
International Journal for Housing Science and Its Applications 
Publish August 4, 2025. Volume 46, Issue 3 Pages 2768-2784 

2768 

 
https://doi.org/10.70517/ijhsa463233 
 
 

Personalized Design Applications and Innovations in Ceramic 
Art Creation Using 3D Printing 
Zheng Yuan1,* 

1 Zhengzhou Academy of Fine Arts, Zhengzhou, Henan, 450000, China 

Corresponding authors: (e-mail: 13683835853@163.com). 
 
 

Abstract The emergence of 3D printing technology has brought about a revolutionary change in the creation and 
design of ceramic artwork, which is not only able to quickly and accurately produce complex ceramic structures, but 
also able to achieve personalized customization and creative design, which has injected a new vitality into ceramic 
art. In this paper, after analyzing the application status of 3D printing technology in personalized ceramic artwork, 
we explored the method of generating the image of ceramic artwork based on genetic algorithm, after comparing 
the traditional and multi-objective optimization two kinds of 3D printing task scheduling methods, we established a 
3D printing multi-objective optimization task scheduling problem model, combined with the improvement of particle 
swarm algorithm for solving the problem, and got the closest point to the ideal point as the optimal solution as: 1  
=180°, h=0.201mm, V =336.22mm3, T=342. In the analysis of ceramic artwork modeling based on perceptual 
imagery, it is found that the perceptual vocabulary corresponding to Sample 2 and Sample 3 is more inclined to the 
rounded, simple, and practical among the four influencing variables of the structural factors. 
 
Index Terms genetic algorithm, improved particle swarm algorithm, 3D printing technology, ceramic artwork 

I. Introduction 
For a long time, the design and development of ceramic handicrafts have been constrained by factors such as tools, 
materials and processes [1], [2]. With the progress of science and technology and aesthetic changes, ceramic tools 
and materials and molding processes have been continuously developed and improved for thousands of years, and 
consequently the shape, appearance, style and personalization of ceramic handicrafts have become more and 
more rich [3]-[6]. 3D printing technology is a product of the current digital age, the use of this technology in the 
development of ceramic creative design, not only from a technical point of view to improve the efficiency of the 
development, but also for the design of ceramic handicrafts to bring new ideas and new inspiration [7]-[10]. 

3D printing technology is based on digital models, the use of powdered metal or plastic and other bondable 
materials, through the way of layer-by-layer printing to construct the object of the technology, which has the 
advantages of simple operation, fast molding speed, high accuracy, etc. [11]-[14]. In the design phase of 3D 
modeling, one of the most computer resource-saving way is to use as few points and lines and surfaces combined 
and arranged to form as rich as possible three-dimensional shape, this design idea is called the 3D model of the 
industry of low-mode “topology” [15]-[18]. This topological structural features applied to 3D ceramic crafts modeling 
design, so that designers can get rid of the traditional handmade craft modeling limitations, the use of digital 
modeling of the form language for the design of the composition, more emphasis on the craft modeling of the 
geometric sense of form of the combination of points, lines and surfaces, rich in the modernist atmosphere [19]-
[22]. Combined with the fine layer height printing, the production of exquisite modern abstract geometric style crafts, 
to the market and consumers to provide more modern aesthetic experience, to avoid the aesthetic homogenization 
and lack of personalization of traditional ceramic handicraft products on the market, to provide a more rich in the 
characteristics of the times ceramic craft products [23]-[26]. 

This paper firstly discusses the application of 3D printing technology in the design and creation of ceramic artwork. 
Subsequently, it proposes the image generation method of ceramic artwork based on genetic algorithm, and then 
compares the traditional and multi-objective optimization two 3D printing task scheduling methods, and at the same 
time, adopts the n-paradigm weighting method to allocate weights for different optimization objectives to form a 
combination of optimization objectives, and establishes the 3D printing multi-objective optimization task scheduling 
problem model. After that, based on the improved particle swarm algorithm, the average cost per unit volume is 
used as the adaptation degree, the scheduling sequence is used as the position information of the particles, the 
solution of the problem is represented by the decimal sequential two-dimensional encoding, and the dynamic inertia 
factor with linear decreasing weights is applied to the updating strategy to adjust the global and local searching 
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ability, which in turn obtains the optimal value of the objective function and the corresponding solution set. In the 
experimental part, the performance of the improved genetic algorithm proposed in this paper is tested, and at the 
same time, an example ceramic artwork model is selected to verify the feasibility of this paper's method and to 
evaluate the perceptual intention. 

II. 3D printing technology in ceramic art creation in the application of practice 
(1) Innovation at the design stage 

In traditional ceramic art creation, designers usually need to rely on hand-drawing or sculpture to build the shape 
and structure of the work. However, this approach is often limited by the level of technology and material properties, 
making it difficult to realize complex and detailed designs. The introduction of 3D printing technology has solved 
this problem. Artists through the 3D modeling software to freely build complex shapes and structures, to achieve 
the effect of the traditional process is difficult to achieve. 3D software also provides a rich library of materials and 
textures, so that artists can more realistically simulate the texture and appearance of ceramics. Using virtual 
simulation technology, the artist can also preview and adjust the effect of the work in the design process, greatly 
improving the efficiency and quality of the design. 

