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Abstract Traditional linear regression is difficult to capture complex load changes, has low prediction accuracy, 
and lacks systematicity in distribution network wiring optimization, which affects power supply efficiency. This paper 
combines big data with machine learning to propose a grid load forecasting and wiring optimization solution. First, 
after processing based on the Apache Hadoop framework, real-time data access is performed through Kafka, and 
real-time analysis and calculation are performed using Spark Streaming. Random forest is used for load 
forecasting, and data access efficiency is optimized through consumer subscription and asynchronous processing. 
Grafana is used to monitor over-limit alarms to ensure accurate predictions. Then, load and geographic data are 
integrated, and K-Means clustering is applied to identify high-load areas. The GWR (Geographically Weighted 
Regression) model is constructed to evaluate the impact of spatial characteristics on load. Finally, based on the 
distribution network wiring model of load data, the node electrical parameters are set and the wiring scheme is 
optimized using genetic algorithm. The experimental results show that the load forecast MAE (Mean Absolute Error) 
is reduced by 21.58%, and the loss is reduced by 33.16% after the wiring mode is optimized. The comprehensive 
method based on big data effectively improves the load forecasting accuracy and distribution network optimization 
efficiency, providing an important reference for the development of smart grids. 
 
Index Terms Smart Grid, Load Forecasting, Big Data Technology, Machine Learning Algorithms, Wiring Mode 
Optimization 

I. Introduction 
Faced with the continued growth of global energy demand, especially in the context of accelerated urbanization 
and the rising proportion of renewable energy, the stability and efficiency of the power system have become 
increasingly prominent. The dynamic characteristics of power loads become complex and changeable due to 
weather changes, economic fluctuations and user behavior patterns [1]-[3]. The traditional linear regression model, 
based on the simplified assumption of a linear relationship between load and related factors, fails to fully consider 
the influence of these complex factors, resulting in limited prediction accuracy [4]-[6]. The research on wiring mode 
optimization of medium-voltage distribution network also faces challenges. It mainly focuses on in-depth analysis 
of a single mode and lacks a comprehensive and systematic optimization framework, so the power supply 
efficiency still needs to be improved [7], [8]. In order to enhance the operating efficiency of the power system, an 
innovative solution must be explored to improve the accuracy of load forecasting and optimize the wiring pattern of 
the distribution network. 

In the field of load forecasting, many scholars have tried to apply a variety of models and methods to meet the 
challenges. For example, Li J [9] used the ensemble empirical mode decomposition algorithm to decompose the 
load data into components of different frequencies, then used the multivariate linear regression method and this 
LSTM to predict the low-frequency and high-frequency components respectively, and finally obtained better 
prediction results. In addition, Li G [10] proposed a multi-step forecasting method based on phase space 
reconstruction and support vector machine methods, aiming to improve the accuracy of medium-term load 
forecasting. Ngoc T T [11] improved the prediction effect of load demand data through grid search algorithm. In 
order to solve the problem of drastic changes in short-term electricity consumption and increasing data complexity, 
Lv L [12] applied a hybrid model that combined variational mode decomposition, LSTM neural network, seasonal 
factor elimination and error correction technology. Although these models have advantages in terms of 
computational efficiency and simplicity of implementation, they still have certain limitations when dealing with 
complex practical application scenarios. 



Grid Spatial Load Forecasting Method Based on Big Data Technology and Optimization of Medium-voltage Distribution Network Wiring Mode 

2627 

Traditional methods are difficult to capture nonlinear and sudden load changes, especially when the load 
fluctuates greatly or is affected by multiple external factors, and their prediction results often deviate from reality. In 
addition, there are relatively few studies on the optimization of distribution network wiring modes. Existing studies 
mainly rely on empirical rules and lack systematicity and scientificity [13]-[15]. This lack of comprehensive 
consideration of the wiring mode optimization strategy has led to increased power supply pressure on the power 
system during peak loads and may cause safety hazards in power supply [16]-[19]. Therefore, it is urgent to 
develop a new research framework to comprehensively improve the effects of load forecasting and wiring mode 
optimization. 

