thermal comfort during DR periods. 

 

Figure 11: Room actual temperature 

 

Figure 12: PMV 

V. C. Indoor CO2 concentration 
Figure 13 presents a comparison of indoor CO₂ concentrations under six different strategies. This strategy aims to 
maintain indoor CO₂ concentrations below the maximum threshold of 1200 ppm. The fluctuations in the CO₂ 
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concentration bar chart are closely correlated with  occupancy rates, illustrating  the process of using PID control 
to regulate  the rotational speed of the fresh air unit. The highest recorded indoor CO₂ concentration was 924.45 
ppm before the intervention, whereas the concentration stabilized at approximately 1130 ppm  after implementing 
the strategy, which can effectively reducee energy demand during periods of low occupancy and dynamically adjusts 
airspeed during high-load periods to meet indoor air quality requirements. This approach alleviates the pressure on 
the power grid while ensuring users’ comfort, serving as  a practical reference for demand-response air-condition-
ing systems. 

 

Figure 13: Indoor carbon dioxide concentration 

V. D. Air-conditioning energy consumption and operating costs 
To further evaluate of the ST6 strategy’s performance in energy savings and cost reduction, the energy consumption 
and electricity costs under different strategies is compared, as shown in the figures. 

As illustrated in Figure 14 and Figure 15, the optimization effects of the six demand response (DR) strategies are 
progressively improved, with the overall energy consumption and electricity costs decreasing sequentially from ST2 
to ST6. Among them, the ST6 strategy demonstrates the highest control efficiency, which achieves an energy re-
duction of 1195.58 kWh during the DR period, corresponding to an energy savings rate of approximately 34.30%. 
This reduction in energy consumption results in electricity cost savings of $1123.84, achieving a 34.30% of energy 
saving.  The total daily energy savings rate reaches up to 14.92%, while the operational cost is saved 20.00%.  

The difference in energy consumption primarily origins from the variable frequency control of the fresh air system 
between the ST1 and ST2 strategies, as both occupant presence and fresh air intake serve as major sources of 
latent heat load. However, the DR effect is constrained by indoor occupancy and air quality constraints, resulting in 
energy reduction of  268.68 kWh and cost savings of 251.39 CNY. The difference in energy consumption and costs 
lies in the air-conditioning system’s thermal load response between the ST3 and ST2 strategies. As the  buildings 
possess thermal storage capacity, the air-conditioning system can pre-cool the indoor environment to, store cold or 
heat energy in advance. This strategy extends the temperature buffering period, which allows operate in low-load 
mode  during peak hours of electricity pricing and facilitate load shifting from peak to off-peak periods. In contrast, 
the fresh air system has a relatively weaker load-shifting capability due to the inability of storage of  CO₂, resulting 
in a shorter buffering period.  The ST3 strategy achieves an additional peak energy consumption reduction of 
309.61 kWh compared to the ST2. 

The ST4 strategy incorporates dynamic indoor temperature settings and variable frequency control of the fresh 
air system amd integrates the advantages of ST1, ST2, and ST3., The ST4 strategy, solely  relying on indoor 
temperature resetting, saves an additional 187.47 kWh of DR energy consumption and 410.84 CNY in daily opera-
tional costs compared to ST3. The distinction between ST5 and ST3 lies in the dual optimization strategy that 
combines indoor temperature settings for different electricity pricing periods with the optimal chilled water supply 
temperature based on corresponding part-load ratios. This approach enhances the coefficient of performance (COP) 
of the chiller, leading to saving of  energy consumption. Compared to ST3, the ST5 strategy can result in a reduc-
tion in  power consumption of 406.25 kWh and in operational costs of 381.87 CNY during the DR period, while 
achieving an overall reduction of daily energy of 337.94 kWh and a cost saving of 341.85 CNY.  
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Based on advantages of ST1, ST2, ST3, ST4, and ST5, the ST6 strategy integrates the  indoor temperature 
settings, chilled water supply temperature, and fresh air unit control across different electricity pricing periods. This 
strategy enhances the energy efficiency and demand response capability of the air-conditioning system through a 
triple optimization strategy. Based on the above analysis, it can be concluded that the ST6 is undoubtedly the 
optimal control strategy due to its advantages of taking  improvements in energy efficiency, cost reduction, demand 
response capability, and system flexibility into consideration, The ST6 strategy enables precise regulation of each 
subsystem within the air-conditioning system, minimizing energy consumption and costs while ensuring thermal 
comfort and effectively responding to grid demand response requirements. 

