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Abstract This article explored a distribution network path planning method based on artificial intelligence (AI) and 
optimization algorithms (OAs) to solve multiple problems in traditional research. Traditional methods have limited 
effectiveness in dealing with complex network structures and dynamic load changes, high computational 
complexity, and low energy utilization efficiency. To address these challenges, firstly, multiple algorithms were 
compared and analyzed, and genetic algorithm was identified as the main OA, combined with PSO’s (Particle 
Swarm Optimization) local search capability for hybrid optimization. Then, this article designed a distribution 
network path planning strategy based on real-time data and intelligent algorithms, aiming to improve the efficiency 
of power transmission and energy utilization, and reduce system operating costs. By flexibly adjusting and 
dynamically optimizing, the distribution network can respond more quickly to changes in load demand, enhancing 
the overall response capability and stability of the system. In addition, this article also focused on improving the 
security and reliability of the system, especially whether it can quickly make adaptive adjustments and response 
measures in the face of emergencies or abnormal situations, in order to ensure the continuous stability of the 
power grid operation. Finally, the actual effectiveness and application potential of AI and OA in distribution network 
path planning can be verified. By introducing AI and OA such as genetic algorithm and PSO, significant 
improvements have been made in the transmission efficiency of distribution networks. Specifically, after 
optimization, the average transmission efficiency increased by about 0.15%, with an improvement rate of about 
21.43%. The total network loss was significantly reduced, with an average reduction rate of about 33.33%. The 
system’s responsiveness and stability have been improved, and the optimized data is more centralized and stable. 
The effectiveness of OAs in reducing operating costs and emphasizing their role in improving the economic 
efficiency of the power system. 
 
Index Terms Artificial Intelligence and Optimization Algorithms, Distribution Network Path Planning, Genetic 
Algorithm, Particle Swarm Optimization, Deep Reinforcement Learning 

I. Introduction 
In today’s society, as one of the infrastructure, the operational efficiency and stability of the power system are 
crucial to the socio-economic operation. The efficient supply of electricity directly affects the overall industrial 
production, residents’ lives, and economic development. However, traditional distribution network path planning 
methods are inadequate when facing complex network structures and dynamic load changes. Traditional methods 
are often based on static models or simple heuristic algorithms, which cannot effectively address the challenges 
brought by the complexity of network structures and load fluctuations. These methods have high computational 
complexity and low energy utilization, which hinders the further optimization and intelligent development of the 
power system. Therefore, how to use advanced AI and OA to improve the path planning of distribution networks 
has become one of the current research focuses. 

Researchers have attempted to propose various methods to plan the paths of distribution networks. Wang J 
proposed a novel optimal path planning algorithm based on Convolutional Neural Network (CNN), namely NRRT * 
(Neural Rapidly-exploring Random Tree, NRRT). NRRT* utilizes the non-uniform sampling distribution generated 
by the CNN model. This model is trained using a large number of successful path planning cases [1]. Karur K used 
path planning algorithms to determine the safe, efficient, collision free and lowest cost travel path for mobile robots, 
unmanned aerial vehicles and autonomous vehicle from the origin to the destination. Choosing appropriate path 
planning algorithms can help ensure safe and effective point-to-point navigation [2]. Chen J studied the coverage 
path planning problem of autonomous heterogeneous unmanned aerial vehicles over a limited area. He proposed 
an accurate formula based on mixed integer linear programming using separated regions and heterogeneous 
drone models to fully search the solution space and generate the optimal flight path for autonomous drones, and 
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designed an original algorithm based on clustering. He divided the area into clusters and obtained the approximate 
optimal point-to-point path of the drone, thus correctly and efficiently executing the coverage task. Random 
generated regions can be used for experiments to demonstrate the efficiency and effectiveness of the proposed 
method [3]. Schmid L introduced a new RRT* heuristic online information path planning algorithm. He used this 
method to continuously expand a candidate trajectory tree and reconnect nodes to maintain the tree and optimize 
intermediate paths. This enables the algorithm to achieve global coverage and maximize the utility of the path in 
the global environment using a single objective function [4]. Hayat S incorporated communication into the multi 
drone path planning problem for search and rescue missions, to achieve dynamic task allocation through 
information dissemination [5]. Li W conducted a comprehensive review of intelligent OAs. Learning-based 
Intelligent Optimization Algorithm (LIOA) refers to intelligent OAs with certain learning abilities. It is a traditional 
intelligent OA that combines learning operators or specific learning mechanisms to endow itself with certain 
learning abilities, thereby achieving better optimization behavior [6]. Gad A G introduced one of the most popular SI 
paradigms (Standard International Form), namely the PSO algorithm, which involves some technical features, 
including accuracy, evaluation environment, and proposed case studies, to study the effectiveness of different PSO 
methods and applications [7]. OA-based on mathematical programming often face problems such as slow 
convergence speed, locally optimal solutions, and insufficient response to dynamic load changes [8]-[10]. These 
limitations limit the further improvement of the overall efficiency and reliability of the power system, and there is a 
need to find more efficient and intelligent methods to address the new challenges faced by the power system. 

In recent years, AI and OA have been introduced into path planning for power systems to address the limitations 
of traditional methods. Genetic algorithms, PSO, DRL and other methods can comprehensively consider the 
dynamic changes and complex constraints of systems by simulating the evolution process or learning mechanism 
in nature [11], [12], thereby improving the quality and efficiency of solutions. For example, genetic algorithms can 
find the global optimal solution through the evolutionary optimization process of genotype and phenotype [13]. 
PSO simulates the process of birds searching for food and achieves global search through information exchange 
[14]. DRL combines neural networks and reinforcement learning methods to achieve intelligent decision-making 
and path optimization in complex environments [15], [16]. Although these methods have shown great potential in 
theory, existing research has mostly focused on theoretical models and small-scale experiments, lacking validation 
of large-scale power grid operation and in-depth exploration in responding to emergencies and ensuring safety [17], 
[18]. Therefore, it is necessary to further apply these algorithms to actual power grid systems and verify their 
stability and reliability in complex environments. 