In order to cope with the complex challenges faced by the power system, some scientific researchers are 
actively exploring the use of big data and machine learning technology to innovate load forecasting methods, using 
cutting-edge algorithms such as random forests and support vector machines to build load forecasting models. 
These algorithms have shown significant advantages in handling nonlinear relationships, and their prediction 
performance has been significantly improved compared with traditional methods [20]-[22]. These machine learning 
models rely on their deep learning capabilities on massive amounts of data to more precisely depict the correlation 
between complex inputs and outputs. Despite this, although current research has made certain progress in the 
field of load forecasting, it often ignores the detailed analysis of the spatial dimension, especially the potential 
impact of geographical factors on load dynamic changes, which to a certain extent limits the further improvement of 
forecast accuracy [23]-[25]. At the same time, in the optimization exploration of distribution network connection 
modes, most of the existing research still remains at the analysis level of a single mode, lacking systematic, 
data-driven scientific optimization strategies. Most decisions still rely on experience and judgment, and fail to fully 
tap the potential of data resources [26], [27]. In view of this, this paper is committed to integrating big data 
technology, machine learning and spatial analysis methods to implement a comprehensive optimization strategy 
for grid spatial load forecasting and medium-voltage distribution network wiring mode [28]-[30], aiming to 
comprehensively improve the accuracy of load forecasting. properties, and provide scientific basis for optimal 
decision-making of wiring modes. 

The core research goal of this paper is to apply a new paradigm of grid spacial load forecasting driven by big 
data and simultaneously optimize the wiring mode of the medium-voltage distribution network. To achieve this goal, 
this paper follows a series of rigorous research steps. Starting from data integration and preprocessing, the deep 
laws of load changes are captured through machine learning modeling [31]-[33]. Real-time data stream processing 
technology is used to ensure that the prediction model can flexibly respond to the ever-changing power demand 
and enhance the response speed and adaptability of the system. With the help of spatial analysis technology, the 
intrinsic relationship between regional characteristics and load changes is deeply explored, thereby further 
improving the spatial resolution and accuracy of the prediction [34], [35]. At the level of wiring mode optimization, 
genetic algorithms are adopted. This series of research results not only provides valuable references for the 
planning and construction of smart grids, but also lays a solid foundation for promoting the modernization and 
transformation of power systems and responding to future energy challenges. Through the in-depth exploration of 
this study, this paper hopes to open up new horizons for the power industry, stimulate the vitality of technological 
innovation and management optimization, and promote the sustainability of power supply and the efficiency of 
resource allocation, contributing to the construction of a greener and smarter power system. 

II. Grid Spacial Load Forecasting and Wiring Mode Optimization 
II. A. Data Integration and Processing 
II. A. 1) Data Collection and Preprocessing 
The historical load data comes from the power company database, covering the hourly data of the past five years, 
including seasonal and holiday electricity consumption, to reflect the seasonal changes in load. Meteorological 
data is obtained through the National Meteorological Administration and online platforms, including key variables 
such as temperature and humidity, which have an important impact on power load. Geographic information data is 
provided by GIS (Geographic Information System). Combined with power load data, the impact of geographical 
features on load is analyzed. User behavior data relies on real-time records of smart meters and is aggregated and 
stored by power companies. This paper uses the Apache Hadoop framework to process data. First, MapReduce is 
used to clean the data and remove missing and outliers; the mean interpolation is used for missing values; outliers 
are identified by Z-score. Hive SQL is used to remove duplicates to ensure that load records are unique. The 
Z-score method is used for data standardization to eliminate the impact of dimensions and prepare for model 
training. 
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II. A. 2) Data Integration 
The Apache Spark’s DataFrame API (Application Programming Interface) is used to merge the processed load 
data, meteorological data, geographic information data, and user behavior data, and connect them according to 
timestamps and regional IDs to ensure data consistency and integrity. During the data integration process, new 
features are built for forecasting needs, and features such as “temperature change rate” and “humidity change rate” 
are extracted from meteorological data, and features such as “peak hour power consumption ratio” are generated 
based on user behavior data. These new features are designed to improve the model’s ability to explain load 
changes and enhance the accuracy of forecasts. 

After data integration, large-scale data that has been processed multiple times requires efficient storage and 
management. This paper chooses to use HDFS (Hadoop Distribute File System) as the main data storage system 
to ensure high availability and scalability of data. At the same time, Hive is used for metadata management to 
facilitate subsequent data query and analysis. During data storage, this paper regularly backs up and synchronizes 
data to prevent data loss. At the same time, a data access permission management mechanism is established to 
ensure the security of sensitive data. 

