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Abstract In response to the limitations of existing methods in dynamic modeling of complex expressions, 
multimodal data quality optimization, and hierarchical feature fusion, this paper proposes a hierarchical graph 
comparison learning model based on local and global features. This model integrates graph neural network and 
contrastive learning techniques. It captures expression details by constructing local graphs, models cross-modal 
semantic collaboration through global graphs, and introduces an automatic graph enhancement strategy to 
improve the model's generalization ability. In the multimodal feature extraction stage, key features are accurately 
obtained from the video, audio, and text modalities respectively, and then the features are integrated through the 
intra-modal attention and multimodal fusion mechanisms. The experiments use the CMU-MOSI and CMU-MOSEI 
datasets. The results show that compared with multiple benchmark models, the model proposed in this paper 
performs better in terms of accuracy, recall rate, F1 score, and other indicators, and its mean square error is at a 
relatively good level. It can effectively integrate multimodal information, has excellent performance in the 
expression recognition task, and provides new ideas and methods for the development of this field. 
 
Index Terms Multimodality, Deep Learning, Expression Recognition, Graph Convolutional Network 

I. Introduction 
With the rapid development of artificial intelligence technology, multimodal deep learning has demonstrated 
significant potential in the fields of affective computing and expression recognition. Traditional evaluation methods 
rely on single-modal data or manual observation, making it difficult to comprehensively capture human cognitive 
states and emotional changes [1]. Therefore, achieving precise and dynamic expression recognition through 
multimodal data fusion technology has become a critical issue for optimizing evaluations. 

In recent years, remarkable progress has been made in multimodal sentiment analysis and expression 
recognition. Early works, such as the Tensor Fusion Network (TFN) proposed by Zadeh et al. [2], integrated 
multimodal features via tensor decomposition but failed to fully exploit dynamic inter-modal correlations. Liu et al. 
[3] introduced Low-rank Multimodal Fusion (LMF), which enhances fusion efficiency using modality-specific factors, 
yet exhibits limited capability in modeling temporal information. For multi-view sequential learning, Zadeh’s team 
further proposed the Memory Fusion Network (MFN) [4], which models cross-modal interactions through gating 
mechanisms but still lacks sufficient capture of local features. Wang et al. [5] explored the dynamic adjustment of 
textual representations using nonverbal behaviors but did not systematically integrate hierarchical relationships in 
multimodal data. Subsequent studies, such as Tsai et al. [6], proposed Factorized Multimodal Representations 
(MFM), optimizing semantic representations by combining generative and discriminative objectives. MulT [7] 
addressed temporal misalignment via cross-modal attention but suffered from high computational complexity. 
Recent works like MISA [8] improved robustness by separating modality-invariant and modality-specific 
representations, MAG-BERT [9] integrated nonverbal information into pretrained models, and Self-MM [10] 
enhanced modality independence through self-supervised tasks. However, existing methods still face limitations in 
dynamic modeling of complex expressions, multimodal data quality optimization, and hierarchical feature fusion, 
particularly in educational scenarios characterized by data heterogeneity and insufficient synergy between local 
and global features. 

To address these challenges, this paper proposes a hierarchical graph contrastive learning model based on local 
and global features, integrating graph neural networks (GNN) and contrastive learning techniques. By constructing 
local graphs to capture expression details and global graphs to model cross-modal semantic collaboration, the 
model introduces an automatic graph enhancement strategy to improve generalization. This approach enables 
efficient recognition of multimodal expressions while providing novel insights for the development of this field. 
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II. Multimodal Deep Learning and Graph Neural Networks 
II. A. Multimodal Deep Learning 
Multimodal deep learning is flourishing in facial expression recognition, as it combines multiple data modalities to 
significantly improve recognition accuracy and robustness. Facial expression recognition is often hindered by 
factors such as lighting, occlusion, and pose variations. Single-modal data struggles to comprehensively capture 
expression features, whereas multimodal data effectively compensates for these limitations [11]. Common 
multimodal fusion approaches include: 

(1) Data-level fusion: Direct integration of raw data preserves rich information but imposes heavy computational 
burdens and is prone to noise. 

(2) Feature-level fusion: Features are extracted from each modality separately before fusion, reducing 
redundancy and improving efficiency. This method is widely adopted. 

(3) Decision-level fusion: Combines classification results from individual modalities, offering flexibility but risking 
information loss. 