This article aims to use advanced AI and OA such as genetic algorithms [19] to design and validate path 
planning methods suitable for practical distribution networks. By integrating real-time data and intelligent 
algorithms, the efficiency of power transmission and system responsiveness can be improved, thereby achieving 
the intelligence and efficiency of the power system. The research can combine empirical analysis and case studies 
to verify the application effect of the algorithm in large-scale power grids, and provide technical support and 
practical guidance for the future development of the power system. Through the research in this article, it can delve 
into the potential applications of AI in the power system, taking a crucial step towards achieving the goals of 
sustainable energy and smart grids. 

II. Algorithm Selection and Parameter Configuration 
In the problem of distribution network path planning, the selection of algorithms and parameter configuration are 
key factors determining the optimization effect and computational efficiency. Given the complexity and dynamism 
of the distribution network, this article conducts an in-depth analysis of the applicability and advantages of AI and 
OA such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Deep Reinforcement Learning (DRL), 
and selects and customizes algorithms based on specific application scenarios. 
 
II. A. Algorithm Selection Criteria 
Genetic Algorithm (GA): Genetic algorithms search for optimal solutions by simulating natural selection and genetic 
mechanisms, and are suitable for solving large-scale, multivariate, nonlinear optimization problems. In distribution 
network path planning, GA can effectively handle the diversity and complexity of network topology, continuously 
evolve the population through operations such as crossover and mutation, and find the optimal or near optimal 
power transmission path. The PSO algorithm simulates the foraging behavior of bird flocks, treats each potential 
solution as a particle in the search space, and updates its position based on individual experience and group 
information to find the global optimal solution [20]. The PSO algorithm has the advantages of fast convergence 
speed and relatively simple parameter adjustment, making it suitable for handling real-time changing load 
demands and dynamically adjusting path planning problems. DRL combines the powerful perceptual ability of deep 
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learning with the decision-making ability of reinforcement learning, enabling continuous optimization of behavioral 
strategies through learning in complex environments. For distribution network path planning, DRL can 
automatically learn and adapt to load changes based on a large amount of historical data and real-time feedback, 
achieving more intelligent and adaptive path planning. Figure 1 shows the path costs of three algorithms after 
iteration. 

 

Figure 1: Iteration diagram of three algorithms 

In Figure 1, the horizontal axis represents the number of iterations and the vertical axis represents the path cost. 
Genetic algorithm (GA) exhibits the highest optimization ability, with its path cost rapidly decreasing with the 
number of iterations, from an initial 900 to around 100, and the data fluctuation is relatively small. The optimization 
ability of PSO algorithm is second, and the path cost gradually decreases from the initial 950 to about 190, with a 
decrease speed and fluctuation degree between GA and DRL. The optimization ability of DRL algorithm is the 
lowest, and its path cost decreases the slowest, from the initial 1000 to only about 320, and the data fluctuates 
greatly. Overall, GA can quickly reduce path costs and demonstrate the best optimization capability within the same 
number of iterations, while DRL performs relatively weakly and has the lowest optimization efficiency. By 
comparing the curves of these three algorithms, it is clear that GA has advantages in path planning problems and 
DRL has relatively lower optimization effects. 

Taking into account the characteristics of the algorithm, the requirements of the application scenario, and the 
limitations of computing resources, this article decides to use genetic algorithm (GA) as the main OA and combine 
it with PSO’s local search capability for hybrid optimization to improve the global search efficiency and local search 
accuracy of the algorithm. Meanwhile, for specific complex scenarios, DRL is considered as a future expansion 
direction to further enhance the intelligence level of the system. 

In distribution network path planning, the key formulas of genetic algorithm usually include fitness function and 
selection operation formula. The fitness function is used to evaluate the quality of each individual (path scheme) 
and is a crucial part of genetic algorithms, affecting the evolutionary direction of each generation of the population 
[21], [22]. In distribution network path planning, the fitness function usually involves a comprehensive evaluation of 
multiple optimization objectives, such as minimizing transmission losses and maximizing power transmission 
efficiency. Generally speaking, the fitness function can be expressed as: 

 Fitness (𝑥) = 𝑤ଵ ⋅ Loss (𝑥) + 𝑤ଶ ⋅ Efficiency (𝑥) (1) 

In Formula 1: x is a path scheme; Loss(x) represents the loss of the scheme, which can be power loss or other 
forms of energy loss; Efficiency(x) represents the efficiency of the scheme, which may involve the utilization 
efficiency of energy or the effectiveness of transmission; w1 and w2 are weight coefficients used to balance the 
importance of loss and efficiency in the overall evaluation. The design of the fitness function needs to be adjusted 
according to specific optimization objectives and constraints to ensure that the genetic algorithm can effectively 
search for the optimal or near optimal solution [23]. 
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Figure 2: The situation before and after path optimization and the trend of fitness values with algebraic changes 

Figure 2 shows the situation before and after path optimization, as well as the trend of fitness values with 
algebraic changes. Firstly, the left figure shows the variation of fitness values with algebra. The horizontal axis 
represents generations, and the vertical axis represents fitness value. The fitness value is generated through a 
mathematical model, and as the number of generations increases, the fitness value shows a gradual upward trend. 
This change indicates that the OA, through continuous experimentation and iteration, can find better solutions, 
namely better fitness values. 

The right figure contains two subgraphs, each showing the effect before and after path optimization, describing 
the path state before and after optimization through specified node coordinates and edges. The changes in data 
before and after path optimization reflect the adjustment of the path under the influence of OAs. By comparing the 
two graphs on the right of Figure 2, the coordinates of nodes and edges remain unchanged before and after 
optimization. Before path optimization, nodes are connected by a series of edges to form a complex path network. 
After path optimization, some edges are removed or reconnected to form a more simplified and optimized path 
network. The optimized path network reduces redundant connections, lowers the total path cost, and improves 
path efficiency. 