 
II. A. 3) Real-time Data Processing 
In order to enhance the accuracy and immediate response capability of load forecasting, this study builds a 
real-time data stream processing architecture and adopts Apache Kafka and Apache Spark Streaming 
technologies to realize real-time data processing. In the data access link, Kafka efficiently aggregates real-time 
load data, meteorological information and user behavior data with its excellent high throughput and low latency 
characteristics. Subsequently, in the data processing stage, Spark Streaming is used for real-time analysis and 
calculation, precisely capturing load change trends through sliding window technology. In addition, the real-time 
processing results can be immediately fed back to the load forecasting model, driving the dynamic update of the 
model to ensure that it is highly adaptable to the rapidly changing load environment. When new data arrives, the 
system intelligently triggers the update mechanism and automatically adjusts the model parameters to precisely 
reflect the latest load characteristics. 

 

Figure 1: Real-time data stream processing system 

Figure 1 shows the components of the real-time data stream processing system. Real-time data access is 
performed through Kafka, including load data, meteorological data, and user behavior data. All data are 
aggregated in the data stream processing stage, and Spark Streaming is used for real-time analysis and 
calculation. The sliding window technology is applied to timely capture the load change trend. The processing 
results are used to dynamically update the load forecasting model, and the model parameters are automatically 
adjusted by calling the update algorithm. 

 
II. B. Machine Learning Modeling 
II. B. 1) Random Forest Model 
Before model training, the data set is divided into a training set (70%), a test set (20%), and a 10% validation set 
(10%). Stratified sampling is used to ensure balanced distribution. The random forest model is initialized using sk 
learn ensemble, Random Forest Regressor. After setting the hyperparameters, feature importance is evaluated 
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and the model is streamlined through feature_importances_. GridSearchCV is combined with cross-validation to 
optimize the hyperparameters and select the combination with the smallest MSE. 
 
II. B. 2) LSTM Network Model 
The training set is scaled to [0, 1] by Min-Max. Keras is used to build the input layer, LSTM layer, and fully 
connected layer of the LSTM model. The LSTM layer has multiple layers and 50 units, and retains time series 
information. The fully connected layer uses the ReLU activation function to output the load forecast value. Keras 
Tuner optimizes the hyperparameters and evaluates the performance through the validation set MSE. 
 
II. B. 3) Selection of Two Models 
After all models are trained and evaluated, this paper compares the performance indicators of the random forest 
model and the LSTM model, and selects the model with better performance as the final load forecasting model and 
the other model as an auxiliary model. The forecast results of the two models are visualized, and the accuracy of 
the forecast is intuitively displayed by comparing the actual load with the predicted load. 

 

Figure 2: Model prediction results for load 

Figure 2 shows the load forecast of the random forest model on the left and the forecast of the LSTM model on 
the right. The horizontal axis is time and the vertical axis is load (MW). In the left figure, the black solid line 
represents the natural fluctuation of the true load, which fluctuates regularly with a 100-hour cycle. The blue dotted 
line is the random forest prediction value. The overall trend is consistent with the true load, but there are deviations 
at certain points in time, indicating that the model has certain limitations in capturing sudden changes. The LSTM 
model diagram on the right of Figure 2 also uses a solid black line to represent the true load, and a red dotted line 
to represent the LSTM prediction result. The LSTM model is relatively sensitive in responding to short-term load 
changes, but in multiple time periods, the predicted values slightly deviate from the true values, showing the 
model’s shortcomings in processing volatile data. This comparison highlights the advantages of the random forest 
model in overall prediction accuracy. Ultimately, based on the results of cross-validation and the evaluation of the 
test set, this paper determines the random forest model as the best load forecasting model and the LSTM model as 
an auxiliary model. 

