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Abstract In order to solve the problems of high labor intensity, high safety risk and low efficiency of manual loading 
and unloading under high temperature and high noise environments, this paper designs a loading and unloading 
control system based on the 3D high-precision vision guidance technology with PLC equipment as the control 
platform and a six-axis industrial robot as the flexible drive source, and constructs the position servo mathematical 
model of the unloading equipment under the perturbed working condition, and utilizes the fuzzy neural network PID 
(FNN-) PID) control algorithm to realize the position control optimization of the loading and unloading equipment. 
the output parameters 

pK , 
iT  and 

dT  of the FNN-PID control algorithm can adaptively change the output values 
based on the fuzzy rule-base with the change of inputs, and it can inhibit the swing angle of the lanyard from 12 
degrees to be stabilized at 0 degrees within 24s. Nearby, the tracking effect and anti-swing effect are significantly 
better than FPID control. This paper adopts the robot vision guidance unloading, so that the unloading control 
system has obvious improvement in the guiding speed and accuracy, and has high engineering application value. 
 
Index Terms robot, 3D visual guidance, fuzzy neural network PID control, unloading control 

I. Introduction 
Industrial robots have good maneuverability and flexibility and are an important part of industrial manufacturing 
systems [1]. Robots function as the equivalent of human hands in industrial manufacturing systems, realizing the 
handling, sorting, and loading and unloading of target workpieces, and are increasingly used in various fields of 
industrial production [2]. However, most of the industrial robots work in a pre-determined environment, in which they 
are schematically taught through a pre-programmed program and then run according to a fixed trajectory [3], [4]. 
Generally the actual position of the target workpiece and the ideal situation usually also exist a certain error, the 
existence of these errors may lead to the robot can not work as expected, resulting in robot work errors [5]-[7]. With 
the progress of science and technology, in order to solve the shortcomings of traditional robots in industrial 
production, the introduction of robotic products with machine vision function. 

Machine vision technology is through industrial robots or industrial cameras to help industrial robots to realize the 
automation of parts grasping, loading and unloading, processing, handling and other functions, to achieve the 
purpose of improving production efficiency and reducing production costs [8]. Compared with the limitations of 
manual labor, the use of industrial robots with vision assistance can complete more intense, dangerous, high 
precision and high task operations [9], [10]. Accompanied by intelligent manufacturing to the entire manufacturing 
industry to bring a huge impact, while facing more flexible production tasks or more types of parts processing, so 
the need for industrial robotics field also requires a higher degree of flexibility, precision, accuracy to meet the more 
heavy workload [11]-[14]. For robotic workpiece localization systems for loading and unloading tasks, it is necessary 
to propose visual guidance optimization strategies with better recognition effects to meet the increasingly heavy 
industrial production tasks [15], [16]. 

In this paper, the robot is combined with 3D visual guidance technology to realize the unloading control system 
building, and construct the unloading equipment dynamics model and visual projection model under the disturbed 
working condition, at the same time, the traditional fuzzy PID is improved, and combined with the fuzzy control and 
the neural network, the optimization algorithm for the unloading equipment position control based on the fuzzy 
neural network PID is proposed. In order to test the effectiveness of the FNN-PID control algorithm, it is compared 
with the fuzzy PID control algorithm for tracking and anti-shaking effect. Finally, the practical efficacy of the control 
system is evaluated from three aspects: guidance accuracy, visual processing quality and unloading control effect. 
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II. Unloading control system based on vision guidance and robot drive 
In this chapter, the unloading control system based on vision guidance and industrial robot drive is designed by 
taking the long water spout of continuous casting ladle as an example, and the equipment of the system contains 
one set of industrial robot, robot quick-change device, PLC control system, HMI human-machine interaction system, 
long water spout and long water spout unloading tooling, industrial camera, and vision computing platform. Among 
them, PLC control cabinet, robot control cabinet, HMI monitoring screen, long spout device and long spout unloading 
tooling workstations are arranged nearby in the safe area of the site. The top view of the equipment layout is shown 
in Figure 1. 