 

Figure 14: Air conditioning system daily operating energy consumption 

 

Figure 15: Air conditioning system daily operating cost 

V. E. DR effect performance in buildings with different occupant densities 
The variation in occupant density across different floors significantly affects the cooling load of the building. There-
fore, different occupant densities are assumed to evaluate the effect of potential cooling loads on the performance 
of the ST6 strategy. The implementation effectiveness is simulated under maximum library attendance scenarios of 
2,793, 2,318, 1,756, and 1,249 individuals of the ST6 strategy. Two seating arrangements are considered. Take an 
actual attendance of 1,756 individuals as an example, these occupants may either be evenly distributed across 
floors 1 to 8 or concentrated on floors 1 to 6,with only brief occupancy on floors 7 and 8, which can be regarded as 
a short stay. Scenario 1 assumes that occupants are evenly distributed across all floors, while Scenario 2 assumes 
that they are concentrated on specific floors, allowing air conditioning on unoccupied floors to be turned off. Table 
6 presents the hierarchical control strategies corresponding to different occupancy scenarios. 
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Table 6: Hierarchical control strategies 

Actual attendance 
Scenario 1 Scenario 2 

Opening floor Floor occupancy rates Opening Floor floor occupancy rates 

2793 1-8 1 1-8 1 

2318 1-8 0.83 1-7 0.927 

1756 1-8 0.76 1-6 0.87 

1249 1-8 0.44 1-5 0.77 

 
V. E. 1) Uniform distribution of indoor occupants 
Figure 16 and Figure 17 illustrate the simulated daily operational energy consumption and electricity costs under 
different attendance conditions for the ST6 strategy, The study indicates that as the maximum library attendance 
decreases, the ST6 strategy exhibits significantly enhanced flexibility in load regulation during the demand response 
(DR) phase. Specifically, energy-saving rates are 34.30%, 37.22%, 39.63%, and 42.41% for different attendance 
levels during the DR phase, while the electricity cost savings of overall daily are 19.20%, 21.67%, 23.35%, and 
25.44%, respectively. This trend is primarily attributed to the load reduction of air-conditioning, the demand decrease 
of fresh air, minimized impact of load curtailment, and improved efficiency of the chilled water system.  

Firstly, a reduction in attendance directly lead to the decrease of the cooling load of the air-conditioning system, 
including reductions in both sensible and latent heat loads. This enables the cooling source system to scale back 
cooling supply, thereby lowering refrigeration energy consumption. Additionally, a lower indoor occupant density 
results in reduced CO₂ generation, which decreases the demand for fresh air. Consequently, the operation time and 
airflow supply of the fresh air unit can be further optimized, leading to a reduction in the energy consumption required 
for fresh air processing. Furthermore, when attendance is high, reducing the air-conditioning load may cause indoor 
temperatures to rise too quickly, potentially compromising occupant comfort. However, temperature fluctuations 
occur more gradually under conditions of low occupant density. This ensures that even with a greater reduction in 
cooling load, indoor thermal comfort remains largely unaffected. 

 

Figure 16: Energy consumption under different visitor numbers 

V. E. 2) Indoor occupants concentrated in specific areas 
The previous section has confirmed that lower occupant density enables the air-conditioning system to curtail more 
load during the demand response (DR) period. To further assess the effect of different seating arrangements on 
demand response (DR) potential, Figure 18 and Figure 19 illustrate the comparison of daily operational energy 
consumption and electricity costs under two scenarios (uniform distribution and concentrated distribution) at varying 
occupant densities. 

The study reveals a consistent trend in DR load reduction across different occupant densities, indicating that the 
potential for DR load curtailment increases significantly as occupant density decreases. 

A detailed analysis indicates that when the library attendance drops to 2,318 people, Scenario 2 (concentrated 
distribution) achieves a DR-phase energy reduction of 74.98 kWh, accounting for 3.5% of the total DR-period energy 
consumption. Meanwhile, the energy savings of full-day reach 254.57 kWh, or 5.13% of the total energy consump-
tion. However, as the attendance of people further declines to 1,249, the reducible DR-phase energy consumption 

2318 1756 1249
0

1

2

3

4

5

6

7

38.53%

41.74%

46.01%

20.57%

24.48%

29.42%

 ST6 non-DR  ST6 DR
 ST1 non-DR  ST1 DR

D
ai

ly
 o

pe
ra

ti
ng

 e
ne

rg
y 

co
ns

um
pt

io
n(

M
kW

·h
)

10

20

30

40

50
 DR period
 Whole day

E
ff

ic
ie

nc
y 

ra
ti

o(
%

)



Multi-objective optimization of demand response for central air conditioning sys-tems: enhancing energy flexibility in libraries 

2432 

increases significantly to 300.35 kWh, representing 15.63% of the total DR-period energy consumption, while full-
day energy savings rise to 681.05 kWh, or 14.62% of total energy consumption. This reduction trend in energy 
consumption is mirrored in daily operational costs.  