 
II. B. Graph Neural Networks 
Graph Neural Networks (GNNs) exhibit unique advantages in expression recognition by effectively modeling 
complex feature relationships. Expressions involve multidimensional information, including facial muscle 
movements, morphological changes in facial features, and correlations with speech or text. GNNs treat 
expression-related elements (e.g., facial regions, audio tones, text keywords) as nodes and their relationships as 
edges to construct graph structures [12], [13]. For example, nodes representing eye closure and mouth opening 
are connected by edges that reflect their correlations during expression changes. 

Through message passing and node representation updates, GNNs capture both global and local features of 
expressions [14]. For instance, when recognizing surprise, GNNs not only detect local features like widened eyes 
and open mouths but also analyze coordinated facial changes through node interactions, thereby improving 
authenticity assessment. 

 
II. C. Multimodal Feature Extraction 
Accurate feature extraction from multimodal data is essential for building efficient expression recognition models. 
Key modalities include video, audio, and text: 

(1) Video modality: Extract keyframes at appropriate rates to focus on facial muscle movements and 
morphological changes. Tools like the Facial Action Coding System (FACS) and FaceNet[15] are used to obtain 
action units, poses, and gaze features. 

(2) Audio modality: Extract pitch, speech rate, volume, pauses, and intonation using Librosa. For example, 
excitement correlates with faster speech and higher volume, while sadness manifests as lower pitch and slower 
speech. 

(3) Text modality: Process text (e.g., chat logs, comments) using BERT-based embeddings [16] to capture 
semantic and emotional tendencies (e.g., "happy" or "angry" words indicating positive or negative emotions). 

III. Multimodal Fusion Classification Framework 
III. A. Intra-Modal Attention 
After feature extraction, cross-modal attention mechanisms integrate features from different modalities. For 
instance, anger may involve frowning (visual), loud speech (audio), and negative keywords (text). Cross-modal 
attention assigns weights to these correlated features. Figure 1 illustrates the framework. 

Let   aj l dN    denote the input features of the j -th layer in a modality encoder, where ad  is the feature 

dimension. Queries  Q , keys  K , and values  V  are computed via linear transformations:  j
QQ N W , 

a ad d
QW  .The cross-modal attention is formulated as: 

   
  ( )

int , max max
j t TT

Q Kj t t
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d d

  
        

 (1) 

In the above formula, inter is the attention between modes, and softmax is the calculated attention function. 
This mechanism enables different modal information to complement and enhance each other, allowing the model 

to focus on key information, accurately insight into the emotional state behind the expression, take into account the 
impact of emotional factors on facial expression recognition, achieve deep integration and analysis of multi-modal 
information, and improve the accuracy of expression recognition. 
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Figure 1: Multimodal Fusion Classification Framework 

 
III. B. Multimodal Fusion 
Multimodal fusion in expression recognition integrates the information from the three independent modalities of 
video, audio, and text into a cross-modal representation mR  rich in semantics. The specific formula is as follows: 

  , ,m t a vR F R R R  (2) 

where aR  and vR  are the audio and video modal features after incorporating text information, respectively, tR  
represents text features, and  F   is the feature fusion encoding function. 

The ot encoding technology is used. Taking the classification of expression categories as an example, in the text 
modality, if expressions are divided into categories such as happy, sad, and angry, they can be encoded as [1,0,0], 
[0,1,0], [0,0,1], etc. respectively. In the video modality, encoding is carried out according to the features of facial 
expressions (such as the degree of mouth corner raising, the size of eye opening, etc.). In the audio modality, 
encoding is performed according to the emotional features of speech (such as cheerful, low-pitched, passionate, 
etc.). Through this encoding method, data from different modalities can be converted into numerical forms suitable 
for calculation, enabling the integration of information from each modality within a unified framework, giving full play 
to the advantages of different modal data, and improving the model's ability to distinguish complex expression 
states. 

IV. Hierarchical Graph Contrastive Learning Model Based on Local and Global Features 
IV. A. Overall Model Framework 
In the research of expression recognition, the hierarchical graph contrastive learning model based on local and 
global features plays a core role. This model consists of five key modules: graph construction, local-level graph 
contrastive learning, global-level graph contrastive learning, cross-modal graph contrastive learning, and fusion 
and expression prediction. These modules work together to accurately capture expression features and recognize 
expression states. Figure 2 shows the hierarchical graph contrastive learning framework based on local and global 
features. 