Simulation of large 

package rotary test bench 

3 
00

0 
m

m
Long spout 

Long spout 
bracket ring 

storage position Robot 

Camera PLC, industrial controller, 

vision computing platform  

Figure 1: Top view of the system equipment layout 

The control system mainly consists of network communication subsystem, PLC logic control system, human-
machine interaction system, industrial robot drive system and 3D vision guidance system. The long spout and 
storage rack equipment contains long spout, emergency long spout, spout unloading tooling, and long spout holder. 
The design of the long spout bracket makes gripping the long spout simple and easy, its bayonet and bracket ring 
are connected through the guide post, the spring ensures the pre-pressure, the bracket ring holds the long spout, 
the bayonet hangs on the post hook of the ladle sliding spout, and the long spout bracket ring is equipped with the 
visual feature recognition board and the robotic gripping operation hole. The long spout unloading workpiece is 
selected to carry the long spout, the front end of the two pins and the long spout bracket ring, the tail end of the 
robot connected to the quick-change tool female head. The long spout bracket and other equipment is fixed on the 
pouring steel platform, the bracket fixes the position and direction of the long spout, and it is also equipped with 
sensors, which are not movable and should be placed according to the requirements, so as to facilitate the robot's 
gripping and PLC logic control. 

III. Robot vision-guided unloading control models 
III. A. Mathematical modeling of the position of unloading equipment under disturbed working conditions 
In this section, the mathematical model of positional attitude under disturbed working conditions is constructed by 
taking the crane for lifting as an example, which lays the foundation for robot vision-guided positional control 
optimization of unloading equipment. 

 
III. A. 1) Lifting dynamics model 
The simplified model of four-degree-of-freedom lifting is shown in Fig. 2, with G  denoting the world coordinate 
system, 

xv  denoting the motion velocity of the large vehicle traveling device along the X -axis, 
yv  denoting the 
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motion velocity of the small vehicle traveling device along the Y -axis, 
zv  denoting the motion velocity of the heavy 

object along the Z -axis, and   denoting the rotational angular velocity of the heavy object around the Z -axis. 
Ideally, the lifting dynamics model can be expressed as: 

 ( ) ( , ) ( )M v C v v G Q      (1) 

where 6[ , , , ,0,0]Tx y z     denotes the positional state vectors of the weight, including the displacement vector 

[ , , ]Ta x y z    and angle vectors [ , 0,0]Tb   , 6[ , , , ,0,0]Tx y zv v v v      denotes the velocity vector of motion, 

including the linear velocity vector [ , , ]Ta x y zv v v v   and the angular velocity vector [ , 0,0]Tbv   . ( ) 0M    

denotes the positive definite inertia matrix of the system, ( )C   is the Coriolis centripetal matrix, ( )G   denotes the 

gravity vector, and Q  denotes the control vector. 
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Figure 2: Model of hoisting crane 

However, in the actual lifting and positioning project, taking into account the uncertainty and external interference 
due to the lifting equipment's own factors, this paper introduces the perturbation term, and describes the lifting 
dynamics equations as follows: 

 ( ) ( , ) ( ) ( )M v C v v G D v Q         (2) 

where ( )D v  denotes the damping term and   denotes the perturbation term. 
 

III. A. 2) Visual projection models 
The camera is fixed to the lifting end-effector in the form of a “hand-on-eye”, and the visual projection model is 
shown in Figure 3. Assuming that the camera coordinate system C  coincides with the center of the end-effector, 
the camera and the end-effector have the same position and motion speed. G   denotes the world coordinate 
system and *C  denotes the desired position camera coordinate system. 
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Figure 3: Visual projection 
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 , ,
T

i i i iS X Y Z   and  * * * *, ,
T

i i i iS X Y Z   denote respectively the camera coordinate system C   and the 
coordinates of feature points in the desired position camera coordinate system *C , which can be obtained by 
differentiating 

iS : 

 
i a b iS v v S    (3) 

According to the relationship between focal length and imaging, it can be obtained: 

 
i i

i

i i
i

l
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Z

l
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Z

 

 


 (4) 

where: l  denotes the focal length, and x  and y  denote the image physical coordinates. 
Then, image coordinate system to pixel coordinate system conversion is performed: 
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0 2 0

i
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i
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dx
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

    

    


 (5) 

where: 
1  denotes the number of pixels per unit distance in the x  direction, while 

2  denotes the number of 
pixels in the y  direction, and 

0u , 
0v  denote the origin of the image plane. 

