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Abstract Based on the relevant concepts of quantum entanglement and the basic principles of quantum information, 
this paper focuses on the generation process of three-body high-dimensional entangled states between magnets 
and photons in the Uptime (PT)-symmetry-breaking phase, and clarifies the dissipation and evolution process of 
three-body high-dimensional entangled states for the system in this paper. Finally, it is generalized to the hybrid 
photon-magneton oscillator system in the action of electromagnetic waves to explore whether the perfect 
transmission of quantum states can be realized under the condition of one-dimensional magnetic oscillator open-
chain arrangement. The results show that the introduction of three-body high-dimensionality can not only effectively 
enhance the entanglement, but also effectively enhance the entanglement resistance to environmental interference, 
so that the system can operate stably in a wider range of parameters. The scheme in this paper can utilize the 
optical cavity dissipation to keep the quantum state stable at the receiving end. In addition, the spontaneous 
radiation of atoms is significantly suppressed due to the adiabatic elimination of the excited state, which makes the 
scheme more robust. Meanwhile, based on the existing experimental techniques, the scheme has high experimental 
feasibility, and the fidelity of its transmitted state at the receiving end can reach more than 99.74%. 
 
Index Terms Quantum entanglement, Electromagnetic wave action, Hybrid photon-magnetic oscillator system, 
Quantum state transmission mechanism 

I. Introduction 
The use of quantum systems such as coherent manipulation to achieve a variety of information processing is 
quantum information processing, which includes many aspects, such as quantum computing, quantum stealth 
transmission and quantum key distribution [1]-[3]. The advantages of quantum information processing compared 
with the traditional information processing, on the one hand, in computing speed and information capacity, on the 
other hand, in providing a strong guarantee for information security, and the problems that cannot be solved by 
classical computers, quantum computers may be able to solve [4]-[7]. Quantum state transfer (QST) has been a 
hot research topic in the field of quantum information processing, which requires that arbitrary quantum states can 
be coherently transferred from the “transmitting” system to the “receiving” system [8]. The entangled state is a 
special property of matter in the microscopic world, and the mechanical nature of the relationship between 
subsystems and degrees of freedom in a quantum system can also be characterized by quantum entangled states 
[9]. To characterize this peculiar quantum phenomenon, it can be explained in a composite system formed by 
several subsystems using the principle of superposition of states in quantum mechanics [10], [11]. By realizing 
quantum state transport and preparing entangled states, thus providing strong technical support for the rapid 
development of quantum information [12], [13]. 

Modern physics shows that the macroscopic so-called electromagnetic waves are microscopically composed of 
a large number of electromagnetic wave quanta, each of which has its own physical quantities such as energy, 
momentum, angular momentum, etc [14], [15]. By controlling the physical quantities of electromagnetic wave quanta 
to change according to certain laws at the transmitting end of the communication system, while detecting and 
recording them at the receiving end, the information desired to be transmitted can be known and the purpose of 
wireless communication can be realized [16]-[18]. Therefore, analyzing the quantum entanglement and quantum 
state transmission mechanism under the action of electromagnetic waves can further develop wireless 
communication, improve the transmission rate and spectral efficiency, and provide a completely new dimension for 
the transmission system [19], [20]. 

In this paper, we first introduce quantum entanglement and quantum mechanics, quantum bits, and quantum 



Dynamic analysis of quantum entanglement and quantum state transport mechanisms based on electromagnetic wave action 

2849 

operational gates, based on which a hybrid system of a non-Ermian superconducting quantum circuit with YIG, 
consisting of two microwave cavities and a yttrium iron garnet (YIG) sphere, is studied. The Hamiltonian quantities 
of the system and its energy spectrum are derived analytically, and abundant singularities, PT-symmetric phases 
and PT-symmetric broken phases are studied in parameter space. The oscillations appearing in three-body high-
dimensional entangled states as well as quantum coherence under the PT-symmetric phase and the steady states 
generating three-body high-dimensional entangled states as well as quantum coherence under the PT-symmetry-
breaking phase are investigated as a means of clarifying the effect of three-body high-dimensional entangled states 
on the dissipation of the hybrid system. Based on the frequency modulation theory, a tunable magnetic oscillator-
magnetic oscillator coupling is obtained by utilizing the dielectric of the coupled cavity. The coupling strength is 
made to satisfy the perfect transmission condition by modulating the frequency parameters. In order to further verify 
the correctness of the theoretical analysis, numerical simulations are carried out to prove the feasibility of the model 
in this paper. 

II. Quantum entanglement and quantum state transport mechanism based on 
electromagnetic wave action 

II. A. Quantum Entanglement 
II. A. 1) The concept of quantum entangled states 
Quantum entanglement [21] is a unique quantum mechanical phenomenon distinct from classical systems, and 
before introducing the concept of quantum entangled states, the definition of separable states is first given. If the 
state AB   of a quantum system can be expressed as a linear superposition of the direct products of several 

uncorrelated states, i.e., there are: 

 ( 1)i i
AB i A B i

i i

p p       (1) 

Then the state of the system is said to be a separable state, which can be pure or mixed. If the state of a quantum 
system cannot be written in the form of a separable state, then it is called an entangled state. An entangled state 
can be either a pure state or a mixed state. 