(2) Optimization of the production stage 
In the production process of ceramic works, the traditional method requires a number of trial production and 

modification to achieve satisfactory results. This is not only time-consuming and labor-intensive, but also costly. 3D 
printing technology, on the other hand, can realize the rapid conversion from design to production and greatly 
shorten the production cycle. Through 3D printers, artists can directly print out the designed model as the prototype 
of the ceramic work. 3D printing is not only fast and accurate, but also can avoid the error and waste of manual 
production. At the same time, 3D printing technology can also achieve the optimal use of ceramic materials, reduce 
the generation of waste and lower production costs. In addition, 3D printing technology can also be applied to the 
surface decoration and texture treatment of ceramics. By printing out films or coatings with specific textures and 
patterns, artists can add more artistic effects and personalized elements to ceramic works. 

(3) The realization of personalized customization 
With the diversification of consumer demand, personalized customization has become an important trend in the 

ceramic art market. And 3D printing technology provides strong support for the realization of personalized 
customization. Artists can use 3D scanning technology to obtain the consumer's facial or physical characteristics 
and specific things characteristic data, and then according to these data to customize a unique ceramic artwork. 
Such customized works not only meet the consumer's personalized needs, but also has a high commemorative 
significance and collection value. In addition, the artist can also through online platforms or social media and other 
channels, interaction and communication with consumers, to understand their preferences and needs, so as to 
design ceramic artwork more in line with market demand. This interactive way of creation can not only improve the 
creativity and market competitiveness of the works, but also enhance the contact and interaction between artists 
and consumers. 
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Figure 1: Ceramic construction innovation design process 
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III. Research on multi-task scheduling strategy for 3D printing based on improved 
genetic algorithm 

III. A. Genetic Algorithm Based Image Generation Method for Ceramic Artwork 
III. A. 1) Design process of ceramic model based on genetic algorithm 
If a shape wants to evolve, the first step is population generation, which is based on the criteria of the component 
shape, and then the resulting population is evolved in detail. The evolutionary process needs to be precise, 
especially between each individual, to rationalize the calculation of whether the population is adapted to them or 
not. After selecting the parent individual, genetic operations are performed to verify whether the termination 
conditions are met [27]. The ceramic construction innovation design process is shown in Figure 1. 
III. A. 2) Adaptation function 
Among genetic algorithms, individual performance is an important description, and the main index of this 
performance is the fitness, which mainly determines the selection criteria of individuals. In this paper, the calculation 
method of fitness will be accomplished according to two scaling criteria. The first scale criterion is the optimal 
structure line ratio, which can be set by both seed structure line ratio and manually input structure line ratio. The 
second scaling criterion is the current individual structural line ratio. 

Taking a certain construction as an example, assuming that it has n  structural lines and two of the ratio criteria 
have been specified, Equation (1) can be derived, i.e., calculating the fitness of an individual. Where iBest  is the 

ratio, which represents the ratio of the first ratio criterion, i.e., the radius of the i th structural line to the l th structural 
line. And iCurrent  represents the ratio between the two structural lines ( i  and l ). 
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The ifitness  represents the fitness function, the larger the value of which proves that the individual has a higher 

fitness value, i.e., it is more likely to adapt to unfamiliar environments, and thus more likely to be bred. 
 

III. A. 3) Variant operations 
If a new individual does not reach a mature state of suppression it is called a mutation operation, which serves to 
maintain population diversity and is used to search for areas that are difficult to find. Thus, in the same population 
batch, the superiority or inferiority of each individual determines their mutation probability. If an individual has more 
disadvantages, the higher its probability of generating variation. Conversely, an individual that is of higher quality 
will have very little probability of developing mutations. In this regard, in order to prevent too much precocity from 
occurring, the degree of precocity was analyzed in detail and the following method was devised to be able to adapt 
to the probability of variation so that the population can remain in a state of diversity. 
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 (3) 

In the above equation, minmP , minmP  represented by are constants, the value of the adaptation of the variant 

individuals is represented by f  , maxf   represents the maximum adaptation of the current population, minf  

represents the minimum adaptation of the current population, the average adaptation of the current population is 
represented by avgf  represents the average fitness of the current population. From the above formula, it can be 

seen that the mutation probability is not fixed, but can change at any time, the change is based on the degree of 
chromosome precocity and the fitness value of each individual to be mutated. 

 
III. A. 4) Algorithmic flow 
(1) In order to generate the initial population P, it needs to be encoded in real numbers. 

(2) In order to derive the average value of population fitness (AVG), it is necessary to first define its fitness function 
and calculate the fitness value in each individual (population). 
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(3) The genetic strategy will be determined precisely, the population size (N) will be screened, and a series of 
genetic operations will be performed. 