 
II. C. Real-time Data Stream Processing 
II. C. 1) Construction of Data Stream Monitoring System 
In order to realize the monitoring and processing of real-time load data, this study uses Apache Kafka as the data 
stream processing platform. The specific steps include: first, a Kafka cluster is built; one or more Kafka proxy 
nodes are deployed to ensure high availability and powerful data processing capabilities; Zookeeper is used for 
cluster management and coordination. Secondly, multiple topics are created in Kafka, `real_time_load` and 
`environment_data`, which are used to receive real-time load data and environmental change data respectively. 
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Using the Kafka command-line tool, these topics are created and the appropriate number of partitions and replicas 
are set to improve data throughput and fault tolerance. Finally, a data producer application is developed to use 
Kafka’s Producer API to send load data and environmental data to the corresponding topics in real-time. The data 
producer obtains real-time data from power monitoring equipment and meteorological monitoring stations, and 
sends it to Kafka after formatting it in JSON format to ensure the accuracy and timeliness of the data stream. 

After the real-time data is accessed, the system needs to input it into the trained load forecasting model. The 
specific steps are as follows: first, Kafka’s Consumer API is used to develop a data consumer application and 
subscribe to the aforementioned topics in real-time to receive newly generated load data and environmental 
change data. The received JSON format data is parsed to extract relevant features, such as timestamp, load value, 
temperature, humidity, etc. Before inputting the real-time data into the model, the data needs to be normalized and 
missing values are processed. The same Min-Max scaling method as in the training phase is used to scale the data 
to the [0, 1] range. In load forecasting, it is usually necessary to analyze the relationship between load data and 
environmental data. The covariance formula is as shown in Formula 1: 

 𝐶𝑜𝑣(𝑋, 𝑌) =
ଵ

௡
∑ (𝑥௜ − 𝑥‾)௡
௜ୀଵ (𝑦௜ − 𝑦‾) (1) 

The correlation coefficient formula is as Formula 2: 

 𝜌(𝑋, 𝑌) =
஼௢௩(௑,௒)

ఙ೉ఙೊ
 (2) 

In Formulas 1 and 2: 𝑋 and 𝑌 are two variables, load and temperature. 𝑥௜ and 𝑦௜ are the 𝑖-th observations. 
𝑥‾  and 𝑦‾  are the means of 𝑋 and 𝑌. 𝜎௑  and 𝜎௒  are the standard deviations of 𝑋 and 𝑌. 𝐶𝑜𝑣(𝑋, 𝑌) is the 
covariance, which measures the common variation trend of the two variables. 𝜌(𝑋, 𝑌) is the correlation coefficient, 
which ranges from [-1,1] and indicates the linear correlation between the two variables. 

 
II. C. 2) Load Forecast Update 
After the real-time data processing is completed, the data is immediately injected into the pre-trained load 
forecasting model to perform the immediate load forecasting task. This process starts with loading the saved model 
through the consumer application, using the joblib or pickle module to achieve persistent storage and efficient 
loading of the model, ensuring that the model can quickly enter the working state. Subsequently, the processed 
real-time data is input into the loaded model, and the load forecast value is quickly generated by calling its predict 
function. This step ensures the system’s rapid response and accurate prediction of real-time data changes. The 
prediction results and their timestamp information are properly stored in the MongoDB database. In order to 
improve data access efficiency and flexibility, SQLAlchemy is used as a bridge for database operations to simplify 
data management. 

In order to intuitively display the real-time load forecast, the system builds a visual dashboard, and the Grafana 
tool is used to communicate with the database in real-time to ensure the instant update and accuracy of the data. 
The dashboard interface is carefully designed to intuitively display key indicators such as real-time load forecast 
trends, actual load conditions, and environmental variables. In addition, the system has a built-in threshold 
monitoring mechanism. Once the predicted load reaches the preset safety limit, the system immediately triggers an 
alarm to notify relevant personnel to respond quickly. 

 

Figure 3: Load distribution within a time period 
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Figure 3 shows the load distribution within 50 time periods. The load value fluctuates between 110MW and 
152MW, reflecting the change trend of power load over time. The load shows a gradual upward trend in the early 
time period, reaching 145MW. The load climbs again at the 15th time point, reaching a maximum of 152MW, 
showing the peak period of power demand. This change pattern may be related to the power demand in daily life, 
such as the difference between working days and weekends, morning and evening peaks and valleys, indicating 
the load pressure of the system during peak periods and idle resources during low peak periods. By monitoring 
these data in real- time, the system can manage power resources and ensure the stability of power supply. 