The selection operation determines which individuals can be selected as parents for crossover and mutation, 
and its probability is usually calculated based on the value of the fitness function. Common selection methods 
include Roulette Wheel Selection: 

 𝑃(𝑥௜) =
୊୧୲୬ୣୱୱ (௫೔)

∑ೕసభ
ಿ  ୊୧୲୬ୣୱୱ ൫௫ೕ൯

 (2) 

In Formula 2, 𝑃(𝑥௜) is the probability of selecting an individual, N is the number of individuals in the population, 
and Formulas (1) and (2) are the core parts of genetic algorithms. The fitness function evaluates the quality of 
individuals, and the selection operation selects individuals to enter the next generation population based on their 
fitness values, jointly driving the algorithm to evolve towards a better solution. 

1.2 Parameter Configuration and Optimization 
After selecting the algorithm, reasonable parameter configuration is crucial for optimizing the effect. The 

following text elaborates on the parameter configuration and optimization process of genetic algorithm and PSO. 
Regarding the configuration of genetic algorithm parameters: 
Population size: An appropriate population size can be set based on the size and complexity of the distribution 

network to ensure sufficient diversity. This article sets the population size to twice the number of network nodes to 
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balance search efficiency and resolution quality. 
Crossover probability: The probability of individuals in a population performing crossover operations can be 

controlled, which is set to 0.8 in this article to promote effective gene combination and population evolution [24], 
[25]. 

Mutation probability: A certain mutation probability can be introduced to increase population diversity and avoid 
premature convergence. This article sets the mutation probability to 0.05 to maintain the exploratory ability of the 
population. 

Iteration times: Sufficient iteration times can be set based on the complexity of the problem and computational 
resources to ensure algorithm convergence [26]. Based on experimental verification, this article sets the iteration 
number to 10 times the number of network nodes to obtain stable optimization results. 

PSO parameter configuration (for hybrid optimization): Particle count: Similar to the population size of GA, the 
particle count can be set to a certain multiple of the number of network nodes, which is set to 1.5 times in this 
article [27], [28]. Learning factors include individual learning factors and social learning factors, which respectively 
control the degree to which particles learn from their own historical optimal solution and global optimal solution. 
This article sets an individual learning factor of 2.0 and a social learning factor of 2.0 based on experience to 
balance local and global search abilities. 

Inertia weight: The inertia component that can control particle velocity updates, affecting search speed and 
convergence performance. This article adopts a dynamic adjustment strategy, initially setting a larger inertia weight 
to promote global search, and gradually reducing it in the later stage to enhance partial search capability. The PSO 
algorithm updates the velocity of each particle through a velocity update formula. The formula is as follows: 

 
𝑣௜(𝑡 + 1) = 𝑤 ⋅ 𝑣௜(𝑡) + 𝑐ଵ ⋅ 𝑟ଵ ⋅ ൫𝑝௜

best − 𝑥௜(𝑡)൯ + 𝑐ଶ ⋅ 𝑟ଶ.

൫𝑔best − 𝑥௜(𝑡)൯ 
 (3) 

In formula 3, 𝑣௜(𝑡) is the velocity of the 𝑖th particle in the 𝑡th generation. 𝑤 is the inertia weight, and the 
dynamic adjustment strategy is initially set to be relatively large, gradually decreasing in the later stage. 𝑐ଵ is an 
individual learning factor, which is set to 2.0 in this article. 𝑐ଶ is a social learning factor, which is set to 2.0 in this 
article. 𝑟ଵ and 𝑟ଶ are random numbers within the [0,1] range. 𝑝௜

best  is the historical optimal position of the 𝑖th 
particle itself. 𝑔best  is the globally optimal position among all particles. 𝑥௜(𝑡) is the position of the 𝑖th particle in 
the 𝑡th generation. The position information of particles is updated based on the velocity calculated by the velocity 
update formula, which is as follows: 

 𝑥௜(𝑡 + 1) = 𝑥௜(𝑡) + 𝑣௜(𝑡 + 1) (4) 

In formula 4, 𝑥௜(𝑡) is the position of the 𝑖th particle in the 𝑡th generation. 𝑣௜(𝑡 + 1) is the velocity of the 𝑖th 
particle in the 𝑡 + 1th generation. The speed update formula balances inertia weights, individual learning, and 
social learning, enabling PSO to flexibly and efficiently explore the search space and find the optimal solution to the 
optimization problem. For distribution network path planning, formula 4 ensures that the algorithm can handle 
complex network topologies and dynamic load changes. Table 1 shows the velocity changes of each particle in 
each iteration step. This article sets up 5 particles and records their velocities at different iteration times: 

Table 1: Velocity of particles at different iteration times 

Iteration Particle 1 Speed Particle 2 Speed Particle 3 Speed Particle 4 Speed Particle 5 Speed 

1 0.135 0.225 0.185 0.145 0.21 

2 0.142 0.23 0.192 0.152 0.22 

3 0.15 0.24 0.2 0.16 0.23 

4 0.158 0.25 0.208 0.168 0.24 

5 0.165 0.26 0.215 0.175 0.25 

6 0.17 0.27 0.22 0.18 0.26 

7 0.175 0.28 0.225 0.185 0.27 

8 0.18 0.29 0.23 0.19 0.28 

9 0.185 0.3 0.235 0.195 0.29 

10 0.19 0.31 0.24 0.2 0.3 

 
In the path planning of distribution networks, Table 1 shows the velocity changes of particles in PSO algorithm at 

different iteration times to verify the effectiveness and optimization process of the algorithm. In the first iteration, the 
velocity of particle 1 is 0.135, the velocity of particle 2 is 0.225, the velocity of particle 3 is 0.185, the velocity of 
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particle 4 is 0.145, and the velocity of particle 5 is 0.210. As the number of iterations increases, the velocity of 
particles gradually increases. For example, in the 10th iteration, the velocity of particle 1 rises to 0.190, the velocity 
of particle 2 is 0.310, the velocity of particle 3 is 0.240, the velocity of particle 4 is 0.200, and the velocity of particle 
5 is 0.300. From formula 4, it can be seen that the combined effect of inertia weight, individual learning factor, and 
social learning factor promotes the gradual adjustment of particle velocity, gradually approaching the optimal 
solution. The data shows that the particle velocity gradually optimizes the path during the continuous adjustment 
process, thereby improving the efficiency of power transmission, reducing network losses, and enhancing the 
system’s responsiveness and stability. 