(4) Determine the new generation of population fitness mean value can reach the predetermined number of 
iterations, if not reached need to return to step 2, or modify the strategy and return, if the standard is reached that 
is the end of the process. 

In order to determine the accuracy of the genetic algorithm, simulation experiments were carried out on the 
VC++.net platform, where the user is free to operate and change the values at will, and ultimately obtain a complete 
model of ceramic artwork. 

 
III. B. Analysis of different 3D printing task scheduling process 
III. B. 1) Traditional 3D Printing Task Scheduling 
Traditional 3D printing task scheduling in addition to manual allocation, the most important is the first-come-first-
served (FCFS) task scheduling method, using the receipt of a task to assign a task to the task allocation, but this 
method is only applicable to the task volume or the printer is less, for the scale of the cluster 3D printing 
manufacturing is very prone to scheduling chaos, scheduling program unreasonable situation, and scheduling 
efficiency is too low. scheduling program is not reasonable, and the scheduling efficiency is too low. Sometimes 
there may be similar to a small volume of tasks in the large volume printer processing, and large volume tasks can 
not be idle in the small volume printer processing, can only be scheduled after the small volume of tasks, both 
resulting in a waste of resources, but also prolonged the printing time, increasing the cost of printing. The same 
because the printing speed of the printer is generally higher printing costs, in the traditional way of 3D printing task 
allocation, the printing speed of the printer is often assigned to more printing tasks, which leads to although the 
overall printing time is shorter, but the overall printing costs are higher. 
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Figure 2: 3D printing multi-objective optimization task scheduling process 

III. B. 2) 3D Printing Multi-Objective Optimization Task Scheduling 
The first step is to identify how many 3D printers are available to perform the 3D printing task and information such 
as the printing method, printing material, printing cost, printing speed, printing accuracy, space size, etc. of these 
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3D printers. Secondly, determine the information of the 3D printing tasks that need to be printed such as the mode 
requirements, material requirements, model size, accuracy requirements, and task volume. Then based on the 
manufacturing enterprises are most concerned about the time and cost of the two indicators, according to the 
information obtained from the task scheduling related to the shortest printing time and the lowest cost of printing as 
the optimization objective to complete the task scheduling, task scheduling program, and finally according to the 
task scheduling program will be assigned to the corresponding printer to print the task. 

Of course, in the actual printing and manufacturing process, the print job is dynamically arriving, the difficulty of 
reasonable matching between the print job and the printer will increase, in order to avoid the high load of the system 
due to the large amount of computation, and to make the task scheduling more accurate and efficient, the system 
will not immediately carry out a new round of task scheduling after the arrival of a new print job, but will carry out 
the task scheduling once after every 2 hours [28]. 3D Printing Multi-targeting The optimized task scheduling process 
is shown in Figure 2. 
III. C. Modeling the Multi-objective Optimization Task Scheduling Problem for 3D Printing 
III. C. 1) Definition of relevant issues 
Let there be a total of M  printers and N  print jobs, the printing speed of the i th printer is iv , the printing cost 

is ip , and the job size of the j th print job is jl , so the time ( , )i jt  for the i th printer to print the j th subtask is 

denoted as: 

 ( , )
j

i j
i

l
t

v
  (4) 

The print time matrix is represented as: 
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 (5) 

The cost ( , )i jc  for the i th printer to print the j th print job is denoted: 

 ( , )i j i jc p l   (6) 

The print cost matrix is expressed as: 
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The task scheduling scheme matrix X  is denoted as: 

 

(1,1) (1,2) (1, )

(2,1) (2,2) (2, )

( ,1) ( ,2) ( , )

N

N

M M M N

x x x

x x x
X

x x x

 
 
   
 
 
 





   



 (8) 

where ( , )i jx  is a 0 - 1 decision variable, when ( , ) 1i jx   it means to print the j th print job on the i th printer, and 

when ( , ) 0i jx   it means that the j th print job is not printed on the i th printer. 

In this paper, we refer to the first task scheduling of the system as primary scheduling and each subsequent 
scheduling as secondary scheduling. In the case of primary scheduling, the time for each printer to perform setup 
and the time for preheating and warming up is different, and in the case of secondary scheduling, the amount of 
tasks remaining on each printer from the previous job scheduling is different, which results in a different time for 
each printer to be able to start printing after the job scheduling is completed [29]. Calling the time from the start of 
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task scheduling to the time when the i th printer can print a new task as the initial time iTS  of that printer, the initial 

time matrix sT  can be expressed as: 
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The time from the start of task scheduling until the j th print job is ready to print is referred to as the initial time 

jtst  of the j th print job, which can be denoted as: 
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The printing time jtct  of the j th print job is mainly divided into the initial time jtst  and the processing time 

( , )i jt  of the j th print job on the i th printer, which can be expressed as follows: 

 ( , )j j i jtct tst t   (11) 

III. C. 2) Constraints 
Because of the one-shot nature of 3D printing, each print job can generally be assigned to only one printer, i.e: 
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Due to the limitations of print material, print mode, print accuracy, and space size, this print job can only print on 
this printer if the print job and the printer are perfectly matched, where the print material matching value of the j th 

print job and the i th printer is ( , )i jdc , the print mode matching value is ( , )i jdf , the print accuracy matching value is 