(1) Graph Construction Module: Elements related to expressions, such as the movements of key facial parts 
(eyes, mouth, eyebrows, etc.), the associations between expressions and speech, and the connections between 
expressions and text emotions, are regarded as nodes. The internal logical relationships between them are 
regarded as edges to construct a graph structure. For example, since the closing action of the eyes is related to the 
surprised expression, these two elements are taken as nodes, and their association is taken as an edge. The 
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discrete variational autoencoder (dVAE) is used to mine the global co-occurrence features in the dataset, and the 
embedding space of each modality is obtained to lay the foundation for subsequent analysis. 
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Figure 2: Hierarchical Graph Comparison Learning Framework Based on Local and Global Features 

(2) Local-Level Graph Contrastive Learning: For the constructed local graph, an automatic graph enhancement 
strategy is used to generate an augmented graph. Then, both the original and augmented graphs are input into the 
graph encoder to obtain potential semantic features. By introducing the read-out function of the global average 
pooling and the fully-connected layer decoder, the graph-level and node-level invariances are considered 
respectively, and a special loss function is designed. This module focuses on local expression features, accurately 
identifying the details of specific expression actions and the instantaneous changes of emotional states, providing 
a basis for local expression analysis. 

(3) Global-Level Graph Contrastive Learning: The sequence features of each modality are mapped and 
transformed with the help of codebooks to construct a global multimodal graph. It comprehensively explores the 
information associations at the global level, comprehensively considering the commonalities and differences of 
expressions in different scenarios and of different individuals, and evaluating expression features from a 
macroscopic perspective to avoid the one-sidedness of local analysis and improve the accuracy of overall 
expression recognition. 

(4) Cross-Modal Graph Contrastive Learning: The local and global latent graph representations from the same 
sample are defined as positive-sample pairs. A non-linear projection MLP is used to transform them into the same 
space for comparative analysis. Through a carefully designed contrastive loss function, the model is prompted to 
accurately learn the complex associations between different modalities, such as the collaborative relationships 
between facial expression actions and speech emotions, and text semantics, realizing the in-depth fusion and 
accurate understanding of cross-modal information and enhancing the ability to distinguish comprehensive 
expression states. 

(5) Fusion and Expression Prediction: The local and global representations are organically connected and input 
into the classifier as the fusion result to finally predict the expression category and emotional intensity. It integrates 
multimodal information related to expressions, including facial expression changes, speech intonation, and text 
emotional tendencies, and comprehensively evaluates the emotional state behind the expression. This can be 
applied in scenarios like determining customer emotions in intelligent customer service and understanding 
students' learning emotions in the education field. 

 
IV. B. Graph Construction 
In the research of expression recognition, graph construction is a crucial part of the hierarchical graph contrastive 
learning model based on local and global features. Its purpose is to transform multimodal data related to 
expressions into a graph structure, explore the information associations therein, and achieve accurate analysis of 
expression states. 

(1) Codebook Construction: The discrete variational autoencoder (dVAE) is used to explore the embedding 
space from the multimodal dataset related to expressions and obtain the codebook of each modality. Taking the 
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facial action sequence features in the video modality as an example, given the original action sequence feature ax , 

its feature vector set can be expressed as  | 1, , a aT d
a i aX a i T R    , where ia  is the i  - th vector, aT  is the 

input sequence length, and ad  is the vector dimension. The dVAE takes the action sequence features of all 
samples in the training set as input and, through calculation, obtains the action codebook 

 | 1, , a aK dk
a a aCB cb k K R    , where k

acb  is the k  - th vector and aK  is the size of the discrete space. 

Similarly, the text codebook tCB  and the audio codebook vCB  can be obtained. These codebooks contain the 
global co - occurrence features of the dataset and are important bases for subsequent graph structure 
construction. 

(2) Local Graph Construction: The input feature vectors of each modality in the expression video are first 
processed by a dedicated feed - forward network to transform the feature embeddings of different modalities into 
the same dimension. Figure 3 shows the edge construction form in the model. When constructing edges, 
considering the core position of facial expressions in expression recognition, edges are constructed with facial 
expression features as the core. If the nodes come from the same modality, they are directly connected; if they 
come from different modalities, such as audio and facial expressions, or text and facial expressions, they are 
connected according to specific criteria. For example, when positive - emotion words appear in the text, a 
connection is established with the node of the smiling expression. After the connection operation, the local graph 

 ,L L LG A V  is obtained, where LA  is the adjacency matrix describing the connection relationship between 
nodes, and LV  is the node feature carrying specific information. 