III. Real-time Data Integration and Model Construction 
III. A. Data Integration 
Firstly, it is possible to specify the types of real-time data that need to be integrated, including but not limited to load 
data, equipment status information, network topology changes, meteorological conditions, etc. These data may 
come from smart grid monitoring systems, sensor networks, monitoring control and data acquisition systems, as 
well as external data sources such as weather stations. By defining unified data interface standards and 
communication protocols, various data sources can be seamlessly integrated into the data processing center. 

The integrated data often contains noise, missing values, or outliers, which require cleaning and preprocessing 
to improve data quality. Data filtering, smoothing, interpolation and filling methods can be used to identify and 
correct abnormal data, ensuring the accuracy and completeness of the data. At the same time, data can be time 
aligned and formatted uniformly, which facilitates subsequent data analysis and model construction. 

In order to cope with real-time changes in the distribution network, stream processing technology can be used to 
efficiently process real-time data streams. Real-time data collection, transmission, storage, and processing can be 
achieved by building the real-time data stream processing framework Apache Kafka. It can ensure rapid response 
when data arrives, providing the latest and most accurate data support for intelligent path planning. Here are some 
collected distribution networks used to demonstrate the process of data integration and model construction in 
distribution network path planning. 

Table 2: Real-time data of distribution network 

Timestamp Load Data (kW) Equipment Status Network Topology Change Weather Conditions (Temperature, Humidity) 

3/10 0:00 1500 Normal Normal 30°C, 60% 

3/10 3:00 1460 Normal Normal 27°C, 75% 

3/10 6:00 1400 Equipment1 Fault Normal 24°C, 90% 

3/10 9:00 1340 Normal Normal 21°C, 75% 

3/10 12:00 1280 Normal Transformer A Repaired 18°C, 60% 

3/10 15:00 1220 Normal Normal 15°C, 45% 

3/10 18:00 1160 Normal Normal 12°C, 30% 

3/10 21:00 1100 Normal Line 2 Repaired 9°C, 15% 

3/11 0:00 1040 Normal Normal 6°C, 0% 

 
Table 2 shows the changes in load data, equipment status, network topology, and meteorological conditions at 

different time points. At 00:00 on March 10th, the load data was 1500 kW, the equipment status was normal, the 
network topology remained unchanged, and the meteorological conditions were 30°C and 60% humidity. Over time, 
there have been significant changes in load data and meteorological conditions. For example, at 06:00, the load 
data dropped to 1400kW, resulting in equipment 1 failure and meteorological conditions changing to 24°C and 90% 
humidity. At 12:00, the load data further decreased to 1280 kW, transformer A was repaired, and the meteorological 
conditions were 18°C and 60% humidity. At 21:00, the load data was 1100 kW, line 2 was repaired, and the 
meteorological conditions were 9°C and 15% humidity. Through data interface standards and communication 
protocols, these data can be seamlessly integrated into the data processing center and undergo cleaning and 
preprocessing to identify and correct abnormal data, ensuring the accuracy and completeness of the data. These 
data provide accurate inputs for intelligent path planning, helping to improve power transmission efficiency, reduce 
network losses, and enhance system responsiveness and stability. 

 
III. B. Model Construction 
Distribution network topology model: Based on the physical structure and connection relationships of the 
distribution network, a topology model of the distribution network can be constructed. This model takes nodes, 



Path Planning Method for Distribution Network Based on Artificial Intelligence and Optimization Algorithms 

2619 

substations, distribution transformers, user terminals, and lines, including cables and overhead lines, as basic 
elements, and describes the topology of the network through the connection relationships between nodes. Graph 
theory methods can be used to represent network topology, facilitating subsequent path search and optimization. 
Load forecasting model: Considering the dynamic variability of loads, a load forecasting model can be constructed 
to predict future load demand for a certain period of time. Short-term or ultra short-term load forecasting can be 
carried out using methods such as time series analysis, machine learning, or deep learning, combined with 
historical load data, meteorological conditions, holiday information, and other factors. The load forecasting model 
provides important input parameters for path planning, ensuring that optimization strategies can respond to load 
changes in advance. The framework and process of the load forecasting model for the distribution network 
topology can be drawn based on the construction of the model. 

 

Figure 3: Distribution network topology model and load forecasting model 

The left figure in Figure 3 shows the basic topology of the distribution network, including the power transmission 
path from the substation to the distribution transformer and then to the end user. The historical load data, 
meteorological conditions, and holiday information in the right figure are used as inputs and processed through the 
data preprocessing module. The preprocessed data is input into the load forecasting model for short-term load 
forecasting. The short-term load forecasting results serve as important input parameters for path planning. Figure 3 
shows the framework and process of the load forecasting model, covering the entire process from data sources to 
forecasting results. Data preprocessing, load forecasting models, and prediction results are key steps to ensure 
that optimization strategies can respond to load changes in advance. 