( , )i jdj , space size matching value is ( , )i jds , and total matching value is ( , )i jdz , i.e: 
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III. C. 3) Objective function 
The print time matrix 1T  for each printer to complete the print job assigned to that printer after completing one job 

schedule is denoted as: 
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The completion time of a printer refers to the time from the start of job scheduling to the end of the last print job 
for that printer, including both the initial time and the print time, so the completion time matrix 2T  for each printer 

is denoted as: 
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The total print time of a print job is the maximum of the completion times of all printers, so the total print time 
 Tf X  to complete a print job is denoted: 
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One of the objectives of task scheduling is to minimize the total printing time, so the objective function Tf  for 

time optimization can be expressed as: 
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The total printing cost is the sum of the printing costs of all print jobs on the corresponding printers, so the total 
printing cost  Cf X  can be expressed as: 
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One of the objectives of job scheduling is to minimize the total printing cost, so the objective function Cf  for cost 

optimization can be expressed as: 
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In order to satisfy the two optimization objectives of time and cost at the same time when completing the printing 
task, the n  -paradigm weighting method is used to assign the corresponding weights for the printing time 
optimization objective and the printing cost optimization objective, and a combined objective optimization model 
based on printing time and printing cost is designed, and its objective function H  can be expressed as follows: 

 

 

1 2

min ( )

( ) ( )
min C C T T
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 1 2 1    (21) 

where  H X  is the combined evaluation metric value of printing time and printing cost, and the weights of printing 

time and printing cost are 1  and 2  respectively. 

 
III. D. Problem solving based on improved particle swarm algorithm 
III. D. 1) Particle Swarm Algorithm 
Particle swarm optimization algorithm is a group intelligence optimization algorithm, through the simulation of bird 
foraging behavior, each bird as an independent foraging individual, through the transmission of information, so that 
the other birds know their own position and food, so as to determine whether the food they find is optimal or not, so 
as to find the global optimum by using the group of individuals in the information sharing and collaboration. 

The particle swarm algorithm represents birds through a group of massless independent particles, each particle 
has only two parameters, position vector and velocity vector, which represent the position of the particle as well as 
the speed and direction of the movement. In the intelligent optimization process, each particle searches for the 
optimal solution individually and records it. According to the continuous updating of the fitness, i.e., the value of the 
objective function, the current individual optimal value bestP  and the global optimal value bestG  are recorded after 

the sharing of the position information and the value of the objective function among the swarm of particles. After 
the continuous iteration of the algorithm, the particle swarms move towards the optimal position, and finally arrive 
at the global optimal solution and position. 

For the multi-machine-multi-task 3D printing scheduling problem, we try to make targeted improvements in the 
encoding method and update strategy. Firstly, a decimal sequential two-dimensional coding method is adopted to 
represent the solution of the problem, and a dynamic   with linearly decreasing weights is applied to the updating 
strategy to adjust the global and local search ability. 

 
III. D. 2) Encoding and decoding schemes 
The complexity of the 3D printing scheduling problem for multi-machine multi-tasking is such that not only the 
combined scheduling of parts needs to be taken into account in the coding process, but also the selection of an 
appropriate processing machine for all the parts in a job is required, and thus it is not achievable to use only a one-
dimensional coding of the parts. Therefore, a decimal sequential two-dimensional encoding is used to represent the 
solution of the problem [30]. The first part is a machine-based encoding for determining the choice of machining 
machine for each part, and the second part is a sequential part-based encoding for determining the order in which 
the parts are combined for machining. With this two-dimensional coding approach, a feasible solution to the problem 
can be obtained. 
 
III. D. 3) Population initialization 
Generally, as the number of iterations increases, the search time of the algorithm increases, but the results of the 
search may be better, so for the particle swarm algorithm, it is important to choose the appropriate number of 
iterations with the number of populations. Generally, the population number is taken from 20 to 50, and the exact 
value depends on the complexity of the research problem. For the multi-machine multi-task 3D printing scheduling 
problem, the population number NP  is set to 50 and the number of iterations NI  is set to 300 because it is more 

complex. 
The initial positions of the particles are uniformly distributed throughout the search space, and the initialization 

process initializes the particle swarm as a group of random particles that can represent the solution of the problem, 
and each particle contains machine vectors and order vectors two-dimensional real numbers, and the value space 
of the vector values is  1,m , and m  is the total number of machines. The initial speed can be set to 0 or a random 

value. The corresponding initial fitness function, i.e., the cost per unit volume value, is taken as the individual optimal 
solution. 
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In the initial setting of the speed, when set to 0, the particles and the search space are static, when the speed is 
non-zero, taking into account that when the particle speed is larger, the particles move faster and are easy to miss 
the optimal solution, thus increasing the number of iterations and improving the complexity of the algorithm, when 
it is smaller, the development ability is strong, but it is easy to fall into the local optimum, convergence is slow, and 
the algorithm is not very efficient. Therefore, in order to reasonably seek the balance between the algorithm search 
ability and convergence speed, the maximum speed of the particles is set, which is usually set as the range width 
of the particles, and keep the variable change in the range of 10% to 20%. 