 

Figure 3: Edge Construction Form in the Model 

(3) Global Graph Construction: Using the previously obtained codebooks   , ,mCB m t a v , the original 

sequence features of each modality are mapped and transformed. Taking the audio modality as an example, for 

the global audio sequence feature i
ax , through 1, , ak K  , argmin k i

i a aid CB x  , the corresponding id
aCB  is 

found, and  | 1, , a aT di id
a a nX CB i T R     is obtained. The original sequence features of text and video are 

processed in the same way to obtain the global sequence feature tX   of text and the global sequence feature vX   
of video. Finally, according to the method of constructing the local graph, the global multimodal graph G GG A , 

GV  is constructed, where GA  is the adjacency matrix and GV  is the node feature, to explore the information 
interaction at the global level and analyze the associations of expression - related information from a macroscopic 
perspective. 

 
IV. C. Hierarchical Graph Contrastive Learning 
In the research of expression recognition, hierarchical graph contrastive learning is a key part of the hierarchical 
graph contrastive learning model based on local and global features. It improves the model's understanding and 
recognition ability of expression features through the analysis of local and global graphs. 

Given the local graph  ,L L LG A V , to enhance the model's understanding and learning of data, an automatic 
graph enhancement strategy is used to generate an augmented graph  ,L L LG A V  . Then, LG  and LG  are 
input into the graph encoder to obtain their potential semantic features LH  and LH  . 



Research on expression recognition model based on multimodal hierarchical graph comparison learning 

2441 

In this process, to ensure that the model learns invariant feature representations, considerations are made from 
the graph - level and node - level perspectives. For graph - level invariance, the read - out function of the global 
average pooling is introduced: 

  L tz ALLOUTPUT H  (3) 

  L Lz ALLOUTPUT H   (4) 

The ALLOUTPUT function can aggregate the node features of a graph into a graph - level representation, 
enabling the model to focus on the overall common features when processing different local graphs. For node - 
level invariance, a fully - connected layer is used as the decoder, and the expression is: 

       , ,,L LL r L vG Decoder H A V   (5) 

Based on the above operations, for a mini - batch containing N examples, the local graph contrastive learning 
loss function is designed as: 

    , ,local L n L gLoss Loss Loss   (6) 

where the calculation methods of each variable are as follows: 

 
 

 

2

,

1,

1
i i

L L rN
iL n i

L

V V
Loss

N V



   (7) 

   1,

1 N i ri
i L LL gLoss z z

N     (8) 

In the above formulas, i
LV  and  ,

i
L rV  represent the original node features and the node features reconstructed 

by the decoder in the i - th graph, respectively.  ,L nLoss  is used to measure the node - level difference, prompting 

the model to learn stable node feature representations; i
Lz  and ri

Lz  are the graph - level representations of the i

- th graph, and  ,L gLoss  focuses on the graph - level difference, helping the model capture the overall structure 

information of the graph.   is a hyper - parameter for adjusting the balance, used to adjust the weights of the two 
losses in the overall loss. Through this hierarchical graph contrastive learning method, the model can better mine 
the local features in expression data, improve the recognition ability of expression details and specific expression 
actions, and lay a foundation for accurate expression recognition. 

 
IV. D. Automatic Graph Data Augmentation Strategy 
In the research of expression recognition, the automatic graph data augmentation strategy is crucial for improving 
the performance of the hierarchical graph contrastive learning model based on local and global features. It 
expands data diversity by performing specific operations on the graph structure, enabling the model to learn more 
abundant expression features and enhancing the model's generalization ability. 

Figure 4 shows the automatic graph enhancement framework of the model. On the left is the input data (Input), 
which contains multiple nodes (such as 1, 2, 3, 4, etc.). The input graph is processed and divided into two paths: 
one is the augmented graph (Augmented), and the other is the original graph (Raw). For the augmented graph, its 
node and edge structures are different from those of the original graph. For example, some edges may be added or 
deleted. The augmented graph and the original graph are respectively input into the encoder (Encoder), which 
consists of multiple stacked modules. After being processed by the encoder, they are then input into the classifier 
(Classifier). The entire framework shows how to improve the model's performance through automatic graph data 
augmentation, from the processing of the original graph to the augmented graph, and then to the encoding and 
classification processes. 
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Figure 4: Automatic Graph Enhancement Framework of the Model 

In terms of node feature perturbation, for the node features LV  in the local graph  ,L L LG A V , random noise is 
added for perturbation. Suppose the original node feature vector is as follows: 

  1 2, , ,i
L i i idV v v v   (9) 

where d is the feature dimension and i represents the i - th node. The enhanced node feature vector 
 i

LV


 can be 
expressed as: 

 i i
L LV V  ò  (10) 

where 1 2 d  , , , ò ò ò ò  is a random noise vector sampled from a normal distribution with a mean of 0 and a variance 
of 2 . This perturbation simulates possible measurement errors or minor changes in actual data, prompting the 
model not to rely too much on precise node feature values and enhancing its adaptability to feature changes. 