In order to ensure the stability and real-time performance of the system under high load conditions, system 
performance optimization must be carried out. By adjusting the configuration of the Kafka consumer, the 
`max.poll.records` parameter is set to achieve batch processing, improve data processing efficiency, and reduce 
the delay of each processing. The asynchronous processing mode is adopted to ensure the decoupling between 
real-time data processing and load forecasting, and the asynchronous consumption of real-time data is realized by 
using message queues, which not only improves the throughput of the system, but also enhances the flexibility and 
response speed of processing. In order to enhance the robustness of the system, Kafka’s retry mechanism and 
dead letter queue are implemented to ensure that when an exception occurs during data processing, the system 
can automatically recover and reprocess the unsuccessful data, ensuring the reliability and stability of the system 
in complex environments. 

 
II. D. Spatial Analysis Application 
II. D. 1) Spatial Feature Identification 
Before conducting spatial exploration, the integration and preprocessing of load data and geographic information 
data are indispensable steps. Based on the regional ID, this paper integrates the previously processed load data 
with geographic information data to construct a comprehensive data set covering multiple information such as load 
value, geographic coordinates, and population density. This integration lays a solid foundation for subsequent 
spatial exploration. Using the Geopandas library, this paper converts the integrated data into GeoDataFrame 
format for easy spatial analysis, and ensures that the geographic coordinate system of all data is unified to WGS84 
(World Geodetic System-1984 Coordinate System) to ensure the accuracy of geospatial processing. In the process 
of data merging, if missing values are encountered, this paper adopts interpolation or mean substitution strategies 
to ensure the integrity of the data. 

This study uses GIS technology and combines the K-Means clustering algorithm to divide the region into several 
clusters, and determines the optimal number of clusters through the elbow rule. At the same time, this paper 
conducts time series analysis on the load data of each region to gain in-depth insights into its seasonal and trend 
changes. 

 

Figure 4: Spatial analysis of load data by K-Means clustering algorithm 

In Figure 4, the load data is spatially analyzed using the K-Means clustering algorithm. Figure 4 shows the 
longitude and latitude distribution of 100 data points, each representing the load situation of a region. The latitude 
ranges from 34 degrees to 34.5 degrees, and the longitude ranges from -118 degrees to -118.5 degrees. By setting 
3 clusters, the algorithm divides these regions into three categories, marked with red, green and blue, showing 
regions with similar load characteristics. The cluster center marks the center of each cluster. The degree of load 
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concentration can be identified through visualization, and the load differences between different regions can be 
understood, thereby providing data support for load management and power grid optimization. 

 
II. D. 2) Spatial Regression Model Construction 
In order to quantify the role of spatial characteristics in load forecasting, this study uses the Geographically 
Weighted Regression (GWR) Model for modeling and analysis. First, the GWR model is constructed, and the load 
value is set as the response variable, while geographic characteristics such as population density, distance to 
major power supply facilities, and land use type are used as explanatory variables. With the help of the GWR 
library in Python, the corresponding geographic and load data are input to ensure that the model can effectively 
capture spatial heterogeneity. Subsequently, the least squares method is used to estimate the model parameters 
and precisely calculate the effects of each explanatory variable in different geographical locations. In this process, 
the model generates a unique set of local regression coefficients for each geographical location to reflect the 
spatial impact of the explanatory variables on load forecasting. 

When deeply analyzing the results of the GWR model, this paper first spatially visualizes the regression 
coefficients and maps them to the geographic space with the help of GIS tools to intuitively show the degree of 
influence of explanatory variables on load in different regions. Through map analysis, key spatial features are 
identified to provide strong support for decision making. In addition, this paper also conducts spatial heterogeneity 
analysis to explore the complex relationship between load and explanatory variables in each region. 

 
II. E. Wiring Mode Optimization 
II. E. 1) Construction of Medium-voltage Distribution Network Wiring Model 
In the first step of wiring mode optimization, the medium-voltage distribution network wiring model is constructed 
according to the load forecast results and the current status of the power grid. First, the basic information of the 
existing power grid is collected through the geographic information system GIS, which includes the capacity, load 
distribution, user distribution and line parameters of each substation. 