 
III. D. 4) Update strategy 
After initialization as a group of random particles, these particles get the optimal solution by continuously sharing 
the position and optimal value between the individuals and the group, and updating the position and objective 
function value after iteration. In each iteration of the algorithm, the optimal value bestP  of the current individual as 

well as the global optimal solution bestG  are recorded, after which one updates one's velocity and position. 

The diversity of the population, i.e., the differences on the individual particles, determines the global exploration 
ability of the algorithm, so it is important to keep the differences among the particles when updating the individual 
particles to learn to move towards the optimal solution. In the early stage of the particle swarm algorithm search, it 
is often hoped that more fields can be searched quickly and the approximate range of the global optimum can be 
determined, while in the later stage of the search, it is often hoped that the local optimal solution can be found 
quickly and accurately to complete the convergence, so in the whole iterative process of the algorithm, the search 
requirements and hopes are not unchanging. 

When the individual particles are approaching the optimal solution, they adjust their own trajectory to a certain 
extent and carry out the exploration of the unknown field, and this exploration ability is the global exploration ability. 
The further exploration on the original trajectory is called local exploration ability. In order to effectively prevent from 
falling into local optimization, the dynamic   with linearly decreasing weights is used to adjust the global and local 
search ability. The   is also known as the inertia factor and takes a non-negative value. When   takes a larger 
value, the global search ability is stronger, while the local search ability is weaker. When   is small, the global 
search ability is weak, while the local search ability is strong. In general, in practical applications, the value of   
is changed from large to small, the first global optimal search to the approximate range, and then search for the 
optimal value in the local search to improve efficiency and accuracy. 

Inertia factor   update formula is as follows: 

 ( )( ) /t ini end k k endG g G        (22) 

where: kG  is the maximum number of iterations, ini  is the initial inertia weights, and end  is the inertia weights 

at the time of iteration to the maximum number of iterations, which is generally taken as 0.9ini   and 0.4end  , 

thus favoring the convergence of the algorithm at a later stage. 
The velocity update formula is as follows: 

        1 1 2ii i best i best iv v c rand P x c rand G x            (23) 

where: 1iv   is the velocity of the particle,  rand  represents a random value between (0, 1), 1c , 2c  are the 

learning factors, usually 1 2 2c c  , and ix  is the current position of the particle. 

The PSO algorithm does not have the cross mutation operation like the genetic algorithm, but simply updates the 
search to follow the optimal particle based on its own experience. Eq. (8) contains the sum of three parts, the first 
part represents the effect of the last velocity vector, the second part is called the self-cognition term, which 
represents the vector based on the individual experience particles to move toward their own optimal solution, and 
the third part is called the group-cognition term, which represents the vector based on the experience particles of 
the individual and the group to move toward the global optimal solution. 

The position update formula is as follows: 

 1 1i i ix x v    (24) 

The population updates the velocity and position vectors during the iteration process according to Eq. 
 

III. D. 5) Basis for convergence 
Optimization convergence stopping criterion generally has two kinds, one is to set the maximum number of iterations, 
and the other is to reach the acceptable satisfactory fitness value, set the difference between the last optimal fitness 
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value and the updated optimal fitness value is less than a certain value to stop the iteration, that is, to reach the 
convergence requirements. In this study, the convergence criterion is set as whether the number of iterations to 
reach 300 times, after reaching the convergence criterion, it will exit the loop and output the results. 
 
III. D. 6) Algorithmic flow 
For the multi-machine multi-task 3D printing scheduling problem, based on the improved particle swarm algorithm, 
the objective function is set to the average cost per unit volume, considering the bottom area of the machine table 
and the maximum height of the support and other constraints, and ultimately obtaining the optimal value of the cost 
per unit volume and the optimal scheduling scheme through continuous iterative optimization. 

The flow of the improved particle swarm algorithm is shown in Figure 3. 

Initialise the swarm and set the 
parameters 

Calculate the fitness value, initialise 
the individual optimal value Pbest and 

the global optimal value Gbest 

Update the velocity and position 
vectors of the particles 

Solve for the current fitness value of 
the swarm 

Update the individual optimal value 
Pbest and the global optimal value Gbest 

and update the population 

Reach the
 termination condition 

Output the result

Y

N

 

Figure 3: Improved particle swarm algorithm process 

IV. Experimental results and analysis 
IV. A. Genetic Algorithm Performance Test 
In order to verify the effectiveness of the algorithm, the standard function is selected for testing in this section, and 
the test results are shown in Fig. 4. The simulation graph can be seen that the genetic algorithm proposed in this 
paper yields results that match well with the Pareto frontier, which also proves the effectiveness of the algorithm in 
this paper to some extent. 