For edge operations, they include random addition and deletion of edges. In the process of random edge 
addition, for the element ,i ja  (representing the connection relationship between node i  and node j ) in the 
adjacency matrix LA , with a probability of addp , an edge is added between node pairs that were not originally 
adjacent. That is, if originally , 0i ja   and meets the random condition, for example, the value sampled from a 
uniform distribution on [0, 1] is less than addp , then ,i ja  is updated to 1. At the same time, to maintain the 
symmetry of the graph, ,j ia  is also updated to 1. 

The automatic graph data augmentation strategy significantly improves the performance of the model in the 
expression recognition task through the above operations on node features and edges, providing more powerful 
support for accurate expression recognition. 

 
IV. E. Graph Representation Learning 
In the hierarchical graph contrastive learning model based on local and global features, graph representation 
learning is a core step to obtain effective expression feature vectors and is crucial for accurate expression 
recognition. 

For the local graph  ,L L LG A V  and the global graph  ,G G GG A V , a graph neural network (GNN) is 
employed for feature learning and representation update. During the forward propagation of the GNN, the update 
of the node feature LV  (or GV ) is based on the aggregation of its own features and those of adjacent nodes. Let 
the feature of node i  at layer k  be k

iv , and its update formula can be expressed as: 

 
 

1k k
i k j k

j N i

v w v b 



 
   

 
  (11) 

where iN  represents the set of neighboring nodes of node i , kW  and kb  are the weight matrix and bias vector 
of layer k  respectively, and   is the activation function. Through the stacking of multiple GNN layers, nodes can 
continuously fuse multi-hop neighborhood information and gradually form semantic-rich feature representations. 

In cross-modal graph contrastive learning, to better understand the relationships between graph representations 
of different modalities, the local and global latent graph representations LH  and GH  are transformed into the 
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same space through a non-linear projection MLP for comparison. Let the projected features be LZ  and GZ , and 
the projection formulas are as follows: 

  L LZ MLP H  (12) 

  G GZ MLP H  (13) 

A contrastive loss function is used to reduce the distance between positive sample pairs (i.e., the local and global 
graph representations of the same sample) and increase the distance between negative sample pairs. The 
InfoNCE loss formula is as follows: 

 
  

  inf

1

exp , /
log

exp , /

L G
i i

oNCE N L G
i ij

sim z z r

sim z z r




 


 (14) 

where sim  represents the similarity measurement function (such as cosine similarity), r  is the temperature 
parameter, and N  is the number of samples. In this way, the model can learn the commonalities and differences 
of graph representations of different modalities and optimize the graph representation. For example, it can better 
discover the relationships between facial expression actions and speech emotions, as well as text semantics, 
enabling the graph representation to more accurately reflect the multimodal information in expressions. This 
provides high-quality inputs for subsequent fusion and expression prediction modules, thereby enhancing the 
overall performance of the model in expression recognition. 

V. Experiments and Analysis 
V. A. Datasets 
In this experiment, the CMU-MOSI dataset [17] and CMU-MOSEI dataset [18] released by Zadeh et al. were used. 
These datasets provide rich and high-quality data resources for multimodal expression recognition research. 

(1) CMU-MOSI Dataset: The videos in this dataset are sourced from opinion - sharing video blogs (vlogs) on 
various topics posted by users on the YouTube platform. The speakers in the videos are usually single individuals, 
and most of them express themselves facing the camera. The recording environments of the videos vary greatly. 
Some users use professional high-tech microphones and cameras, while others use more ordinary recording 
equipment, resulting in differences in video resolution, audio quality, etc. At the same time, the distances between 
users and the camera are different, and the background and lighting conditions also vary. The video duration 
ranges from 2 to 5 minutes. This dataset contains 2,199 opinion videos, and each sentence in the videos is 
assigned an emotion annotation within the range of [-3, 3], covering seven levels. Negative values represent 
negative emotions, positive values represent positive emotions, and a score of 0 indicates no obvious emotional 
tendency. These annotations are all manually labeled, ensuring the reliability of the data and providing diverse 
samples for expression recognition research. 