Bell state is a typical two-body entangled state, which consists of the following four states: 

 
| 0 |1 |1 | 0

|
2

A B A B
AB     
   (2) 

 
| 0 |1 |1 | 0

|
2

A B A B
AB     
   (3) 

 
| 0 | 0 |1 |1

|
2

A B A B
AB     
   (4) 

 
| 0 | 0 |1 |1

|
2

A B A B
AB     
   (5) 

The Bell state is the simplest two-body entangled state, in which the states of both particle A  and particle B  
are indeterminate prior to the measurement; a measurement is made on one of the particles, and the state of the 
other particle is determined. 

 
II. A. 2) The EPR feint and Bell's inequality 
The EPR feint verifies that quantum mechanics is correct, thus supporting Bell's view.Bell's inequality states that if 
definite-domain positivism holds, an arbitrary system should satisfy the following equation: 

 ( , ) ( , ) 1 ( , )p a b p a c p b c    (6) 

where ( , ) ( ) ( ) ( )p a b A a B b d      ,   is a hidden variable, ( )   is its distribution function, ( )A a  is the result 

of Alice's measurements of particle 1's spin along the a  direction, and ( )B b  is the result of Bob's measurements 

of particle 2's spin along the b  direction. spin, and ( )B b  is the result of Bob's measurement of particle 2's spin 

along the b  direction. For particles with spin 1/2, ( ) 1, ( ) 1A a B b     . 

The best known of the many generalized forms of Bell's inequality is the CHSH inequality below: 
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 ( ) ( ) ( ) ( ) 2E QS E RS E RT E QT     (7) 

,Q R  is the result obtained by Alice's two random measurements of particle 1, ,S T  is the result obtained by 

Bob's two random measurements of particle 2, and the value of , , ,Q R S T  is either +1 or -1. 

 
II. A. 3) Metrics of quantum entanglement 
For different quantum entangled states, the strength of their entanglement is different, so it is necessary to introduce 
the concept of entanglement degree, so as to quantize the degree of quantum entanglement. The definitions of 
several commonly used entanglement degrees are introduced below: 

(1) Partial entropy entanglement degree 
For two-body pure state, its partial entropy entanglement degree is defined as: 

 (| ) ( ) ( )p AB A BE S S      (8) 

( )AS   is the von Neumann entropy. 

For two-body mixed states, the partial entropy entanglement degree is defined as: 

 
( ) ( ) ( )

2
A B AB

p
S S S

E
   

  (9) 

(2) Relative entropy entanglement degree 
For a two-body quantum state AB , the relative entropy entanglement degree is defined as: 

 |( ) min ( )|r AB AB ABE S    (10) 

AB  is a separable state and ( || )AB ABS    is the relative entropy of AB  with respect to AB : 

 ( ) [ ( )]AB AB AB AB ABS tr lb lb       (11) 

(3) Formation entanglement degree 
For a two-body quantum state AB , the formation entanglement degree is defined as follows: 

 ( ) min (| )f AB i p i AB
i

E p E    (12) 

where }{ ,|i i ABp    is any decomposition of AB , | |AB i i AB i
i

p     , and | i AB   is not required here to be 

mutually orthogonal, but should be a normalized pure state of both bodies. (| )p i ABE    is the partial entanglement 

entropy of | i AB  . 

(4) The purifiable entanglement degree 
If Alice and Bob share N  two-body quantum states AB , and the maximum number of EPR pairs obtained by 

the two through local operation and classical communication is ( )k N , the purifiable entanglement degree is defined 

as: 

 
( )

( ) limAB
k N

D
N

   (13) 

II. A. 4) Quantum Entanglement Criterion 
It is often difficult to determine whether a many-body quantum state is entangled or not. A Schmidt number criterion 
for determining the pure state of two-body entanglement is introduced below. 

Schmidt decomposition theorem: let |    be a pure state of the composite system AB  , then there exists a 

standard orthogonal basis | An   of the subsystem A  and a standard orthogonal basis | Bn   of the subsystem 

B  such that: 

 | | |n A B
n

n n      (14) 
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The | ,|A Bn n   is called the Schmidt basis of the subsystem ,A B . The n  are called Schmidt coefficients, are 

nonnegative real numbers and satisfy 2 1n  . The number of nonzero n  is called the Schmidt number of |  . 

Schmidt number criterion: for a two-body pure state | AB  consisting of subsystems A  and subsystems B , a 

quantum state is entangled if its Schmidt number > 1. 
 