According to the principle of perspective projection, the coordinates of the feature points in the image coordinate 
system and the desired coordinate system are calculated: 

    , ,
T T

i i i i i
i

F
s u v x y

Z
   (6) 

 * * * * *, ,
T T

i i i i i
i

F
s u v x y

Z
         (7) 

where: 1

2

0

0

l
F

l




 
  
 

, and 
iu , 

iv  denote the coordinates of the feature point in the pixel coordinate system. 

According to the target feature differential equation, the relationship between image features, visual Jacobi matrix 
and motion velocity can be defined in this way: 

 
i cs J v  (8) 

where: v  denotes the motion velocity, and 
cJ  is a Jacobi matrix dependent on the camera parameters and image 

depth. 
According to the real-time target feature s  and the desired target feature *s , then the image feature error can 

be expressed as follows: 

 *e s s   (9) 

Differentiating the above equation in the case where *s  is a constant yields 

 
ce J v  (10) 

III. B. Optimization of position control based on fuzzy neural network PID 
In this section, for the defects of the traditional PID [17], fuzzy control and neural network are introduced to improve 
the PID control, and the fuzzy PID as well as fuzzy neural network PID controllers are designed with the 
mathematical model of the position control system of the unloading equipment to achieve the optimization of the 
position control of the equipment. 
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III. B. 1) Fuzzy Neural Networks 
The two intelligent optimization algorithms, fuzzy control and neural network, are complementary and can be 
combined to form a fuzzy neural network (FNN) [18], which possesses both the inference function of fuzzy control 
and the self-regulation and self-learning function of neural network. 

The fuzzy neural network structure is shown in Fig. 4. The first layer is the input layer, which is directly connected 
to the inputs and acts as a bridge between the inputs and the second layer, which can directly transfer the inputs to 
the second layer. The input and output of this layer is represented as: 

 
1( ) if i x  (11) 

where 
ix  is the node input 1,2, ,i m  , representing the number of fuzzy inputs, and 

1( )f i  represents the output 
of the network. 

The second layer is the affiliation function layer, each node in this layer represents a fuzzy subset and the function 
is to find the affiliation of the input values. The affiliation function is a Gaussian type function, 

ijc  and 
ijb  denote 

the center value and width of the affiliation function of the j  fuzzy set for the i  input value, respectively, and 
1,2, , ij n   denotes the number of linguistic variables for each input variable. The number of nodes in the layer is 

2
1

m

i
i

N n


 , and the output of the layer is represented as: 

  2expj
i jnet   (12) 

 
2

2
2

( )

( )
i ij

j
ij

x c
net

b


   (13) 

The third layer is the rule layer, which is used to calculate the fitness of each rule, and any node in this layer 

corresponds to a fuzzy control rule in the rule base, i.e., there are a total of 
3

1

m

i
i

N n n


   nodes in this layer. If 

1,2,3, ,j n  ,  1 11, 2, ,i n  ,  2 21, 2, ,i n  ,  1, 2, ,m mi n  , then: 

 1 2

1 2

m

m

ii i
j i i i        (14) 

Or: 

  1 2

1 2
min , , , m

m

ii i
j i i i      (15) 

The fourth layer is the normalization layer, which has the same number of nodes as the previous layer, i.e., 

4N n , and its output is: 

 

1

, 1, 2, ,j
j n

j
j

j n







 




 (16) 

The fifth layer is the output layer with 
5f , i.e., the output: 

 
1

n

k j kj j
j

y W   


     (17) 

where 1,2k r   is the number of nodes in the output layer, and W  is the link weight matrix of the output layer 
nodes to the nodes in the fourth layer. 
III. B. 2) Fuzzy neural network PID controller design 
For the shortcomings of fuzzy PID (FPID) control, this paper designs a position control algorithm for unloading 
equipment based on fuzzy neural network PID (FNN-PID) [19]. FNN-PID is a control algorithm that combines fuzzy 
control, neural network, and PID, and it can make the PID, which is widely used in industrial control, possess both 
the experience and rules of fuzzy control and the self-regulation and learning function of neural network. The 
structure of the fuzzy neural network PID control system is shown in Figure 5. 
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Figure 4: Fuzzy neural network structure 
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Figure 5: Structure of Fuzzy Neural Network PID Control System 