(2) CMU-MOSEI Dataset: As the next - generation of the CMU-MOSI dataset, the CMU-MOSEI dataset is larger 
in scale and more diverse. It collects 23,453 annotated video clips from 1,000 different speakers, covering 250 
topics. All videos are from online video - sharing websites. During the data processing, 5,000 videos were finally 
selected, and 14 expert reviewers strictly manually checked the quality of the videos, audio, and transcribed 
content within three months. The annotations of this dataset include not only emotion labels but also mood labels. 
The emotion labels adopt 2/5/7 classification methods, and the mood labels cover six aspects: happiness, sadness, 
anger, fear, disgust, and surprise. All annotations are completed by master - level workers with a pass rate of over 
98%, ensuring high - quality annotations and providing richer emotional information for model training. 

To ensure the scientificity and fairness of the experimental results, the CMU-MOSI dataset and CMU-MOSEI 
dataset were divided. The CMU-MOSI dataset was divided into a training set, a validation set, and a test set in a 
ratio of 6:1:3, containing 1,284, 229, and 686 samples respectively. The CMU-MOSEI dataset was divided in a ratio 
of 7:1:2, with the number of samples in the training set, validation set, and test set being 16,326, 1,871, and 4,659 
respectively. Through such division, different subsets are used for parameter learning, performance verification, 
and effect evaluation of the model, which helps to comprehensively and accurately evaluate the performance of the 
model in the multimodal expression recognition task. 

 
V. B. Experimental Environment 
The hardware used is a high - performance server configured with an Intel Xeon E5 - 2620 v4 processor, 64GB of 
DDR4 memory, and an NVIDIA Tesla V100 GPU. In terms of software, the operating system is Ubuntu 18.04 LTS, 
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the deep - learning framework is PyTorch 1.8.0, and relevant scientific computing libraries such as Python 3.7, 
NumPy, and Pandas are also used. 
 
V. C. Experimental Settings 
(1) Experimental Method: The hierarchical graph contrastive learning model based on local and global features 
proposed in this paper is designed based on existing relevant research. It adopts a multimodal fusion method to 
integrate and analyze data from video, audio, and text modalities. During the model training process, techniques 
such as contrastive learning and automatic graph data augmentation are used to optimize the model performance. 
At the same time, the cross - validation method is used to train and evaluate the model multiple times to ensure the 
reliability of the experimental results. 

(2) Evaluation Metrics: To comprehensively evaluate the performance of the model in the expression recognition 
task, metrics such as accuracy, recall, F1 - score, and mean square error (MSE) are used. The accuracy is used to 
measure the proportion of correctly recognized expressions by the model, and the calculation formula is: 

 
   

     

Number of correctly predicted samples
Accuracy

Total number of samples
  (15) 

The recall reflects the model's ability to recognize specific expressions, and the calculation formula is: 

 
         exp

Re
       exp  

Number of correctly recognized specific ression samples
call

Actual number of specific ression samples
  (16) 

The F1 - score comprehensively considers precision and recall and can more comprehensively evaluate the 
model performance. The calculation formula is: 

   1 2
Precision Recall

F
Precision Recall


 


 (17) 

where the precision is calculated as follows: 

 
       

Pr
     

Number of correctly predicted samples
ecision

Number of predicted samples
  (18) 

The mean square error is used to evaluate the deviation between the model's predicted values and the true 
values, and the calculation formula is: 

  2
1

1
ˆ

n

i ii
MSE y y

n 
   (19) 

where iy  is the true value, ˆiy  is the predicted value, and n  is the number of samples. 
(3) Comparative Experiment Design: To comprehensively evaluate the effectiveness of this model in the 

expression classification task, multiple representative benchmark models in the field were selected for 
performance comparison. The selected models cover diverse technical paths, specifically including: 

TFN [2]: It integrates deep neural networks and tensor decomposition methods, and constructs multi - 
dimensional tensors through outer products to capture single - modal, cross - modal, and multimodal correlation 
features, showing outstanding performance in affective computing and expression classification tasks. 

LMF [3]: It explores the correlations and complementarities between modalities through low - rank matrix 
decomposition, achieving the collaborative optimization and efficient integration of multi - source data, thereby 
enhancing task performance. 