II. B. Quantum Information Fundamentals 
II. B. 1) Quantum bits 
(1) Basic quantum bit 

A quantum bit [22], abbreviated as qubit, is used to describe a quantum state with many properties that distinguish 
it from a classical bit. 

Defining an arbitrary state vector |   in a two-dimensional Hilbert space as a fundamental quantum bit, with 

base vectors | 0  and | 1  in that space, the quantum bit |   can be expressed as: 

 | | 0 |1        (15) 

  and   are complex numbers satisfying 2 2| | | | 1   . A quantum bit |   can be in the | 0  state or the 

| 1  state, or in a superposition of the two, which is the biggest difference from a classical bit. 

Hilbert space can have multiple sets of basis vectors, even for the same quantum bit, if different basis vectors 
are chosen, there are different manifestations. To wit: 

 
1 1

| (| 0 |1 ),| (| 0 |1 )
2 2

         (16) 

A quantum bit can be represented as: 

 2 2
| ( ) | ( ) |

2 2
            (17) 

The | 0 ,|1   basis is usually referred to as the computational basis vector and the | ,|   basis as the physical 

basis vector. 
A fundamental quantum bit can be represented in the following form: 

 | (cos( ) | 0 sin( ) |1 )
2 2

i ie e         (18) 

The angular parameters , ,    form a spherical coordinate system. The ie   is a phase factor and does not 

have any observable effect on the quantum state, thus the above equation can be rewritten as: 

 | cos( ) | 0 sin( ) |1
2 2

ie         (19) 

(2) Composite Quantum Bits 
  denotes the angle of this point with the Z -axis, and   denotes the angle of the projection of this point in the 

XY -plane with the X -axis. A composite quantum bit refers specifically to a quantum bit consisting of n  single-
base composite, corresponding to a Hilbert space of dimension n  and the number of eigenvectors 2n , expressed 
as follows: 

 1 1 2 2 1 2 1 2 1 22
| | 0 0 ...0 |1 0 ...0 ... |1 1 ...0 ... |1 1 ...1nn n m n n                (20) 

The subscripts 1, 2,...n   correspond to different single bases respectively, physically representing different 
particles. 

(3) Multi-Binary Quantum Bits 
A basic binary quantum bit can be represented by a linear combination of two orthogonal bases, while a multicast 

quantum bit can be represented by a linear combination of d  orthogonal basis vectors: 

 
0

| |
d

k
k

k 


    (21) 



Dynamic analysis of quantum entanglement and quantum state transport mechanisms based on electromagnetic wave action 

2852 

where d  denotes the number of progressions. The space in which a d -variant quantum bit resides is a 2d -
dimensional Hilbert space. 

A quantum bit can be a composite multicomponent quantum bit, e.g. a double-base triple-component quantum 
bit can be represented in the following form: 

 
3
2 00 01 02 10

11 12 20 21 22

| | 00 | 01 | 02 |10

|11 |12 | 20 | 21 | 22

    
    

        

         
 (22) 

II. B. 2) Properties of quantum bits 
The main properties of quantum bits are as follows: 

(1) Imprecise measurability. 
(2) Non-clonability. 
(3) Indistinguishability. If the angle between two quantum bits | ,|     is    and 0 / 2    , then the two 

quantum bits are indistinguishable, and no measurements or manipulations can yield precise results. Define the 
indistinguishability as: 

 2| | |D cos       (23) 

If two quantum bits are orthogonal, then 0D  , at which point they are completely distinguishable. 
 

II. B. 3) Quantum Operator Gates 
Quantum operational gates are logical operations defined on quantum bits, referred to as quantum gates, which 
can be represented by an operator matrix. Several typical quantum gates are described below. 

(1) Single-bit quantum gate 
a) Non-gate (Bubbleley X -gate) 
The function of the non-gate operation is to interchange the | 0 ,|1   positions in a single quantum bit, i.e.: 

 
0 1

1 0
X

 
  
 

 (24) 

Writing the quantum bits | 0 |1     in vector form [  ]T  , the output of the X  gate is: 

 X
 
 
   

   
   

 (25) 

b) Bubble Y  Gate 
The effect of the Bubbleley Y  gate is to change | 0  into |1i   and | 1  into | 0i  . The operator matrix is: 

 
0

0

i
Y

i

 
  
 

 (26) 

c) The Pauli Z -gate 
The Pauli Z -gate produces no change to | 0  and changes | 1  to |1   with an operator matrix of: 

 
1 0

0 1
Z

 
   

 (27) 

d) Hadhmagate 
The Hadema gate changes | 0  into |   and | 1  into |   with the operator matrix: 

 
1 11

1 12
H

 
   

 (28) 

e) Phase Gate 
The phase gate turns | 0 |1     into | 0 |1i     with an operator matrix of: 

 
1 0

0
S

i

 
  
 

 (29) 
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(2) Multi-bit quantum gates 
a) Controlled non-(CNOT) gate 
A controlled nongate is a typical two-bit quantum gate. The two input quantum bits are a control bit and a target 

bit, and the target bit remains unchanged if the control bit is | 0 , and the target bit is flipped if the control bit is | 1 . 