 

Figure 4: Test results 
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IV. B. Example validation 
In order to test the optimization effect of the established multi-objective optimization model, the ceramic artwork 
model is selected as the optimization object, and some control parameters in the algorithm are set as follows: the 
population size is 100, the crossover probability is 0.9, the variance probability is 0.1, and the range of the 
delamination thickness is initially selected to be 0.089~0.203mm. The maximum number of generations of the 
program is 80 and 100 generations, respectively, The optimization of the molding direction and delamination 
thickness for the maximum evolutionary generations of 80, 100 and 150, respectively, and the Pareto front under 
the same evolutionary generations is shown in Fig. 5. From the figure, it is easy to find that, when the algorithm 
controls the parameter population size, the probability of cross-variation is unchanged, the evolutionary generations 
of 80, 100 and 150 generations, respectively, to obtain different evolutionary generations under the Pareto front 
performance is quite stable, and it can be considered that the overall trend is the same, but only the sparsity of the 
points on the Pareto front is slightly different. Therefore, it can be assumed that the use of 100 generations is 
sufficient to find a solution that meets the requirements. 

 

Figure 5: Pareto front edge of different evolutionary algebra 

In the case of 100 generations of evolution and other control parameters are the same as above, we observe the 
evolution process from the 1st generation until the last generation and analyze the ability of the algorithm in global 
optimization search. The population change in the case of 100 generations of evolution is shown in Fig. 6. From the 
figure, it can be seen that the population keeps approaching towards the final Pareto frontier as the population 
generations are updated. In generation 1, the algorithm uses random selection method to obtain individuals in the 
feasible domain to form the initial population, which leads to uneven individuals in the population space, and the 
corresponding objective function values are also distributed in a messy way, requiring further optimization and 
selection. By the 10th generation, the individuals of the population have initially formed the shape of Pareto frontier, 
i.e., the population retains the better individuals and excludes the poorer individuals through competition and elite 
strategy, indicating that the population space gradually moves towards the Pareto frontier through evolution. In the 
50th generation, the individuals in the population space have approached the final Pareto front and even overlapped 
with it, indicating that the individuals in the population are basically all excellent individuals, i.e., they are all solutions 
that satisfy the requirements. Continuing the evolution until the 100th generation, the individuals in the population 
no longer continue to move but remain on the Pareto front, only that the individuals show a constant clustering on 
the Pareto front. 

 

Figure 6: In the case of evolutionary algebra for 100 generations 

In order to verify that the model can solve the problem of trade-off selection between molding quality and molding 
efficiency in 3D printing, and realize the purpose of intelligent selection of molding direction and layering thickness. 
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The Pareto frontier when the evolutionary generation is 100 generations is shown in Figure 7, in which V , T 
represents the molding quality, molding efficiency, respectively, there is indeed a contradictory relationship, i.e., 
when the requirement of better molding quality, it will inevitably lead to an increase in the number of molding layers, 
which in turn will reduce the molding efficiency. When higher molding efficiency is required, it will inevitably lead to 
a decrease in molding quality. Thus, to satisfy the optimum molding quality, the volume error V   must be 
minimized, i.e., point A (145.32, 785) in the figure. At this point, the values of each design variable corresponding to 
this point are shown in Table 1. Therefore, the molding direction that makes the molding quality optimal should be 
along the -Z direction in the figure, with a delamination thickness of 0.085 mm. Similarly, to satisfy the highest 
molding efficiency, it is necessary to minimize the molding time T, i.e., point B (1326.35, 122) in the figure. Therefore, 
the molding direction that makes the molding efficiency optimal should be along the -Y direction in the figure, and 
the delamination thickness is 0.201 mm. Although points A and B in the figure make the molding quality optimal and 
the molding efficiency highest, respectively, but whether it is point A or B, the other objective corresponding to it is 
the worst among all the other points. In the case of single-objective optimization, the solutions corresponding to 
points A and B are the optimal solutions with the best molding quality and the highest molding efficiency, respectively. 
According to the definition of minimum distance, the point closest to the ideal point is found as the optimal solution, 
i.e., 1 =180°,h=0.201mm, V =336.22mm3,T=342. 

 

Figure 7: Evolutionary algebra is the front edge of the pareto 

Table 1: Optimized result 

 1  2  h(mm) V (mm3) T(layer) Model height(mm) 