Combining the characteristics of position control of unloading equipment and the functional structure of FNN-PID 
algorithm, this paper designs a two-input and three-output fuzzy neural network PID control system. The input is 
the difference e  between the actual speed of the motor and the desired speed and the rate of change of the 
difference ec , and the output is the three parameters 

pk , 
ik  and 

dk  of the PID control. The network structure 
and specific parameters are designed as follows: 

(1) Determine the input variables of the input layer 
In the stacker position control system, it mainly controls the rotational speed of the motor, so the inputs of the first 

layer of _FNN PID  are the rotational speed difference e  and the rate of change of the difference ec , and these 
two inputs are passed to the next layer, so the total number of nodes in this layer is 

1 2N  . 
(2) Affiliation function layer design 
Seven nodes are set for e  and ec  respectively, so there are a total of 

2 14N   nodes in this layer, representing 
seven fuzzy linguistic variables, namely  , , , , , ,NB NM NS ZO PS PM PB . This layer is mainly to find the value of the 
affiliation function of the subset of 7 linguistic variables according to Eq. (12) and Eq. (13). 

(3) Rule layer design 
Each node in this layer represents a fuzzy control rule. Since there are 2 inputs in the input layer and each input 

has 7 linguistic fuzzy subsets in the affiliation function layer, it corresponds to 49 network nodes in this layer. 
(4) Design of the normalization layer 
The function of this layer is to implement the normalization process and call Eq. (16) for computation. The nodes 

in this layer are the same as in the previous layer, i.e., 
4 49N  . 

(5) Design of output layer 
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This design has a total of three outputs for the three parameters of PID: 
pk , 

ik  and 
dk . So the number of nodes 

in this layer is 
5 3N  , where 

1 py k , 
2 iy k  and 

3 dy k . Multiply the weights of the neurons in this layer with 
the normalized result of the previous layer, and then take the sum respectively, the value obtained is the output 
value of this layer, which is calculated as shown in Eq. (17), and expressed in vector formula as follows: 

 

1

1 11 12 114

2
2 21 22 214

3 31 32 314

14

y

y y

y


  


  
  



 
    
          
          








 (18) 

The parameters to be learned by this multilayer forward network are the connection weights   between the 
fourth and fifth layers and the center value 

ijc   and width 
ijb   of the affiliation function of the second layer, 

respectively. The node functions for each layer are as follows: 
Layer one: 

 
1 1 1( ) ( ) ( ) 1,2, , ; 1,2, ,i if i x a i f i i m j n      (19) 

Second layer: 

  2 2 22

( )
( ) ( ) exp ( )j ij j

i
ij

x c
f ij a ij f ij

b



     (20) 

Third level: 

  1 2 1 2

1 2 1 23 3( ) ( ) min , , ,m m

m m

i ii i i i
i i i i i if j f kOr            (21) 

 
3 3

1

( ) ( ) 1, 2, , ;
m

j i
i

a j f j j n n n


     (22) 

Fourth level: 

 
 

 
 3

4

3
1

4 4

1

( )    ( )j
kn n

i
i i

a j
f j a j f j

a i





 

   

 
 (23) 

Fifth floor: 

 
5 4 5 5

1 1

( ) ( ) ( ) ( )
n n

ij ij j i
j j

f i a j a i y f i  
 

       (24) 

If we let ( )y k  be the desired output of the network and ( )my k  be the actual output, the error is expressed as: 

 21
( )

2
E e k  (25) 

 ( ) ( ) ( )me k y k y k   (26) 

The learning algorithm for the network is as follows: 
First define the gradient of the fifth layer as follows: 

 
5

5

( ) ( ) ( )
( ) m

i

E E
i y k y k

f i y
  

   
 

 (27) 

From there, it is sought: 

 5
5 4

5

( )
( ) ( ) ( ( ) ( ))

( ) m i
ij ij

f iE E
i a j y k y k

f i
 

 
 

     
  

 (28) 

Then calculate the gradient of the fourth, third and second layers in turn: 
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 5
4 5

1 14 5 4

( )
( ) ( )

( ) ( ) ( )

r r

ij
i i

a iE E
j i

f j a i a j
  

 

 
    

     (29) 

 1,4
3 4 2

13 4 3

1

( )
( ) ( )

( ) ( ) ( )

n

ir
i i j

n
i

i
i

a jE E
j j

a j a j a j


 