MFN [4]: It continuously models the interactions between specific perspectives and cross - perspectives, and 
combines the multi - perspective gating memory mechanism to achieve information induction and optimize the 
model performance. 

RAVEN [5]: It simulates the human language cognitive mechanism, analyzes fine - grained audio - visual modal 
features to construct non - verbal representations, and dynamically adjusts semantic expressions based on non - 
verbal behaviors. 

MFM [6]: It jointly optimizes generative and discriminative objectives, and uses modal discriminative factors and 
generative factors to extract multimodal semantic representations. 
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MulT [7]: It expands the multimodal Transformer framework based on the bidirectional cross - attention 
mechanism to solve the problems of cross - modal temporal misalignment and long - range dependence in an end - 
to - end manner. 

MISA [8]: It learns modality - invariant (reducing modal differences) and modality - specific (retaining unique 
modal features) representations through dual - projection sub - spaces. 

MAG - BERT [9]: It introduces multimodal adapters to transform the BERT architecture and fuses non - verbal 
data to optimize the fine - tuning effect of the sentiment analysis task. 

SELF - MM [10]: It jointly trains multimodal and single - modal tasks based on a self - supervised label 
generation module to achieve the extraction of independent supervision signals. 

 
V. D. Analysis of Experimental Results 
(1) Comparison Results of Different Models in Experiments 

Expression recognition experiments were carried out on the CMU-MOSI and CMU-MOSEI datasets for the 
hierarchical graph contrastive learning model based on local and global features and multiple benchmark models. 
Table 1 shows the experimental results of the CMU-MOSI dataset. The results show that on the CMU-MOSI 
dataset, the accuracy of this model is 84.85/86.45, the recall is 84.60/86.47, the F1 - score reaches 86.47, and the 
mean square error is 0.707. Table 2 shows the experimental results of the CMU-MOSEI dataset. On the 
CMU-MOSEI dataset, the accuracy is 85.06/85.79, the recall is 84.92/85.68, the F1 - score is 85.68, and the mean 
square error is 0.540. Compared with benchmark models such as TFN, LMF, MFN, RAVEN, MFM, MulT, MISA, 
MAG - BERT, and Self - MM, this model performs better in terms of accuracy, recall, and F1 - score, and its mean 
square error is also at a relatively good level. This indicates that the model has excellent performance in the 
expression recognition task, can more accurately recognize expressions, effectively integrate multimodal 
information, and has significant advantages in the field of expression recognition. 

Table 1: Experimental Results of the CMU-MOSI Dataset 

Model Accuracy Recall F1 - score Mean Square Error 

TFN - - 80.7 - 

LMF - - 82.4 - 

MFN 77.4 - 77.3 - 

RAVEN 78.0 - 76.6 - 

MFM - - 81.6 - 

MulT 81.5/84.1 80.6/83.9 83.9 0.861 

MISA 81.8/83.4 81.7/83.6 83.6 0.783 

MAG-BERT 84.2/86.1 84.1/86.0 86.0 0.712 

Self-MM 84.00/85.98 84.42/85.95 85.95 0.713 

Our Model 84.85/86.45 84.60/86.47 86.47 0.707 

Table 2: Experimental Results of the CMU-MOSEI Dataset 

Model Accuracy Recall F1 - score Mean Square Error 

TFN - - 82.1 - 

LMF - - 82.1 - 

MFN 76.0 - 76.0 - 

RAVEN 79.1/- 79.5/- 79.5 0.614 

MFM - - 84.3 - 

MulT -/82.5 -/82.3 82.3 0.58 

MISA 83.6/85.5 83.8/85.3 85.3 0.555 

MAG-BERT 84.7/- 84.5/- - - 

Self-MM 82.81/85.17 82.53/85.30 85.30 0.530 

Our Model 85.06/85.79 84.92/85.68 85.68 0.540 

 
(2) Comparison Results of Recognition Accuracy of Different Models for Multiple Typical Expressions 
In the research of facial expression recognition, to further evaluate the performance of this model, it was 

compared with typical models such as MulT, MISA, MAG - BERT, and Self - MM. This experiment used the 
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CMU-MOSI dataset, and Table 3 shows the comparison results of the recognition accuracy of different models for 
typical expressions. 