Best molding 180° ~ 0.085 145.32 785 76 

Highest molding efficiency 90° 270° 0.201 1326.35 122 25.1 

Final optimization solution 180° ~ 0.201 336.22 342 76 

 
In order to understand the relationship between the effect of layering thickness on forming quality and forming 

efficiency, among the 100 Pareto solutions obtained, all the solutions in the forming direction -Z direction that make 
the forming quality optimal are analyzed, and the relationship between forming quality, forming efficiency and 
layering thickness is plotted. The relationship between molding quality, molding efficiency and layering thickness in 
the Z-direction is shown in Fig. 8, where the volumetric error V  increases with the increase of layering thickness 
under the condition of constant molding direction, the molding quality of the ceramic artwork decreases, while its 
molding efficiency is improved. On the contrary, as the thickness of layering decreases, the volume error V  
decreases, the molding quality of the ceramic artwork improves, and its molding efficiency decreases. This is 
because in a certain molding direction, the smaller the thickness of the delamination, the less pronounced the step 
effect produced by the delamination, the smaller the volume error caused by the step effect, the better the quality 
of the molded part. The smaller the thickness of the delamination, the more the number of layers obtained by 
delamination, the longer the time used for molding parts, the lower the molding efficiency. In view of this contradiction, 
when choosing the layering thickness of the part, it is also necessary to take into account the two factors of molding 
quality and molding efficiency, and comprehensively meet the requirements of molding quality and molding efficiency, 
in order to obtain satisfactory parts. 
IV. C. Analysis of the results of the perceptual imagery evaluation 
Perceptual imagery is the sensual impressions and representations of things formed by people in the process of 
perception and thinking, and is the connection between subjective feelings and objective things. Through analyzing 
and exploring perceptual imagery, we can deeply understand users' needs and feelings, and improve the 
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satisfaction and user experience of product design. This section mainly focuses on the research and analysis of the 
style of 18 pieces of ceramic artworks based on 3D printing technology by the method of perceptual imagery. 

 

 

Figure 8: The relationship between forming quality, forming efficiency and stratification thickness 

 
IV. C. 1) Factor analysis 
The questionnaire data were imported into SPSS for factor analysis, 10 pairs of perceptual vocabulary were set as 
variables, factors with eigenvalues greater than 1 were extracted using the principal component extraction method, 
and the maximum variance method was used for factor rotation, and the results of the factor analysis are as follows: 

(1) Reliability and validity analysis 
The results of the reliability analysis of the perceptual vocabulary questionnaire are shown in Table 2. As can be 

seen from the table, the standardized Clonbach's   coefficient of the perceptual vocabulary questionnaire based 
on the style of ceramic artwork with 3D printing technology is 0.832, which indicates that there is excellent internal 
consistency within the scale, and therefore the credibility of the research results is very high, and it can be subjected 
to the next step of validity analysis. 

Table 2: Analysis of the analysis of emotional vocabulary questionnaire 

Clonbach Clonbach based on standardization Term number 

0.779 0.832 10 

 
Validity analysis refers to the coincidence of the measurement results with the real situation and determines 

whether the research data can be analyzed in the next step of factor analysis, generally using Bartlett's test and 
KMO test. The KMO and Bartlett values of the perceptual vocabulary questionnaire are shown in Table 3. From the 
table, the KMO value is 0.722, while the significance Sig value is less than 0.05, which is suitable for factor analysis. 

Table 3: The emotional vocabulary questionnaire KMO and bartlett values 

KMO sampling availability number 0.722 

Bartlett sphericity test Approximate card 192.35 

 Freedom 46 

 Significance 0 

 
(2) Number of factors extracted 
The factors were extracted through SPSS using principal component analysis and the total variance explained is 

shown in Table 4. As can be seen from the table, the eigenvalue of the first common factor solution is 5.723, which 
explains 57.24% of the total variance information of all variables, and it is a principal component that contributes 
the most variance. The eigenvalue of the second common factor solution is 2.457 and it explains 24.57% of the 
total variation information of all variables. The first two factor solutions explain a total of 81.81% of the total variance 
information of all variables, and from the third factor solution onwards, the eigenvalues are all less than 1. Therefore, 
the first 2 factor solutions can be extracted as common factors. 
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Table 4: The total variance of the explanation 

Constituent 
Initial eigenvalue Extracting the load of the load Rotational load squared 

Total Variance% Cumulation% Total Variance% Cumulation% Total Variance% Cumulation% 

1 5.723 57.24 57.24 5.723 57.24 57.24 5.139 52.921 52.921 

2 2.457 24.57 81.81 2.457 24.57 81.81 3.041 28.291 81.212 

3 0.89 8.90 90.71       

4 0.364 3.64 94.35       

5 0.201 2.01 96.36       

6 0.147 1.47 97.83       

7 0.128 1.28 99.11       

8 0.045 0.45 99.56       

9 0.026 0.26 99.82       

10 0.017 0.17 100       

 
The variation of principal component eigenvalues gravel plot is shown in Fig. 9, as can be seen from the figure, 

from the third factor solution the curve starts to regionally flatten out, so that 2 male factors can be extracted. 

 

Figure 9: The change of the main component eigenvalue 

(3) Factor extraction naming 
The unrotated factor loading matrix is shown in Table 5, and the factor loading matrix after the rotation is shown 

in Table 6, according to the further differentiation of the rotated component matrix loading size, the relationship 
between the variables and the factors is clearer, so through the table rotated factor loading matrix can be extracted 
2 male factors, the first factor of the variables have high-end-cheap, smart -deadly, futuristic-traditional, textured-
non-textured, refined-rough, dexterous-bulky, named as style factor. The variables of the second factor are fantastic-
plain, practical-decorative, simple-complex, rounded-mechanical, named as structure factor. 