 





 
     








  







 (30) 

 

3 2
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i ij
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k ij

a k a ijE E
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f ij a k a ij f ij
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k s

b









  
   

   

 
     

 




 (31) 

If the minimization method is used to find 
3f  and 

2 ( ) j
ia ij   is the minimum input when the third layer is used: 

 3 ( )
1ij j

i

f k
s




 


 (32) 

If multiplication is used to find 
3f  and 

2 ( ) j
ia ij   is one of the inputs of the third layer when: 

 
1

i

j
ij j

j
j i

s 



  (33) 

Otherwise 0ijs   in all other cases. 
Then the first order gradient is calculated as follows: 

 2
2 2

2

2( )( )
( )

( ) ( )
i ij

ij ij ij

x cf ijE E
ij

c f ij c b


 
  

  
 (34) 

 
2

2
2 3

2

2( )( )
( )

( ) ( )
i ij

ij ij ij

x cf ijE E
ij

b f ij b b


 
  

  
 (35) 

Finally the learning algorithm for the parameters can be derived as: 

      1 1,2, , ; 1, 2, ,ij ij
ij

E
k k i r j n  




    


   (36) 

      1 1, 2, , ; 1, 2, ,ij ij i
ij

E
c k c k i m j n

c



    


   (37) 

      1 1,2, , ; 1,2, ,ij ij i
ij

E
b k b k i m j n

b



    


   (38) 

Combined with the mathematical model of the position control system of the unloading equipment, the FNN-PID 
control model simulation is built in Matlab, which uses S  function module to encapsulate the use of the .m file 
written by the FNN-PID controller, which facilitates better call in Simulink. 

 
III. C. Control algorithm simulation and result analysis 
Complete the design of the fuzzy neural network PID (FNN-PID) control rule base in the Fuzzy System Designer 
design panel and test it to get the ideal pK , iT , and dT  outputs and save them as a .fs file, so that they can be 
used to invoke the FNN-PID control algorithm later. control algorithm. 

In order to achieve the optimization of container positioning and rope sway control, the “velocity-displacement 
dual-tracking” control strategy is used at different pixel distances with different focuses. When the robot is far away 
from the container, direct fuzzy velocity control is used, which has a good dynamic response of velocity tracking. 
When the robot is close to the container, it adopts the FNN-PID based “velocity-displacement dual tracking” strategy, 
which focuses on velocity tracking and displacement tracking. When the robot is close to the container, the same 
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FNN-PID-based “velocity-displacement dual-tracking” strategy is used, with displacement tracking as the main 
focus and speed gradually decreasing. When the alignment error between the spreader and the container and the 
swing angle of the spreader are stabilized within the allowable range, the robot brakes and the spreader starts to 
descend. The whole control strategy is based on the robot vision to accurately locate and track the container, and 
in the tracking in place at the same time to achieve the anti-rope swing control as the goal. It can be seen that in 
order to achieve this coordinated purpose, the speed tracking control of the robot is a key. 

The comparison of the tracking effect of the ideal velocity profile and displacement profile based on fuzzy neural 

network PID and fuzzy PID (FPID) is shown in Figs. 6 and 7, respectively, where 6(a) and 6(b) denote the velocity 

tracking and response error, respectively, and 7(a) and 7(b) denote the displacement tracking and response error, 

respectively. It can be seen that since the output parameters pK  , iT   and dT   of the FNN-PID can adaptively 

change the output values based on the fuzzy rule-base with the change of inputs, the tracking effect is better than 

that of the FPID under the premise of reasonable rule-base design. 

  

(a) Speed tracking    (b) Response error 

Figure 6: Speed tracking and error comparison between FNN-PID and FPID 

  

(a) Displacement tracking   (b) Response error 

Figure 7: Displacement tracking and error comparison between FNN-PID and FPID 

In addition, the anti-sway controller of the spreader is based on the pixel distance of container positioning S  and 
the collected swing angle of the sling   as input variables, and then adaptively changes the three parameters of 

pK , iT , and dT  through the fuzzy neural network reasoning algorithms to follow the ideal speed curve, so that the 
purpose of suppressing the swing angle of the sling is achieved. The three parameters of “Setting the swing angle 
of the rope” are given below. The “set pendulum angle curve” is given below as the pendulum angle signal of the 
rope collected by the sensor, and the output pendulum angle signals obtained by tracking the speed curve with the 
FNN-PID and FPID control methods are shown in Fig. 8 (a) and (b), respectively. 
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Comparing the effect of FNN-PID and FPID anti-shaking control, it can be seen that the FNN-PID anti-shaking 
control can inhibit and stabilize the swing angle of the lanyard from 12 degrees to near 0 degrees within 24s, and 
the anti-shaking effect is obviously better than that of FPID control. 