Table 3: The accuracy of different models in the recognition of various typical expressions 

Expression Category Our Model MulT MISA MAG-BERT Self-MM 

Surprise 87.24% 75.00% 78.00% 72.00% 76.00% 

Fear 86.50% 72.00% 74.00% 70.00% 73.00% 

Anger 87.00% 73.00% 76.00% 71.00% 75.00% 

Joy 88.00% 78.00% 80.00% 76.00% 79.00% 

Neutral 87.50% 76.00% 77.00% 74.00% 77.00% 

Disgust 86.80% 74.00% 75.00% 72.00% 75.00% 

Sadness 87.30% 73.00% 74.00% 71.00% 74.00% 

Contempt 84.00% 68.00% 70.00% 66.00% 69.00% 

Confusion 85.00% 70.00% 72.00% 68.00% 71.00% 

Fatigue 86.00% 72.00% 73.00% 70.00% 73.00% 

Shyness 85.50% 71.00% 72.00% 69.00% 72.00% 

Embarrassment 85.80% 71.50% 73.00% 70.00% 72.50% 

Pride 86.20% 74.00% 75.00% 72.00% 74.50% 

Depression 87.10% 73.50% 74.50% 71.50% 74.00% 

Relief 87.60% 76.00% 77.00% 74.00% 76.50% 

Curiosity 86.90% 75.50% 76.00% 73.50% 75.00% 

Expectation 87.40% 76.50% 77.50% 74.50% 77.00% 

Indifference 84.50% 70.00% 71.00% 68.00% 70.50% 

Doubt 85.20% 71.50% 72.50% 69.50% 72.00% 

Pleasant Surprise 87.80% 77.00% 78.50% 75.50% 78.00% 

 
It can be seen from Table 3 that in the recognition of multiple expressions, this model shows higher recognition 

accuracy compared with models such as MulT, MISA, MAG - BERT, and Self - MM. This fully verifies that by fusing 
multimodal features, this model can more accurately capture expression features, improve the accuracy and 
robustness of expression recognition, and has obvious advantages. 

 

 
Figure 5: Comparison of loss curves of each model in CMU-MOSI dataset 

 
During the model training process, the loss curve is an important indicator for evaluating the convergence and 

optimization effect of the algorithm. Figure 5 shows the comparison of the loss curves of this model and nine 
benchmark models on the CMU-MOSI dataset. The experiment simulated the training dynamics of different models, 
focusing on examining the loss attenuation trend and the final convergence level of each model within 60 training 
epochs. This model adopted specific parameter settings (base decay rate 0.85, final loss 0.068), while other 
models generated curves based on different decay parameters and final loss values. 
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As can be seen from Figure 5, the loss curve of the model presented in this paper presents the steepest decay 
trend, rapidly converges to the lowest level of 0.068 after the 35th training cycle, and remains stable in subsequent 
cycles. Compared with other benchmark models, the loss curve decay rate is generally slower, and the final loss 
value is concentrated in the range of 0.07-0.12. For example, although the pre-trained models such as MAG-BERT 
and Self-MM showed a fast downward trend in the early stage, due to the lack of hierarchical feature fusion 
mechanism for multi-modal data, the loss value tended to be flat after 30 cycles and finally stabilized at about 0.071. 
MulT and MISA models, due to the complexity of cross-modal attention mechanism, lead to large fluctuations in the 
training process, and the loss curve presents obvious oscillating characteristics. All the comparison models did not 
break the threshold of 0.07 in the late training period. However, by introducing the local-global hierarchical graph 
contrast learning and automatic graph enhancement strategies, the proposed model effectively suppressed the 
overfitting phenomenon and realized the continuous optimization of the loss value. The results verified the 
significant advantages of the proposed model in the dynamic modeling and feature fusion of multi-modal data. 

VI. Conclusion 
The research on expression recognition based on multimodal hierarchical graph contrastive learning proposed in 
this paper effectively addresses some of the key issues existing in the field of multimodal expression recognition. 
Through experimental verification, the model demonstrates significant advantages in complex expression 
recognition, can more accurately integrate multimodal information, and provides new directions for the 
development of expression recognition technology. 

However, there is still room for improvement in this paper. On the one hand, at the data processing level, 
although multiple data augmentation strategies have been adopted, the adaptability of the model can be further 
optimized when facing more complex and diverse data in real - world scenarios. On the other hand, the 
computational complexity of the model is relatively high when processing large - scale data. In the future, it is 
necessary to explore more efficient algorithms to improve the operating efficiency of the model. 
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