Table 5: Unrotated factor load matrix 

 
constituent 

1 2 

Round - mechanical 0.695 -0.312 

Simple - complex -0.257 0.918 

High-end - cheap 0.872 0.374 

Dreamy - plain 0.87 -0.398 

Future - traditional 0.936 0.155 

Daft - bulky 0.577 0.371 

Delicate - rough 0.972 -0.041 

Smart - rigid 0.933 0.259 

Practical - decorative -0.479 0.799 

Textured-untextured 0.755 0.382 
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Table 6: Then the factor load matrix 

 
constituent 

1 2 

Round - mechanical 0.491 0.595 

Simple - complex 0.185 -0.936 

High-end - cheap 0.955 0.066 

Dreamy - plain 0.596 0.746 

Future - traditional 0.901 0.286 

Daft - bulky 0.668 -0.076 

Delicate - rough 0.852 0.479 

Smart - rigid 0.935 0.199 

Practical - decorative -0.072 -0.936 

Textured-untextured 0.851 0.002 

 
IV. C. 2) Imagery Scale Maps 
Imagery is the process of forming imagination, conjecture, imagination, association and other thinking activities in 
people's thinking activities. Through the image scale method, the corresponding product can be described more 
completely with as few image dimensions as possible through statistical dimensionality reduction, and at the same 
time, it can reflect the overall image tendency of the product. Multiply the eigenvectors with the normalized data to 
obtain the principal component data for each sample, as shown in Table 7. Through the analysis, it is found that the 
two groups of adjective factors of "concise-complex" and "futuristic-traditional" can be used to summarize the image-
scale distribution characteristics of the whole sample. "Concise" is manifested in the fact that the ceramic artwork 
has few decorative structures, strong integration, and no complex and diverse colors. "Complex" is manifested as 
having more structures and a stronger sense of visual impact. The "futuristic" is more modern. The "traditional" 
performance is that the shape of the product retains many elements of the design and creation of traditional ceramic 
artworks. 

Table 7: Main component data 

Sample number Main component 1 Main component 2 Sample number Main component 1 Main component 2 

Sample 1 -3.065 1.432 Sample 10 -0.022 1.221 

Sample 2 1.446 1.944 Sample 11 3.341 -0.652 

Sample 3 4.952 1.153 Sample 12 2.293 -0.332 

Sample 4 0.592 0.436 Sample 13 2.611 0.811 

Sample 5 0.012 -3.402 Sample 14 0.233 -0.231 

Sample 6 1.547 -1.133 Sample 15 -3.876 1.269 

Sample 7 -1.559 -3.755 Sample 16 -2.963 0.346 

Sample 8 -2.336 0.305 Sample 17 0.356 0.172 

Sample 9 -1.265 -0.159 Sample 18 -2.206 0.466 

IV. C. 3) Analysis of ceramic artwork modeling based on sensual imagery 
In order to better analyze the relationship between different types of products and their corresponding influence 
factors, it can be analyzed on the basis of the sample evaluation line graph combined with the previously extracted 
common factor, combined with the sample evaluation after the extraction of the common factor is shown in Figure 
10. Among the influence variables of the style factor are high-end - cheap, smart - rigid, futuristic - traditional, 
textured - untextured, delicate - rough, dexterous - bulky. Influence variables of structural factors are fantastic-plain, 
practical-decorative, simple-complex, rounded-mechanical. According to the figure, it can be found that among the 
6 influencing variables of the style factor, Sample 3 and Sample 13 correspond to perceptual vocabularies that are 
more high-end, futuristic, and sophisticated. Among the 4 influencing variables of the structure factor, the perceptual 
vocabulary corresponding to Sample 2 and Sample 3 is more inclined to mellow, simple, and practical. 
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Figure 10: The sample evaluation of the extraction of the male factor 

V. Conclusion 
With the continuous development of science and technology, 3D printing technology has been widely used in many 
fields. This paper aims to discuss the application of 3D printing technology in the creation of ceramic artwork. 

Through the example analysis, over the optimization of the personalized ceramic artwork, it is known that the 
procedure is feasible, and the combination of the optimal molding direction and layering thickness of the 
personalized ceramic artwork model is obtained as 1 =180°,h=0.201mm, V =336.22mm3,T=342. 

In the experiment of analyzing the styling of ceramic artwork based on perceptual imagery, among the six 
influencing variables of the style factor, the perceptual vocabulary corresponding to Sample 3 and Sample 13 is 
more skewed towards high-end, futuristic, and exquisite. It can be concluded that the ceramic artwork designed 
based on the method of this paper is more personalized and diversified in terms of styling. 

In summary, 3D printing technology has an important role, value and development prospects in the creation of 
personalized ceramic art. We need to continue to pay attention to technology research and development, and 
actively explore new application modes, 3D printing technology brings infinite possibilities and opportunities for 
ceramic art creation, and contributes wisdom and strength to the prosperity and development of ceramic art. 
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