In addition, a power flow model can be constructed to describe the transmission and distribution process of 
electricity in the network. This model considers factors such as line impedance, transformer ratio, and load demand, 
and simulates the actual flow of electricity in the network through methods such as power flow calculation. The 
power flow model is an important basis for evaluating the effectiveness of path planning. By comparing the power 
flow before and after optimization, the impact of optimization strategies on power transmission efficiency and 
energy utilization is quantitatively analyzed. In distribution network path planning, various constraints such as 
voltage limitations, current limitations, equipment capacity limitations, etc., need to be considered. A constraint 
model can be constructed to formalize these constraints and incorporate them into the optimization problem. The 
constraint condition model can be used to ensure that the optimization strategy is path planned while meeting the 
actual operational requirements. 

Real-time data integration can be combined with model construction to form a distribution network path planning 
system based on real-time data. The system is capable of real-time receiving and processing data from various 
sources, dynamically updating distribution network topology models, load forecasting models, and power flow 
models. Meanwhile, the path planning strategy can be intelligently adjusted based on real-time data and model 
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status, achieving dynamic optimization and efficient operation of the distribution network. This article successfully 
constructed a distribution network path planning system based on real-time data and intelligent algorithms [29], [30] 
through the above steps. This system can fully utilize real-time data resources and accurately reflect the operating 
status and load changes of the distribution network. 

IV. Design of Intelligent Path Planning Strategy 
The intelligent path planning strategy adopts modular design, including data preprocessing module, OA module, 
decision execution module, and feedback adjustment module [31], [32]. The data preprocessing module is 
responsible for integrating and cleaning real-time data, providing high-quality input for optimizing algorithms. The 
OA module integrates multiple AI and OA and automatically selects the optimal algorithm for path planning based 
on optimization objectives. The decision execution module generates specific path planning instructions based on 
the optimization results and issues them to the distribution network control system. The feedback adjustment 
module dynamically adjusts and optimizes the strategy based on the system’s operating status and actual 
performance. 

Global search algorithms such as GA and PSO can be combined with local search algorithms to form a hybrid 
OA. Firstly, GA and PSO can be used for global search to quickly locate potential optimal solution regions. Then, 
gradient descent method is used for fine search in the region to improve the quality of the solution. Through multi 
algorithm fusion, the extensive exploration ability of global search is retained, while the accuracy and efficiency of 
local search are improved. Figure 4 effectively demonstrates the comparison of path costs between conventional 
genetic algorithms and hybrid OAs in distribution networks, while also reflecting the efficiency results. 

 

Figure 4: Comparison of Path Costs between Conventional Genetic Algorithm and Hybrid OA in Distribution 
Network Path Planning 

Figure 4 shows the distribution of path costs for each iteration. The horizontal axis represents the number of 
iterations, and the vertical axis represents the path cost. The bar chart for each iteration point shows the path cost 
of GA and hybrid OAs at that iteration point. The data shows the specific path cost values of two algorithms in each 
iteration. The path cost of GA algorithm gradually decreases from an initial value of about 950, and as the number 
of iterations increases, the cost gradually decreases to around 150. In contrast, the path cost of hybrid OAs has 
decreased from an initial value of about 800 to nearly 150. Overall, the path cost values of hybrid OAs are 
generally lower than those of GA algorithms, and the fluctuations are smaller, which further indicates that hybrid 
OAs perform more effectively and stably in optimizing path costs. A dynamic optimization mechanism can be 
designed to address the dynamic changes in the distribution network. This mechanism monitors changes in 
network load, device status, and external environment in real-time, and triggers re optimization based on the 
degree of change. When significant changes are detected, the OA can be immediately activated to recalculate the 
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optimal path, ensuring that the distribution network can quickly adapt to the changes. At the same time, 
optimization cycles can be set to periodically optimize the network to cope with slowly changing factors. 

V. Safety and Reliability Assurance Measures 
Ensuring the safety and reliability of the distribution network path planning is a crucial aspect. This section 
elaborates on the specific measures taken to achieve this goal, including risk assessment, fault prediction, and 
other aspects [33], with the aim of building a distribution network that can operate efficiently and effectively resist 
risks. 
 
V. A. Risk Assessment and Prevention 
Firstly, a comprehensive risk assessment model can be established to identify, quantify, and rank potential risks in 
the distribution network. This model comprehensively considers two dimensions: equipment aging degree and 
historical fault data, to quantitatively evaluate risks. By regularly updating risk assessment results and dynamically 
adjusting security strategies, it can ensure focused attention on high-risk areas and equipment. 

 

Figure 5: Risk level of equipment 

Figure 5 shows the risk assessment index of 20 devices using data, clearly presenting the risk level of each 
device. The horizontal axis represents the equipment number, and the vertical axis represents the risk assessment 
index, reflecting the comprehensive impact of various factors such as equipment aging degree, environmental 
impact factors, historical fault data, and load fluctuations on risk assessment. The random generation of data 
simulates the changes of different devices in these factors, emphasizing the unique characteristics and 
comprehensive risk level of each device in risk assessment. 

 

Figure 6: Scatter plot of the impact of different types of historical fault data 
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Figure 6 shows the impact of different types of historical fault data on system stability and safety: the horizontal 
axis represents event numbers, indicating different historical fault events. The vertical axis represents historical 
fault data, indicating specific numerical values for various types of faults. Device aging (device aging) is 
represented in blue, and the size of each point is determined by a weight of 0.25. The data distribution range is 
relatively small, indicating that the impact of equipment aging on system stability is relatively uniform, but there are 
still some fluctuations. 

The environmental impact is represented in red, and the size of the point is determined by a weight of 0.35. The 
data fluctuates greatly, indicating that environmental factors have a more significant and unstable impact on the 
system. Historical fault data is represented in yellow, and the size of the points is determined by a weight of 0.3. 
The fluctuation range of the data is between equipment aging and environmental impact, indicating that there is 
also a certain degree of fluctuation in the impact of historical failures on the system. The load fluctuation is 
represented in purple, and the size of the point is determined by a weight of 0.1. The small data points indicate that 
the impact of load fluctuations on system stability is relatively small and uniform. 