Table 1: Basic information of each substation in the medium-voltage distribution network 

Substation ID Substation Capacity (MVA) Load Distribution (kW) Number of Users Line Type 

1 20 1500 100 ACSR 25mm² 

2 30 2500 150 ACSR 35mm² 

3 15 1200 80 ACSR 30mm² 

4 25 1800 120 ACSR 40mm² 

5 10 800 60 ACSR 25mm² 

6 18 1300 90 ACSR 30mm² 

7 22 1600 110 ACSR 35mm² 

8 12 900 70 ACSR 30mm² 

9 20 1400 95 ACSR 25mm² 

10 30 2700 175 ACSR 40mm² 

 
Table 1 shows the basic information of each substation in the medium-voltage distribution network, including 

substation number, capacity, load distribution, number of users, and line type used. These data provide data 
support for load forecasting and wiring mode optimization. Among them, substation 1 has a capacity of 20 MVA and 
a load distribution of 1500 kW, serves 100 users, and uses ACSR 25mm² conductors, indicating that it has a strong 
power supply capacity. In contrast, substation 5 has a smaller capacity of only 10 MVA, but its load distribution is 
800 kW, serving 60 users, showing a lower power supply pressure. Overall, the load utilization rate of the station is 
high and its power supply is stable. At the same time, the type of ACSR (Aluminum Conductor Steel Reinforced) 
conductor used in each substation also reflects different load carrying capacities. Through data identification of 
load concentration areas, the foundation is laid for optimizing the wiring scheme of the medium-voltage distribution 
network. 

Next, the power system modeling software is used to design and construct the wiring model of the 
medium-voltage distribution network. The model incorporates each node substation, distribution box, user terminal 
and line into it, and truly reflects the topological structure of the power grid. According to the collected data, the 
electrical parameters set include: ACSR is selected as the conductor type; the cross-sectional area is 50 mm²; the 
line length is 1000 m; the resistance value is calculated to be 0.564 Ω; the inductive reactance is 125.6 Ω; the rated 
voltage is 10 kV; the rated current is about 288.68 A. The precise setting of these parameters ensures that the 
model can accurately reflect the electrical characteristics of the power grid. 
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II. E. 2) Optimization Algorithm Selection and Application 
Next, this paper uses genetic algorithm (GA) to optimize the wiring mode and find the best wiring scheme. First, the 
basic framework of the genetic algorithm is built, including individual encoding, fitness function, selection, 
crossover and mutation operations. In this process, this paper uses binary encoding to represent the various line 
configurations in the wiring scheme to ensure that the encoding form is concise and easy to handle. 

Subsequently, the fitness function is designed to evaluate the advantages and disadvantages of different wiring 
schemes. The fitness function mainly considers three aspects. The first is the power supply efficiency, which is 
evaluated by calculating the energy loss of the entire distribution network. The smaller the loss, the higher the 
fitness score. The second is the load balance, which evaluates the load balance of each node. The more balanced 
the load, the higher the fitness score, avoiding local overload. The final is to consider the performance of the wiring 
scheme under fault conditions, which can maintain power supply in the event of a fault, with a higher fitness score. 
The parameters of the genetic algorithm are set, including population size, crossover probability, and mutation 
probability. The setting of these parameters combines experience and previous research results to determine the 
appropriate range, thereby improving the convergence speed and optimization effect of the algorithm. Through the 
above steps, this paper constructs a systematic genetic algorithm framework that can effectively optimize and 
analyze the wiring mode of the medium-voltage distribution network. 

In the optimization process, this paper executes the genetic algorithm to find the best wiring scheme. The 
specific steps are as follows: first, multiple wiring schemes are randomly generated as the initial population of the 
genetic algorithm. Each scheme is composed of different line configurations to ensure the diversity of the 
population. Next, the fitness value is calculated for each individual scheme and evaluated using the previously 
designed fitness function. By calculating the fitness value, the better individuals are selected. 

 

Figure 5: Comparison of fitness convergence of three algorithms 

Figure 5 shows the fitness convergence comparison of GA, Particle Swarm Optimization (PSO) and Simulated 
Annealing (SA) in load forecasting. GA reaches a fitness of 46 in the 100th iteration, showing the fastest 
convergence speed and the highest fitness value, indicating its ability to quickly find the optimal solution in a short 
generation. In contrast, PSO converges slowly, while SA converges the slowest. Overall, GA is superior to PSO 
and SA, has stronger global search capabilities and optimization efficiency, and is suitable for load forecasting 
tasks in smart grid distribution networks. 