  

(a) Displacement tracking    (b) Response error 

Figure 8: Comparison of FNN-PID and FPID anti-sway control 

IV. Simulation of system applications and analysis of their results 
In this chapter, the application simulation in the unloading control system based on fuzzy neural network PID 
controller is carried out to test the system performance in three aspects, namely, guidance accuracy, visual 
processing effect and principle prototype unloading. 

 
IV. A. Bootstrap accuracy test 
In order to verify the feasibility of robot visual guidance localization and assisted unloading in the system of this 
paper, the guidance accuracy test experiment is carried out in this section. The specific steps of the experiment are 
as follows: 

(1) In a relatively flat and empty construction site, use the loading and unloading equipment to act as a target, 
use the handheld GPS to provide the distance between the loading and unloading equipment and the robot at a 
long distance, use a tape measure to measure the precise distance when the target is transverse to the distance, 
and the testers use walkie-talkies to communicate with each other. 

(2) Turn on the system software's image field of view center scale function, the software acquisition of the image 
will appear in the image across the image of the horizontal and vertical lines, the intersection of which is the center 
of the image field of view. 

(3) Place the loading and unloading equipment in front of the robot at a distance of N meters apart. 
(4) The distance d  between the loading and unloading equipment and the robot is obtained with a handheld 

GPS and the point is recorded. 
(5) Capture the loading/unloading equipment target and locate it in the system software, then input the distance 

information and get the car's transverse deviation e  by the software's calculation. 
(6) Keeping the robot motionless, place the unloading equipment at the position of the longitudinal line of the 

image center scale so that the center of the equipment is over the longitudinal line of the image center scale and 
record the point. 

(7) Measure the distance between two points on the ground with a tape measure. 
(8) Compare the difference between the value calculated by the software and the actual measured data, i.e., the 

target positioning error of the system. This error is recorded as: horizontal deviation “ e actual”. 
(9) According to the algorithm of mathematical modeling, when the distance error 12md    or 36m, the 

theoretical horizontal deviation error “ e theoretical” is calculated, respectively. 
The guidance accuracy test data are shown in Table 1. It can be seen that the cross deflection error e  obtained 

from the calculation of the principle prototype and the actual measurement is smaller than the theoretical error value 
of the mathematical modeling error analysis. When the target is at a distance of 7.2m and the ranging error is at 
12m, the guided localization error of the principle prototype is 0.18m, which is within 0.2m. This proves that the 
principle prototype meets the system requirements in its mathematical modeling. 

 



Research on fuzzy mathematical uncertainty modeling and decision optimization techniques in robot vision-guided unloading 

2822 

Table 1: Guidance accuracy test data 

 d  e  Theoretical e  ( 12md  ) Theoretical e  ( 36md  ) Actual e  f  

1 1800m 18.4m 0.674815m 0.887495m 0.32m 152mm 

2 1800m 23.5m 0.844859m 1.135294m 0.64m 152mm 

3 1600m 19.1m 0.718326m 0.958739m 0.34m 152mm 

4 1300m 12.0m 0.665243m 0.848573m 0.65m 91mm 

5 900m 13.8m 0.919527m 1.247185m 0.64m 50mm 

6 300m 9.6m 0.954361m 1.856772m 0.63m 15.6mm 

7 300m 6.2m 0.683352m 1.182643m 0.52m 15.6mm 

8 150m 4.1m 0.618459m 1.257634m 0.24m 9.8mm 

9 150m 12.0m 1.614351m 3.792165m 0.54m 9.8mm 

10 60m 6.7m 1.423516m 3.718493m 0.71m 9.8mm 

11 60m 4.2m 0.889524m 2.285164m 0.23m 9.8mm 

12 7.2m 0.32m 0.205146m Ignore this item 0.18m 9.8mm 

 
IV. B. Visual Processing Quality Testing 
In this section, the visual processing quality of the principle prototype of the unloading control system is tested by 
taking the dock loading and unloading truck as the experimental object. The first test is the recognition test of the 
ground sign characters, and the test results show that the principle prototype can correctly recognize the sign 
characters on the ground without exception, with an average time of 0.12 seconds, and a recognition correctness 
rate of nearly 100%. 