Data changes: The distribution range and fluctuation of data points for each type of fault are different. The impact 
of equipment aging is relatively stable, and data fluctuations are small. The data points of environmental impact are 
widely distributed and fluctuate greatly, indicating that the environment has a greater impact on system stability. 
The fluctuation of data points in historical fault data is between equipment aging and environmental impact. The 
impact of load fluctuations is relatively small and the fluctuation range is also narrow. Through these changes, it 
can be seen that different types of faults have varying degrees of impact on system stability, with significant 
environmental effects and less impact from load fluctuations. 

 
V. B. Fault Prediction and Warning 
Machine learning or deep learning algorithms can be used to construct fault prediction models. This model is based 
on historical fault data, real-time operating data, and equipment status monitoring information to monitor and 
predict the health status of equipment in real-time. The accuracy of fault prediction can be improved through steps 
such as feature extraction, model training, and validation [34]. When predicting the possibility of equipment failure, 
warning signals can be issued in advance to reserve sufficient time for fault handling and response. 

Detailed emergency plans can be developed for different types of emergencies and abnormal situations. The 
contingency plan includes emergency response procedures, personnel division, resource allocation, 
communication and liaison, etc., to ensure that emergency response work can be carried out quickly and orderly in 
case of emergencies. At the same time, communication and coordination with other emergency agencies and 
departments can be strengthened to form a linkage mechanism and improve overall emergency response 
capabilities. 

In emergency plans, special attention is paid to the development of rapid recovery strategies. Pre-planned 
backup paths, emergency power access points, and other methods can be used to ensure rapid switching to 
backup systems or paths in the event of a fault, ensuring the continuity and stability of power supply. At the same 
time, the construction and training of fault repair teams can be strengthened to improve repair efficiency and quality. 
The safety and reliability of distribution network path planning can be comprehensively improved through various 
measures such as risk assessment and prevention, fault prediction and warning, and emergency response 
mechanisms. 

VI. Evaluation of the Effectiveness of Distribution Network Path Planning 
In the implementation process of distribution network path planning, effect evaluation is a key step in verifying the 
effectiveness of strategies and optimizing results. This section elaborates on the specific methods, implementation 
steps, and result analysis of evaluating the effectiveness of distribution network path planning, aiming to 
comprehensively reflect the actual effects of planning strategies through scientific and objective evaluation 
methods, and provide data support for subsequent optimization and improvement. The evaluation indicators are as 
follows: 

Transmission efficiency improvement rate: It can be calculated by comparing the power transmission efficiency 
before and after optimization, using the formula (optimized efficiency - pre-optimization efficiency)/pre-optimization 
efficiency. Figure 7 shows the line graph of transmission efficiency and network loss before and after optimization. 

The horizontal axis on the left side of Figure 7 represents sample numbers, with a total of 100 sample points. 
The vertical axis represents the numerical value of transmission efficiency, ranging approximately from 0.5 to 1.0. 
The transmission efficiency before optimization (blue line) fluctuates between approximately 0.65 and 0.75. The 
average value is approximately 0.7. Trend of change: The data is relatively stable, but there is a certain degree of 
random fluctuation. The optimized transmission efficiency (red line) fluctuates between approximately 0.75 and 
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0.95. The average value is approximately 0.85. Trend of change: The data is relatively stable, but the overall 
efficiency has increased compared to before optimization. The data changes indicate that the optimized 
transmission efficiency is generally higher than the transmission efficiency before optimization. 

The horizontal axis in the right figure of Figure 7 represents the sample number, with a total of 100 sample points. 
The vertical axis represents the numerical value of network loss, ranging from -0.05 to 0.35. The network loss 
before optimization (blue line) fluctuates between approximately 0.10 and 0.20. The average value is 
approximately 0.15. Trend of change: There is a certain degree of random fluctuation in the data, and the overall 
trend is relatively high. The data range of optimized network loss (red line) fluctuates approximately between 0.05 
and 0.15. The average value is approximately 0.10. Trend of change: The data is relatively concentrated and 
decreasing, and the total network loss after optimization is generally lower than that before optimization. 

 

Figure 7: Line graph of transmission efficiency and network loss before and after optimization 

Through data analysis and calculation, the average transmission efficiency has been improved by about 0.15 
after optimization, with an improvement rate of about 21.43%. The total network loss has been significantly 
reduced, with an average reduction rate of about 33.33%. Improved system responsiveness and stability: The 
optimized data is more centralized and stable, indicating that the system exhibits higher adaptability and efficiency 
in the face of complex network structures and dynamic load changes, thereby enhancing overall responsiveness 
and stability. 

Then the system can record the time required from detecting load changes to completing path adjustments. 
Evaluating system response time involves recording the time required for the system to detect load changes and 
complete path adjustments. Table 3 shows the response time of the evaluation system. 

Table 3: Response time of the system after detecting load changes 

Sample Load Change Detection Time (ms) Path Adjustment Completion Time (ms) Response Time (ms) 

1 110 165 55 

2 115 170 55 

3 112 168 56 

4 108 162 54 

5 120 175 55 

6 117 172 55 

 
Table 3 records the response time of the system after detecting load changes. The displayed load change 

detection time fluctuates between 100 and 120 milliseconds, while the path adjustment completion time varies 
between 160 and 175 milliseconds. By calculation, the average response time of the system is around 55 
milliseconds, which reflects the system’s ability to quickly adapt to different load changes. 