In the selection operation, this paper adopts methods such as roulette selection to select better individuals from 
the current population to form a new population to maintain the inheritance of excellent genes. The selected 
individuals are crossover and mutation operations are performed to generate new individuals. The crossover 
operation can be achieved by single-point crossover or multi-point crossover, while the mutation operation can be 
achieved by randomly changing the state of a certain line. The whole process is iterated multiple times, including 
fitness evaluation, selection, crossover and mutation, until the preset stop condition is reached and the fitness 
converges or the maximum number of iterations is reached. 
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III. Evaluation Indicators and Calculation Methods 
III. A. MAE of Load Forecasting 
In order to evaluate the accuracy of load forecasting, a data set of the predicted values generated by the model 
and the actual load values is collected to obtain the MAE (Mean Absolute Error) value. The smaller the MAE value, 
the higher the accuracy of the forecasting model. 

 

Figure 6: Prediction effect of load data 

The upper figure of Figure 6 shows the comparison between the predicted load of the traditional method and the 
predicted load of the method in this paper. The actual load data is the recorded 24-hour load value, which ranges 
from 0MW to 100MW. According to the calculation, the MAE of the traditional method is 4.68MW, which reflects 
that the method has a large deviation in capturing load changes. The lower figure of Figure 6 shows the prediction 
results of the proposed method, which makes the predicted load curve closer to the actual load curve. The 
predicted value of the new method in this paper has a smaller error than the actual value. The results show that the 
MAE is 3.67MW. This method reduces the error by 21.58%, indicating that the proposed method has achieved 
significant improvements in load forecasting. 

 
III. B. Accuracy of Load Forecasting Model 
The datasets of predicted values and actual values are prepared to ensure that the number of data points is 
consistent between the two, and the mean square error (MSE) is calculated. The smaller the RMSE value, the 
higher the prediction accuracy of the model. 

Table 2: Related error analysis 

Time Point Actual Load (kW) Predicted Load (kW) Prediction Error (kW) Square Error (kW2) 

0:00 50 52 2 4 

1:00 48 46 -2 4 

2:00 55 58 3 9 

3:00 53 51 -2 4 

4:00 49 50 1 1 

5:00 56 54 -2 4 

6:00 60 61 1 1 

7:00 62 60 -2 4 

8:00 58 59 1 1 

9:00 54 53 -1 1 

10:00 65 66 1 1 

11:00 70 68 -2 4 

Total    38 
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Table 2 shows the evaluation results of the load forecasting model, including the comparison between actual 
load and predicted load and the related error analysis. The time points in Table 2 are from 00:00 to 11:00. The 
actual load data fluctuates between 48 and 70 kW, while the predicted load is between 46 kW and 68 kW, 
indicating that the forecasting model performs better in certain periods. The prediction error column shows that the 
error is between ±3 kW. The square error reflects the degree of deviation of the model in a specific period by 
squaring the prediction error at each time point. According to the error calculation in the table, the total square error 
is 38 kW² and the RMSE is 1.78kw, indicating that the overall prediction accuracy of the model is good. 

 
III. C. R² Determination Coefficient 
The R² determination coefficient is used to evaluate the explanatory power of the load forecasting model for data 
variation. The closer the R² value is to 1, the stronger the model’s ability to explain data variation is, reflecting the 
model’s fitting effect and prediction ability. 

 

Figure 7: Evaluation results of the load forecasting model 

Figure 7 presents the evaluation results of the load forecasting model. The left side is a scatter comparison chart 
of actual load and predicted load. The horizontal axis represents the actual load value and the vertical axis 
represents the predicted load value. The density of data points intuitively reflects the fit of the model. The red 
regression line in the figure clearly reveals the close linear relationship between the predicted value and the actual 
value, with R² as high as 0.96, demonstrating the model’s powerful analytical power and accurate prediction 
performance for data fluctuations. The residual graph on the right shows the error distribution between the 
predicted load and the actual load. The horizontal axis corresponds to the predicted load and the vertical axis is the 
residual. The error distribution is balanced and has no significant systematic deviation, which further confirms the 
robustness of the model. 