The operator matrix of a CNOT gate is: 

 

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

CNU

 
 
 
 
 
 

 (30) 

b) Swap gate 
A swap gate is also a two-bit quantum gate that serves to swap the values of two input quantum bits, 

corresponding to the operator matrix: 

 

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

SWU

 
 
 
 
 
 

 (31) 

II. C. Generation of three-body high-dimensional magneton-photon entangled states 
II. C. 1) Generation of three-body two-dimensional entangled states 
This section focuses on the process of generating three-body two-dimensional entangled states between magnets 
and photons in the Uptime [23] (PT)-symmetry breaking phase. First, the evolution process of the hybrid system 
can be modeled by the master equation: 

 1 2 2[ , ] { , } 2i i i
t

   
     


H H H  (32) 

where 1 2( )H H   is the Hermitian operator that rerepresents the effective Hamiltonian as 
† †

1 2( ) / 2( ( ) / 2)H H H H   H H , and 2 2( )tr   H H , with parentheses [ ]  and {}  representing the right and 

against operators, respectively. By adding a third term to keep ( ) 1tr   . By solving the evolution equation (32) with 

respect to the density operator  , the initial state 0 , ,| | 001 a b c     is chosen to be pure and the average particle 

number state of the initial state is † † † 1N a a b b c c      . Then, non-local patterns are introduced: 

 1,2
2

ia be
A


  (33) 

Assume a b      and the large detuning condition | | | |c r g     . Converted to a plotted view of the 

interaction in a non-local mode, the Hamiltonian quantity can be expressed as: 

 † †
11( )i

eff effH g A c A c e    (34) 

where 1 ( ) / 2iA a be     and / 2effg g  . Accordingly, the hybrid system evolves in a finite subspace 

1 1, ,{| 01 ,| 10 }A c A c    , where 
1

| 0 A   and 
1

| 1 A   are the Fock states of the pattern 1A  , which evolve within the basis 

vectors {| 0 ,|1 ,| 0 ,|1 }a a b b      is denoted as ,| 00 a b   and , ,(|10 | 01 ) / 2i
a b a be      under . By solving the 

eigenequation | |m m mH      , the eigenstates of the hybrid system can be expressed as: 

 
1 1, ,| cos | 10 sin | 01mi

m m A c m A ce         (35) 

where m  as well as m  are related to the equation tan ( ) / ( 1, 2,3...)i
m m ke g k       correlation. If the initial 

state is set to be 
10 ,| 01 01|A c     , the density matrix of the contained time can be further written as: 
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,
,

,
,

| |

(| |)

kj

kj

i t
k j k j

k j

i t
k j k j

k j

p e

p e tr





 


 













 (36) 

where *
,k j k j      and ,k jp   are the coefficients of the expansion. When t   , the density matrix of the 

steady state is expressed as 1 1( ) | |      . On the one hand, the steady state can be expressed as 

1 11 , ,| (| 10 | 01 ) / 2A c A ci       , which is the general form of the Bell state under the basis vector 
1 1, ,{| 01 ,| 10 }A c A c   . 

On the other hand, under the basis vectors | 0 ,|1 ,| 0 ,|1 ,| 0 ,|1 }a a b b c c        , is the three-body entangled state

1 , , , , , ,| |100 / 2 | 010 / 2 | 001 / 2i
a b c a b c a b ce i         . The parameters / 2 6c GHz    , / 2 / 2 5.95a b GHz      , 

/ 2 6g MHz  , and / 2 50r MHz  , which are experimentally justified under the condition that large detuning is 

satisfied. The fidelity is defined as 1 1( ) | ( ) |F t tr t     , where 1|  and ( )t  are the target states and the time-

containing density matrix obtained by solving Equation (32). It is clear that the evolution of the layouts of , ,| 010 a b c  

as well as of , ,| 100 a b c  is identical and reaches 0.25 at the last moments of the evolution, whereas the layout of the 

primitive state , ,| 001 a b c  reaches 0.5 at the last moments. Finally, the layout of the target state 1|   evolves from 

0.7 to 1, which indicates that steady-state three-body two-dimensional entangled states can be generated under 

the PT   symmetry breaking phase. 
In a three-body system, quantum coherence may exist due to the collective participation of several subsystems 

or can be attributed to the coherence within the subsystems. Thus, magneton-photon entanglement can be 
quantized by collective coherence, which can be expressed as: 

 
( ) ( )