Then, the accuracy of the heading information of the visually calculated guide sign lines is tested. The test steps 
are as follows: 

(1) Paste a curved marking line on the ground with 44mm wide white tape, and then paste a straight line with 
38mm wide and 26mm wide white tape. 

(2) When the loading and unloading truck is not started, calculate the size of the heading angle of the ground 
marking line and the coordinates of the center point of the marking line through the software in the principle prototype. 

(3) Calculate the actual position of the center point of the marking line on the ground. 
(4) Measure the center of the marking line on the ground and the size of the heading angle, and compare the 

results with those calculated by the principle prototype. 
(5) Start the loader and repeat the above test again when the loader's engine shakes the vehicle. 
The results of the marker line heading information accuracy test are shown in Table 2. It can be seen that the 

calculation accuracy of the principle prototype under different conditions is high, with the angular error not exceeding 
0.9° and the positional error within 30 mm. 

Table 2: Test data for the accuracy of heading information of the marking line 

 
Arc-shaped marking lines with a width 

of 44mm 

Linear marking lines with a width of 

38mm 

Linear marking lines with a width of 

26mm 

The vehicle engine was not 

launched 

Angular error Position error Angular error Position error Angular error Position error 

<0.4° <16mm <0.4° <15mm <0.4° <15mm 

The vehicle engine has been 

launched 

Angular error Position error Angular error Position error Angular error Position error 

<0.9° <30mm <0.9° <25mm <0.9° <28mm 

 
IV. C. Schematic Prototype Unloading Control Tests 
In this section, the system principle prototype is used for unloading control to test the jitter elimination effect during 
unloading. The test is conducted in 2 groups, and the test results of Group 1 and Group 2 are shown in Fig. 9 and 
Fig. 10, respectively, where (a) indicates without jitter compensation and (b) indicates with jitter compensation. 

The test results show that during the unloading process, the marker line position error of the control system 
principle prototype in the image is 12-18 pixels, about 6-9 cm, after adding jitter compensation, while the heading 
angle error is less than 0.9° after adding jitter compensation. During the unloading experiment, the unloading control 
system based on robot vision can accurately reflect the heading and position changes of the unloading equipment 
in real time. The system navigation results in information update frequency of about 11Hz, heading information, the 
error is within 0.4 degrees, and the position error accuracy is of decimeter level, which is in full compliance with the 
requirements of the system. 
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(a) No jitter compensation    (b) Add jitter compensation 

Figure 9: The test of Group 1 

  

(a) No jitter compensation   (b) Add jitter compensation 

Figure 10: The test of Group 2 

V. Conclusion 
This paper builds a robot vision-guided-driven unloading control system, proposes a fuzzy neural network PID-
based optimization algorithm for unloading equipment position control, and experimentally evaluates the 
performance of both. 

The FNN-PID control algorithm proposed in this paper can adaptively change the output value based on the fuzzy 
rule base with the change of input, and the tracking effect is better than FPID under the premise of reasonable 
design of the rule base.At the same time, comparing with the fuzzy PID control algorithm, the anti-shaking effect of 
the FNN-PID control algorithm is better, and it can inhibit the swing angle of the lanyard from 12 degrees to stabilize 
it near 0 degrees in 24 s. When the target is at a distance of 7 m, the distance measurement error of the target can 
be reduced. 

When the target is at a distance of 7.2m and the ranging error is 12m, the guided localization error of the principle 
prototype is 0.18m, which is within 0.2m, and the computational accuracy of the principle prototype is higher under 
different conditions, with the angular error not exceeding 0.9° and the positional error all within 30mm. The unloading 
control system based on robot vision can accurately reflect the heading and position change of the unloading 
equipment in real time, and the updating frequency of the navigation result information is about 11Hz, and the error 
of heading information is within 0.4 degrees, and the precision of positional error is at the level of decimeter, which 
is in full conformity with the requirements of the system. 
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