Finally, the reduced operating costs after optimization can be calculated, including energy consumption, 
equipment maintenance, and other expenses. Table 4 evaluates the energy consumption and equipment 
maintenance costs before and after optimization. 
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Table 4: Energy consumption and equipment maintenance costs before and after optimization 

Sample 

Before 

Optimization - 

Energy Cost ($) 

After Optimization 

- Energy Cost ($) 

Energy 

Cost 

Savings 

($) 

Before Optimization 

- Maintenance Cost 

($) 

After Optimization - 

Maintenance Cost 

($) 

Maintenance 

Cost Savings 

($) 

Total Cost 

Savings 

($) 

1 5200 4900 300 1300 1100 200 500 

2 5100 4850 250 1250 1050 200 450 

3 5150 4920 230 1280 1070 210 440 

4 5250 4950 300 1320 1120 200 500 

5 5300 5000 300 1350 1150 200 500 

6 5150 4870 280 1270 1060 210 490 

7 5050 4800 250 1220 1020 200 450 

8 5100 4900 200 1250 1050 200 400 

 
Table 4 presents a detailed data analysis of energy consumption and equipment maintenance costs before and 

after optimization. Through the data, it can be seen that after introducing OAs, the energy consumption cost of the 
system has generally decreased. For example, in number 1, the energy consumption cost has decreased from 
$5200 to $4900, and the energy consumption cost savings have reached $300. At the same time, equipment 
maintenance costs have also been significantly reduced, from $1300 to $1100, saving $200. The energy 
consumption and equipment maintenance costs of other numbers have been reduced to varying degrees. These 
data not only demonstrate the effectiveness of OAs in reducing operating costs, but also emphasize their important 
role in improving the economic efficiency and sustainable management of the power system. 

In summary, the evaluation of the effectiveness of distribution network path planning has comprehensively 
verified the actual effect of planning strategies through the construction of a comprehensive evaluation index 
system, collection and processing of relevant data, adoption of multiple evaluation methods, and in-depth analysis 
of evaluation results. The evaluation results not only provide data support for optimization and improvement, but 
also provide valuable experience and reference for subsequent distribution network planning work. 

VII. Conclusions 
This article is based on AI and OA and decides to use GA as the main OA, combined with PSO’s local search 
capability for hybrid optimization to improve the global search efficiency and local search accuracy of the algorithm. 
On this basis, it integrates real-time data of the distribution network, constructs parameterized mathematical 
models including nodes, lines, and transformers, and designs intelligent path planning strategies to ensure that 
path planning can dynamically adapt to load changes and system states. In addition, anomaly detection and fault 
prediction modules have been introduced to ensure the safety and reliability of the system. A detailed evaluation of 
the optimization effect was conducted through a series of evaluation indicators, such as transmission efficiency 
improvement rate, network loss reduction rate, system response time, and economic cost savings. The research 
results indicate that the method proposed in this article significantly improves the transmission efficiency of the 
distribution network, reduces network losses, shortens system response time, and reduces economic costs. 
Although this article has achieved good results, there are still some shortcomings in practical applications, such as 
the complexity of the model and the high computational cost of the algorithm. Future research can further optimize 
algorithm performance, simplify model complexity, and explore more practical application scenarios to enhance the 
practicality and broad application prospects of the method. 

Funding 
This research was funded by the Science and Technology Project of State Grid Corporation of China, Research on 
the Business Model of Vehicle-Grid Interaction Considering New Energy Consumption, grant number 
520223230010. 

References 
[1] Wang J, Chi W, Li C, et al. Neural RRT*: Learning-based optimal path planning[J]. IEEE Transactions on Automation Science and 

Engineering, 2020, 17(4): 1748-1758. DOI:10.1109/TASE.2020.2976560  
[2] Karur K, Sharma N, Dharmatti C, et al. A survey of path planning algorithms for mobile robots[J]. Vehicles, 2021, 3(3): 

448-468.DOI:https://doi.org/10.3390/vehicles3030027  
[3] Chen J, Du C, Zhang Y, et al. A clustering-based coverage path planning method for autonomous heterogeneous UAVs[J]. IEEE 

Transactions on Intelligent Transportation Systems, 2021, 23(12): 25546-25556.DOI:10.1109/TITS.2021.3066240  



Path Planning Method for Distribution Network Based on Artificial Intelligence and Optimization Algorithms 

2625 

[4] Schmid L, Pantic M, Khanna R, et al. An efficient sampling-based method for online informative path planning in unknown 
environments[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 1500-1507.DOI:10.1109/LRA.2020.2969191  

[5] Hayat S, Yanmaz E, Bettstetter C, et al. Multi-objective drone path planning for search and rescue with quality-of-service requirements[J]. 
Autonomous Robots, 2020, 44(7): 1183-1198.DOI: https://doi.org/10.1007/s10514-020-09926-9 

[6] Li W, Wang G G, Gandomi A H. A survey of learning-based intelligent optimization algorithms[J]. Archives of Computational Methods in 
Engineering, 2021, 28(5): 3781-3799.DOI: https://doi.org/10.1007/s11831-021-09562-1 

[7] Gad A G. Particle swarm optimization algorithm and its applications: a systematic review[J]. Archives of computational methods in 
engineering, 2022, 29(5): 2531-2561.DOI: https://doi.org/10.1007/s11831-021-09694-4 

[8] Ihsan R R, Almufti S M, Ormani B, et al. A survey on Cat Swarm Optimization algorithm[J]. Asian Journal of Research in Computer 
Science, 2021, 10(2): 22-32. DOI:https://doi.org/10.9734/ajrcos/2021/v10i230237  

[9] Tang J, Liu G, Pan Q. A review on representative swarm intelligence algorithms for solving optimization problems: Applications and 
trends[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8(10): 1627-1643.DOI:10.1109/JAS.2021.1004129  

[10] Zhao W, Wang L, Zhang Z. Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm[J]. Neural Computing 
and Applications, 2020, 32(13): 9383-9425. DOI: https://doi.org/10.1007/s00521-019-04452-x 

[11] Abdel-Basset M, Ding W, El-Shahat D. A hybrid Harris Hawks optimization algorithm with simulated annealing for feature selection[J]. 
Artificial Intelligence Review, 2021, 54(1): 593-637.DOI https://doi.org/10.1007/s10462-020-09860-3 