( )
2 2

S S
C S      
   (37) 

where s  is the von Neumann entropy,   is the density matrix of the hybrid system, and the direct product state 

is denoted as min a b c        . Under the PT   symmetry-breaking phase, the values of F  and C  are 

close to 1 and 0.903, respectively, when the dissipation-free system evolves into the ideal three-body entangled 
state 1|  . However, the overall coherence and fidelity of the system are not stabilized under the PT   symmetry 

phase. Thus, stable three-body entangled states and collective coherence can exist in the PT    symmetry-

breaking phase but oscillate in the PT   symmetry phase. 
This anomaly can be further understood through the competition between the evolution of non-Ermian systems 

and the conservation of particle number in hybrid systems. When the hybrid system is in the PT   symmetry 
breaking phase, the evolution of the system guarantees not only gain and loss processes but also particle 
conservation processes. The coexistence of the two processes evolves the initial state towards the steady state 
target entangled state. For the PT   -symmetric phase, the evolution in the hybrid system exists only in the 
normalized one, and this evolution is particle number-conserving with beam splitter-type interactions, thus leading 
to the evolution of the initial state towards the unstable target entangled state. 

 
II. C. 2) Generation of three-body high-dimensional entangled states 

When the hybrid system is considered to be under PT   symmetry breaking phase, the hybrid system evolves in 

1N   Hilbert subspace. The initial state 2 1,| | 02 A c     is chosen to have an average particle number of 2N  . 

By solving the master equation, a stable three-body three-dimensional entangled state is produced, denoted as: 

 
1 1 12 , , ,

1 1
| | 20 | 11 | 02

2 22
A c A c A c

i           (38) 

where 
1

| 2 A   can be expressed under the basis vectors {| 0 ,|1 ,| 2 ,| 0 ,|1 ,| 2 }a a a b b b        is denoted as 

2
, ,(| 20) , 2 |11 | 02 ) / 2i i

a a b a bb e e      . Numerical simulation of the layout evolution of the target state 2|  , the 

initial state 2|   , and other evolving states. The general trends are the same for , ,|101 a b c   and , ,| 011 a b c  

( , ,| 020 a b c  and , ,| 200 a b c ). The layout of the initial state , ,| 002 a b c  evolves from 1 to 0.25, and the layout of the final 
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moment , ,| 110 a b c  is close to 0.16. The layout of the target three-body three-dimensional entangled state 2|   is 

close to 1, and it remains stable at the end of the evolution. This indicates the successful generation of the high-
dimensional entangled state of the three-body. 

The four-dimensional entangled state of the three-body can be obtained when the average number of particles 

of the initial state 3N   is set and the initial state is chosen as 3 1,| | 03 A c    : 

 
1 1 1 13 , , , ,

2
| ( 3 | 12 3 | 21 | 30 | 03 )

4 A c A c A c A ci i              (39) 

where 
1

| 3 A   can be used under the basis vectors {| 0 ,|1 ,| 2 ,| 3 ,| 0 ,|1 ,| 2 ,| 3 }a a a a b b b b          is denoted as 

2 3
, , , ,( 6 |12 6 | 21 2 | 30 2 | 03 ) / 4i i i
a b a b a b a be e e          . The fidelity of 3|    in the initial, target, and other 

evolutionary states reaches 1 and remains stable at the end of the evolution. In the PT   symmetry-breaking phase 
without considering dissipation, the fidelity of both 2|   and 3|   reaches 1. The final collective coherence of 

2|   is 0.917 and 0.944, respectively, and remains stable. The three-body entangled states have larger collective 

coherence when the half-averaged particle number of the initial state is larger. 
In the PT  symmetry-breaking phase, the collective coherence maintains a maximum value and stays at a stable 

value, independent of the size of the detuning. At the same time, the fidelity under 2.5    is 1. In the PT   
symmetry-breaking phase, the collective coherence and fidelity are oscillatory and do not reach a maximum value. 
Therefore, the EPs at 1.9    and ±3.1 are the determinants of whether the target three-body high-dimensional 
entanglement can be produced stably. 

 
II. D. Quantum State Transport 
II. D. 1) Perfect transmission of quantum information 
Quantum theory was developed in response to the failure of classical physics to account for observed phenomena 
such as black-body radiation, low-temperature specific heats and cathode-ray diffraction patterns. It extends from 
atoms and molecules to bulk matter and even to objects on the cosmic scale. A quantum bit is an arbitrary 
superposition of two classical bits | 0  and | 1  that can carry information. Two orthogonal states of a quantum 
system, e.g., two specific energy levels of an atom, the polarization state of a photon, the spin state of an electron, 
etc., are being used as quantum bits for implementing quantum information protocols. 

We give a further introduction to the perfect transmission of quantum information by taking the example of the 
transmission of photons in a cavity array. 

Consider a system N  linearly coupled cavities, then the Hamiltonian of the system is ( 1) : 

 
1

† † †
1 1

1 1

ˆ ˆ ˆ ˆ( )l l

N N

l l l l l l
l l

H a a J a a a a


 
 

     (40) 

where la  and †
la  are the generation and annihilation operators, respectively, and l  is the resonance frequency 

of the l th cavity. The coupling strength between the l th and 1l  th cavities is lJ . 