 
III. D. Wiring Efficiency Improvement Ratio 
In order to evaluate the effect of wiring mode optimization, this paper first needs to calculate the loss of the power 
supply system and define the loss before and after optimization. The calculation of loss is usually based on the 
actual load and line characteristics, and is estimated by multiplying the current and resistance. On this basis, this 
paper calculates the efficiency improvement ratio by comparing the difference in loss before and after optimization. 

Figure 8 shows the change in power loss over a 12-month period before and after the wiring pattern optimization. 
The horizontal axis represents time (months) and the vertical axis represents power supply loss. The loss data 
before optimization is relatively high, all around 150MW, and shows a certain fluctuation, reflecting that the system 
is less efficient at this stage. In contrast, the loss data after optimization is significantly reduced, with losses around 
100MW and a small fluctuation, indicating that the optimization measures effectively improve the power supply 
efficiency, and the loss is reduced by 33.16% after 12 months of optimization. 
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Figure 8: Change in power supply loss 

 
III. E. Economic Benefit Evaluation 
When evaluating the economic benefits after optimizing the wiring mode, the cost changes before and after 
optimization are analyzed by collecting and comparing the data of power supply cost and maintenance cost. The 
specific methods include calculating the difference in total cost, expressing the economic benefit in percentage, 
conducting life cycle cost analysis at the same time, considering factors such as equipment depreciation and 
energy efficiency improvement, and evaluating the additional income brought by the improvement of power supply 
efficiency, such as reducing power outage losses. Through these comprehensive analyses, the actual economic 
benefits of wiring mode optimization are quantified. 

Table 3: Changes in various costs before and after wiring mode optimization 

Cost Category 
Cost Before Optimization 

(Units: Yuan) 

Cost After Optimization (Units: 

Yuan) 

Cost Difference (Units: 

Yuan) 

Lifecycle Cost (Units: 

Yuan) 

Power Supply Cost 150,500.75 120,250.50 -30,250.25 400,000.00 

Maintenance Cost 50,300.20 30,100.40 -20,199.80 100,500.00 

Equipment Depreciation 20,800.10 15,200.75 -5,599.35 60,000.00 

Energy Efficiency Cost 10,600.00 7,500.85 -3,099.15 30,800.00 

Power Outage Loss 25,400.00 5,300.25 -20,099.75 15,200.00 

Total 257,601.05 178,352.75 -79,248.3 606,500.00 

 
Table 3 shows the changes in various costs before and after the wiring mode optimization, highlighting the 

economic benefits of optimization measures. The power supply cost is reduced by 30,250.25 yuan; the 
maintenance cost is reduced from 50,300.20 yuan to 30,100.40 yuan; the equipment depreciation is also 
significantly reduced, from 20,800.10 yuan to 15,200.75 yuan, showing the effectiveness of optimization in various 
expenditures; the energy efficiency cost is reduced from 10,600.00 yuan to 7,500.85 yuan, a decrease of 3,099.15 
yuan; the power outage loss drops from 25,400.00 yuan to 5,300.25 yuan, a relatively large decrease, which shows 
that the optimization measures have significantly improved the power supply efficiency and reduced the economic 
losses caused by the power outage. Taken together, the total cost drops from 257,601.05 yuan to 178,351.75 yuan, 
a difference of 79,248.3 yuan, and the overall decrease is 30.76%. 

IV. Conclusions 
This paper combines big data technology and advanced machine learning algorithms to apply a grid spatial load 
forecasting method and a medium-voltage distribution network wiring mode optimization scheme. By integrating 
multi-source data such as historical load, meteorology and geography, and applying random forest and long 
short-term memory network (LSTM) models, this paper significantly improves the accuracy of load forecasting and 
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significantly reduces MAE. In addition, after optimizing the wiring mode, power supply losses are significantly 
reduced and economic benefits are significantly improved. Although this study has achieved positive results in load 
forecasting and wiring mode optimization, there are still problems such as strong data dependence and insufficient 
model interpretability. Future research can further explore multi-model fusion, real-time data analysis technology, 
and applications in different scenarios to improve the robustness and applicability of the model and provide more 
comprehensive support for the development of smart grids. 
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