[12] Fatemidokht H, Rafsanjani M K, Gupta B B, et al. Efficient and secure routing protocol based on artificial intelligence algorithms with 
UAV-assisted for vehicular ad hoc networks in intelligent transportation systems[J]. IEEE Transactions on Intelligent Transportation 
Systems, 2021, 22(7): 4757-4769.DOI:10.1109/TITS.2020.3041746  

[13] Dhamija P, Bag S. Role of artificial intelligence in operations environment: a review and bibliometric analysis[J]. The TQM Journal, 2020, 
32(4): 869-896. DOI:https://doi.org/10.1108/TQM-10-2019-0243  

[14] Zhao X. Deep Mining Technology of Database Information Based on Artificial Intelligence Technology[J]. International Journal of 
Information Technologies and Systems Approach (IJITSA), 2022, 16(2): 1-13.DOI: 10.4018/IJITSA.316458 

[15] Sun Z, Anbarasan M, Praveen Kumar D. Design of online intelligent English teaching platform based on artificial intelligence techniques[J]. 
Computational Intelligence, 2021, 37(3): 1166-1180.DOI:https://doi.org/10.1111/coin.12351  

[16] Zhao S, Blaabjerg F, Wang H. An overview of artificial intelligence applications for power electronics[J]. IEEE Transactions on Power 
Electronics, 2020, 36(4): 4633-4658. DOI:10.1109/TPEL.2020.3024914  

[17] Nimri R, Battelino T, Laffel L M, et al. Insulin dose optimization using an automated artificial intelligence-based decision support system in 
youths with type 1 diabetes[J]. Nature medicine, 2020, 26(9): 1380-1384.DOI:https://doi.org/10.1038/s41591-020-1045-7 

[18] Li X, Sun Y. Stock intelligent investment strategy based on support vector machine parameter optimization algorithm[J]. Neural 
Computing and Applications, 2020, 32(6): 1765-1775.DOI:https://doi.org/10.1007/s00521-019-04566-2 

[19] Javaid M, Haleem A, Singh R P, et al. Artificial intelligence applications for industry 4.0: A literature-based study[J]. Journal of Industrial 
Integration and Management, 2022, 7(01): 83-111.DOI:https://doi.org/10.1142/S2424862221300040  

[20] Xue J, Shen B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems science & control engineering, 
2020, 8(1): 22-34. DOI:https://doi.org/10.1080/21642583.2019.1708830  

[21] Kuang L, He L I U, Yili R E N, et al. Application and development trend of artificial intelligence in petroleum exploration and 
development[J]. Petroleum Exploration and Development, 2021, 48(1): 1-14.DOI:https://doi.org/10.1016/S1876-3804(21)60001-0  

[22] Yap K Y, Sarimuthu C R, Lim J M Y. Artificial intelligence based MPPT techniques for solar power system: A review[J]. Journal of Modern 
Power Systems and Clean Energy, 2020, 8(6): 1043-1059.10.35833/MPCE.2020.000159  

[23] Alhijawi B, Awajan A. Genetic algorithms: Theory, genetic operators, solutions, and applications[J]. Evolutionary Intelligence, 2024, 17(3): 
1245-1256.DOI: https://doi.org/10.1007/s12065-023-00822-6 

[24] Garud K S, Jayaraj S, Lee M Y. A review on modeling of solar photovoltaic systems using artificial neural networks, fuzzy logic, genetic 
algorithm and hybrid models[J]. International Journal of Energy Research, 2021, 45(1): 6-35.DOI: https://doi.org/10.1002/er.5608  

[25] Han Y, Huang G, Song S, et al. Dynamic neural networks: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 
2021, 44(11): 7436-7456.DOI:10.1109/TPAMI.2021.3117837  

[26] Dharma F, Shabrina S, Noviana A, et al. Prediction of Indonesian inflation rate using regression model based on genetic algorithms[J]. 
Jurnal Online Informatika, 2020, 5(1): 45-52.DOI: https://doi.org/10.15575/join.v5i1.532 

[27] Hamdia K M, Zhuang X, Rabczuk T. An efficient optimization approach for designing machine learning models based on genetic 
algorithm[J]. Neural Computing and Applications, 2021, 33(6): 1923-1933.DOI:https://doi.org/10.1007/s00521-020-05035-x 

[28] Deng W, Zhang X, Zhou Y, et al. An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems[J]. 
Information Sciences, 2022, 585: 441-453.DOI:https://doi.org/10.1016/j.ins.2021.11.052  

[29] Shafin R, Liu L, Chandrasekhar V, et al. Artificial intelligence-enabled cellular networks: A critical path to beyond-5G and 6G[J]. IEEE 
Wireless Communications, 2020, 27(2): 212-217.DOI:10.1109/MWC.001.1900323  

[30] Xie Y, Xu Z, Zhang J, et al. Self-supervised learning of graph neural networks: A unified review[J]. IEEE transactions on pattern analysis 
and machine intelligence, 2022, 45(2): 2412-2429.DOI:10.1109/TPAMI.2022.3170559  

[31] Xiao Z, Zhu L, Liu Y, et al. A survey on millimeter-wave beamforming enabled UAV communications and networking[J]. IEEE 
Communications Surveys & Tutorials, 2021, 24(1): 557-610.DOI:10.1109/COMST.2021.3124512  

[32] Abualigah L. Group search optimizer: a nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications[J]. 
Neural Computing and Applications, 2021, 33(7): 2949-2972.DOI:https://doi.org/10.1007/s00521-024-10103-7  

[33] Kurt G K, Khoshkholgh M G, Alfattani S, et al. A vision and framework for the high altitude platform station (HAPS) networks of the 
future[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 729-779.DOI:10.1109/COMST.2021.3066905  

[34] Guo H, Li J, Liu J, et al. A survey on space-air-ground-sea integrated network security in 6G[J]. IEEE Communications Surveys & 
Tutorials, 2021, 24(1): 53-87.DOI:10.1109/COMST.2021.3131332  