And the perfect transmission of photons requires the correct combination of coupling strengths in the array, i.e: 

 ( )lJ l N l J   (41) 

where J  is a constant and N  is the number of cavities in the array. If the cavities are resonant, the eigenvectors 
of the Hamiltonian quantity in the single-photon subspace are: 

 
1

1 1

1
0 0

11
| ( 1) | 1

12

N n n
n k N n n

k r
k kN

k

N C
X C r

N
C

C





 
  


 


    

   (42) 

with eigenvalues 1 ( 1) ( 1 2 )nE N N n J      , where 'r n k k    and 0,1,..., 1N N  . Here, the state | 1r    

denotes the state with a single photon in the 1r  th cavity while the other cavities are in the vacuum state. Now, 
consider a single photon in the first cavity and other cavities in the vacuum state as the initial state, then the initial 
state is |1 |1 | 0 ... | 0     , then the state at moment t  is: 
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ˆ ˆ

1
1

0

|1 |1 | 0 ... | 0

1
( )(cos ) ( sin ) | 1

t tiH iH

N
i t N k k

k

e e

N
e Jt i Jt k

k


 


  



    


   

 (43) 

The probability of finding a photon at the end of the array, i.e., in the N th cavity, is: 

 ˆ 2 2 1| | |1 | (sin )
tiH NP N e Jt      (44) 

Note that the probability P  becomes 1 at / 2t J , which corresponds to a perfect transfer of photons from 
the first to the last cavity. Thus, the relationship between the coupling strengths allows for the perfect transfer of 
photons through the cavity array. This is because position-dependent coupling makes the dispersion relation linear 
compared to uniform coupling, leading to dispersion-free transmission. 

 
II. D. 2) Derivation of effective Hamiltonian quantities 
We proceed to consider the application of the Floquet drive to a hybrid photon-magneto-vibrator system [24], where 
N  yttrium iron garnet (YIG) spheres are arranged according to a one-dimensional open chain and a microwave 
cavity-magneto-vibrator coupling is established. Using a periodic modulation of the magnetic vibrator mode 
frequency, the Hamiltonian quantity can be written in the following form: 

 ( ) ( ) ( )( ) ( ) ( )b b bb
LMG AH t H H t H    (45) 

Among them: 

 
( ) †

0
ˆ ˆb

r rG
r

H a a  (46) 

 
( ) †ˆ ˆ( ) ( )b

i i iA
i

H t t m m  (47) 

 
( ) † †ˆ ˆ ˆ ˆ( )

i
i

b
ri r iLM

r
rH g m a m a   (48) 

0  is the cavity frequency, and here we assume that the individual cavity fields have the same frequency. The 

modulation of the magnetic oscillator mode frequency takes the form ( ) cos( )i qt t     . †q  and q̂  ( †
im  and 

im ) are the production and annihilation operators for cavity photon (magnetic modulus) modes. The rig  denotes 

the coupling strength between the magnetic oscillator and the microwave cavity. 
In order to study the dynamics induced by the magnetic oscillator-magneto-vibrator interaction, we adiabatically 

annihilate the cavity-photon modes using the SW transform in the large detuned region as follows: 

 † †( ˆex )ˆ ˆ ˆp rsw ri ri i r i
ri

U a g m a m a
  
 
 

 


  (49) 

where 01 / ( )ri q    . When the condition 0ri qg    is satisfied, the Hamiltonian quantity can be truncated 

to second order in the new framework in the following form: 

 

† † †
0

† † †

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ( )

sw r ri ki ki k
rki

i i i ri rj rj i j i
i rij

i

H a a g g a a aa

t m m g g m m m m

 

 

  

  

 
 

 (50) 

For convenience, let ( )b
ri rj rjg g g   and set the cavity field to the vacuum state. 

Then, the Hamiltonian quantity is transformed to by the non-interacting part: 

 
( ) †
0 ˆ( ) ( sin )b i i

q i i
i

U t e t m m


 


   (51) 

defined in the interaction plotted view as follows: 
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sin( ) ( ) †ˆ ˆ ˆ( ) . .

iii tb b
i jI

ij

H t g e m m H c



   (52) 

where ji j i    . 

When satisfying ( )bg   , the Hamiltonian quantity can be rewritten using the Jacobi-Anger expansion 

preserving to order zero: 

 
( ) ( ) †

0
ˆ ˆ ˆ( ) . .jib b

i jI
ij

H g m m H c



  J  (53) 

where ( )
0 ( / )b

ij jiJ g   J  is the effective coupling strength, and by modulating the amplitude  , the conditions 

required for perfect transmission of the quantum state ( )ijJ i N i J  . 