 

Figure 17: Electricity cost under different visitor numbers 

As shown as Table 7, compared to Scenario 1, Scenario 2 achieves a DR-phase electricity cost reduction of 70.48 
CNY when attendance is at 2,318 people, accounting for 3.5% of the total DR-period electricity costs. However, 
when attendance drops to 1,249 people, DR-phase electricity cost savings surge to 185.06 CNY, representing 10.2% 
of total DR-period electricity costs. Similarly, full-day electricity cost savings increase significantly, rising from 175.98 
CNY (4.79%) to 469.65 CNY (13.76%). 

 

Figure 18: Comparison of energy usage in two scenarios 

 

Figure 19: Comparison of electricity costs in two scenarios 
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Concentrated occupant distribution proves to be more effective than uniform distribution in enhancing potential 
DR load curtailment and energy savings. Firstly, concentrated distribution minimizes unnecessary cooling areas. 
The concentrated distribution allows air-conditioning systems on unoccupied floors to be partially or fully turned off, 
which eliminates redundant energy consumption. In contrast, uniform distribution necessitates operation across all 
floors resulting in unnecessary energy consumption. Additionally, load concentration enables chillers and fans to 
function more efficiently, preventing performance declines caused by low-load operation and improving the system’s 
coefficient of performance (COP). Secondly, reduced fresh air demand further decreases energy consumption. Un-
der uniform distribution, fresh air supply must be maintained throughout the entire building, whereas concentrated 
distribution limits fresh air requirements to occupied areas, reducing the energy needed for fresh air processing. 
Furthermore, concentrated distribution allows for more flexible load adjustment, enhancing DR load curtailment 
capability. In a uniform distribution scenario, substantial load reductions can compromise occupant comfort. How-
ever, with concentrated distribution, air-conditioning systems in unused areas can be directly shut down, enabling 
greater load reductions while maintaining a comfortable indoor environment more effectively. 

Table 7: Rates of energy and electricity costs for Scenarios 1 compared to Scenario 2 

Attendance DR energy Whole energy DR electricity costs Whole electricity costs 

2318 40 kW·h (1.88%) 210 kW·h (4.27%) 30 CNY (1.5%) 140 CNY (3.31%) 

1756 50 kW·h (2.51%) 310 kW·h (6.61%) 50 CNY (2.67%) 180 CNY (6.07%) 

1249 164kW·h(8.33%) 580 kW·h (12.58%) 150 CNY (8.33%) 400 CNY (11.83%) 

 

VI. Discussion 
This strategy can assist demand response (DR) in coordinating various subsystems of air conditioning systems to 
meet the grid's peak demand while maintaining indoor temperature and air quality. Additionally, the building's ther-
mal inertia is one of several factors that affects its energy flexibility. The pre-cooling system can successfully shift 
electricity usage during peak hours even with the most effective control strategy, thereby reducing the energy con-
sumption of the air conditioning units and enhancing the building's flexibility. Future studies could be focused on the 
investigation the optimal pre-cooling duration and timing for different attendance. Meanwhile, the algorithmic accu-
racy and iteration speed of multi-objective optimization can be improved by implementing more advanced algorithms. 

VII. Conclusions 
This section is not mandatory but can be added to the manuscript if the discussion is unusually long or complex. 

This paper proposes a multidimensional synergistic optimization strategy based on load DR across different elec-
tricity pricing periods  taking into the comprehensive effect of indoor temperature settings, chilled water supply 
temperature, and fresh air unit control consideration. The effectiveness of this strategy is validated through com-
parisons with a single optimized indoor temperature control strategy and a strategy that concurrently optimizes both 
indoor temperature and chilled water supply temperature. The primary conclusions are outlined as follows: 

To achieve optimal system performance, the multi-dimensional synergistic load optimization control strategy takes 
into account all-day energy consumption, time-of-use tariffs, and comfort requirements. It accomplishes this by 
automatically optimizing indoor temperature and chilled water supply temperature, while also adjusting the speed 
of the fresh air unit as necessary. The performance is superior across all metrics, achieving a 34.30% reduction in 
energy consumption during the demand response (DR) phase, a 14.92% decrease in total daily energy consumption, 
and a 20.00% reduction in overall daily operational costs. These results demonstrate the feasibility and effective-
ness of the proposed strategy in reducing peak loads, conserving energy, and ensuring occupant comfort. 

The strategy’s flexibility increases as the library attendance declines, with the ST6 strategy achieving 41.10% 
flexible regulation potential when attendance drops to 1,249 people. 

Centralized occupant distribution enhances the ST6 strategy, outperforming uniform distribution. Under favorable 
DR conditions, ST6 achieves a 46.1% DR-phase energy reduction and 33.92% electricity cost savings when at-
tendance is 1,249, highlighting the significant flexibility benefits of varying occupancy. 
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