III. Analysis of dynamical results of quantum entanglement and quantum state transport 
mechanisms 

III. A. Analysis of enhancement results of optical-microwave entanglement and optical-magnetic 
entanglement 

The variation of Eac and Eam with the three-body high-dimensional parameters r and θ is shown in Fig. 1, where 
   and 0.99r  . It can be seen that when the reflectivity of the controllable beam splitter is increased from 50% 
(r=0.71) to 98% (r=0.99), both acE  and amE  can be significantly enhanced due to the increasing utilization of the 

output optical field. In addition, acE  and amE  are also very sensitive to the change of phase, and both can reach 

the entanglement maximum at   . After adding the three-body high-dimensional loop, the trends of acE  and 

amE  with the reflection coefficient r  and phase   are basically the same because the entanglement comes from 

the same source, which is from the entanglement between the optical mode and the phonon, and considering the 
experimentally feasible conditions, choosing 0.9997,r    , we can obtain optimal three-body high-dimensional 
enhancement effect on entanglement. In order to compare more comprehensively the optical-microwave 
entanglement acE  and the optical-magnetic entanglement amE  before and after the addition of the three-body 

high-dimensionality, we need to analyze the relationship between their changes with different parameters. 

 

Figure 1: Eac and Eam versus the coherent feedback parameters r and θ 

The variation of acE  and amE  with abG , cbG , and cmg  is shown in Fig. 2, in which (a)~(c) represent abG , 
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cbG , and cmg , respectively. It can be seen that with the increase of the optical force coupling strength abG , acE  

and amE  in the unadded feedback show a tendency to increase and then decrease, which is due to the fact that 

the generated optical force entanglement abE   gradually increases, and the transfer of acE   and amE   to The 

entanglement also increases, but when abG  increases to a certain level, the phonon mode b  mainly interacts 

with the optical mode a , and the interaction with the microwave mode c  is weakened, which leads to a decrease 
in the entanglement transfer. From Fig. 2(b), it can be seen that with the increase of the microwave-mechanical 
oscillator coupling strength cbG , acE  and amE  in the unaddressed feedback also show a tendency to increase 

and then decrease, which is due to the fact that the increase of the entanglement transfer capacity makes the 
transfer to acE  and amE  The entanglement of acE  and amE  increases, but it increases to a certain extent, the 

phonon mode b  mainly interacts with the microwave mode c , and the interaction with the optical mode a  is 
weakened, which leads to the decrease of the generated entanglement. From Fig. 2(c), it can be seen that as the 
microwave-magnon coupling strength cmg  increases, acE  gradually decreases without feedback, and amE  first 

increases and then decreases due to the gradual transfer of acE   to amE  . Obviously, both acE   and amE   are 

substantially boosted by adding three-body higher dimensions, only that different coupling strengths correspond to 
different magnitudes of the provided lift. 

  

(a)Gab (b)Gcb 

 

(c)gcm 

Figure 2: Eac and Eam are related to the change in Gab & Gcb & gcm 

The variation of acE  and amE  with a , c , m  is illustrated in Fig. 3, where (a) ~ (c) represent the variation 
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of a , c  and m . It can be seen that a  and acE  and amE  briefly increase and then gradually decrease with 

the increase of a  without feedback, which is because when a  is small, the dissipative coupling is in favor of 

entanglement generation, only that the magnetic oscillator decay rate ( m  ) is larger, the dissipation-induced 

decoherence will dominate, which leads to entanglement reduction; however, after adding feedback, with the 
increase of a , acE  and amE  etc. not only significantly enhance but also efficiently maintain this entanglement 

enhancement, this is because considering the feedback after the equivalent optical mode The effect of the 
attenuation rate on the entanglement is changed. From Fig. 3(b), it can be seen that both acE  and amE  before 

and after adding the feedback gradually decrease with the increase of   and the trend of the change is the same, 

and there is also a significant enhancement of the entanglement after adding the feedback. From Fig. 3(c), it can 
be seen that as the role played by the increase of m  on the entanglement transfer of acE  and amE  changes 

from positive to negative, amE   without feedback increases briefly and then decreases gradually, and acE  

decreases slightly and then increases gradually after the addition of Feedback, the entanglement is significantly 
enhanced and changes in the same trend. 

  

(a) a  (b) c  

 

(c) m  

Figure 3: Eac and Eam are related to the change in a & c & m  

The variation of Eac and Eam with γb and T(b) is shown in Fig. 4, where (a)~(b) represent γb and T(b), respectively. 
It can be seen that the introduction of three-body high-dimensional not only makes the entanglement significantly 
enhanced but also can be immune to the decay rate of the mechanical oscillator and the change of the temperature 
to a large extent, especially the optical-magnetic entanglement amE  can be well maintained below 12.16 K. This 

indicates that the introduction of three-body high-dimensional not only effectively enhances the entanglement but 
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also effectively improves the entanglement's ability of resisting the environmental interference, which makes the 
system be able to operate stably in a wider range of parameters. It should be noted that all the results in this paper 
are obtained when the system is in stability, which is guaranteed by the negative real part of the eigenvalues of the 
coefficient matrix ( 1,2)kA k  . 

  

(a)γb (b)T(b) 

Figure 4: Eac and Eam are related to the change in γb & T(b) 

III. B. Numerical simulation results of quantum state transport and quantum entanglement 
The results of the dynamical evolution of the fidelity of atom 2 in state |    are shown in Fig. 5. The fidelity 

1/21/2 1/2
1& ( )s c sF Tr Tr        

, where | |s    , and 1&cTr  denotes traces taken for 1-atom and all cavity modes. 

The parameters of the transport state |    are chosen randomly as sin , cos , / 3         . The s   and 

pentagrams denote the dynamical evolution of the fidelity F  controlled by the original master equation and the 

effective master equation ( IH   replaced by effeff
eff s dH H H   ), respectively. The overlap of these two curve 

trajectories fully demonstrates the effectiveness of the simplified system and helps to predict and explain the 
behavior of the original system. In addition, the fidelity of the state |   is as high as 98.97% at 12000gt  , and 

the fidelity of the initial state 1 2| | | 0 ce     ( o ) tends to be close to zero as time nudging tends to zero. These 

results also confirm the feasibility of our scheme. They show that we can realize the unidirectional transfer of 
arbitrary quantum states from the “transmitter” system to the “receiver” system and stabilize them in the “receiver” 
system under time-independent control. 

 

Figure 5: The dynamic evolution of the fidelity of the atom 2 in state |   
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(Fidelity as a function of gt   is governed by the original and effective master equations, where 

| |, sin , cos , / 3s              . The initial state is 0 1 1| | | | | 0 0 |ce e            . Other corresponding 

parameters are: 160 , 161 , 0.01 , , 0.01J g g g g g        ). 

Finally, we analyze the experimental feasibility of the scheme. The applicability and the expected limits of the 
toroidal microcavity to strongly coupled cavity quantum electrodynamics, where the coupling coefficients can be as 
high as / 2 750g    MHz, are discussed. Based on the corresponding critical photon number and critical atom 

number, the cavity attenuation rate and atomic spontaneous emissivity for ( , ) / 2 (20.5,2.5)     MHz can be 

obtained. Alternatively, we can assume that two niobium superconducting mirrors ( / 2 40g   kHz, / 2 0.8k   kHz) 

capture a rubidium atom that has a spontaneous emissivity of / 2 0.01   kHz. And another set of experimental 

parameters ( , , ) 2 (140,5.35,0.01)g     kHz was obtained. 

The dynamic evolution of the experimental parameters on the fidelity of the transport state |   in atom 2 is 

shown in Fig. 6. Using the above sets of parameters, we calculated the evolution of the fidelity of atom 2 in the state 
|   with time, and the fidelity is stable at more than 99.74%, and these results fully demonstrate the experimental 

feasibility of our scheme. In addition, the effect of different values of   on the fidelity of the transmission state |   

is depicted in the inset. The trend of these curves is completely consistent, which faithfully reflects that our scheme 
is realizable with arbitrary quantum states. 

 

Figure 6: The dynamic evolution of the fidelity of the transmission state |  in atom 2 

(Other corresponding parameters are: 160 , 161 , 0.01 , , / 3J g g g g          .) The inset shows the 

variation in fidelity of the transmitted state |   for different values of   with the parameters: 2 750g   MHz, 

20.5  MHz, 2.5  MHz, 160J  g, 161  g, 0.01  g, g  .) 

IV. Conclusion 
In this paper, a scheme to enhance optical-microwave entanglement and photomagnetic entanglement by using 
three-body high-dimensional photomagnetic system is proposed, the physical mechanisms and conditions of 
entanglement generation and entanglement transfer are analyzed in detail, the parameter conditions for 
entanglement optimization are obtained, and on this basis, the change relations of quantum state transport of 
optical-microwave entanglement and photomagnetic entanglement before and after the addition of three-body high 
dimensions are compared in detail with those of optical-microwave entanglement and photomagnetic entanglement 
under different parameters. 

(1) After adding three-body high-dimensional, both optical-microwave entanglement and optical-magnetic 
entanglement can be enhanced more substantially in a wider parameter range, and this enhancement effect can 
be well maintained. 

(2) Due to the dissipation of the optical cavity, arbitrary quantum states can not only be transferred from the 
"transmitting" system to the "receiving" system, but also can be stabilized in the "receiving" system without external 
time control. In addition, the excited states of the atoms suppress the spontaneous radiation of the atoms under 
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appropriate conditions. And the fidelity of the transmission state of the receiving system can reach more than 99.74% 
under suitable experimental parameters. 

The results not only provide strong theoretical support for the realization of hybrid quantum networks, but also 
offer more possibilities for optical control, design, detection and transmission of magnetic vibrator states, facilitating 
the ability to manipulate and utilize the quantum properties of magnetic vibrators more flexibly in the future. 
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