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Abstract In order to fully explore the fault information embedded in electromechanical faults and realize the 
accurate judgment of electromechanical faults, this paper improves the FOA algorithm with an electromechanical 
fault prediction model based on IFOA-SVM. The population division process is added, the better subpopulation and 
the worse subpopulation are updated according to different steps, the balance of the algorithm's search ability in 
different periods is realized, and the optimal parameters of the support vector machine are obtained by using the 
improved fruit fly algorithm. It not only realizes the diagnosis of electromechanical faults with higher accuracy, but 
also solves the defects that the fruit fly algorithm is easy to fall into the local optimum and has low convergence 
accuracy in the later stage. In the experimental validation, the gun control box component in the fire control system 
of a certain tank is selected as the research object, and the IFOA algorithm is compared with BP neural network, 
GA-SVM, GWO-SVM and other algorithms, and the average prediction accuracy of the three experiments reaches 
100.00%, and optimal fitness is obtained when the number of iterations reaches 10 times. The research in this 
paper provides a new effective method for electromechanical fault prediction, which has important theoretical and 
practical application value. 
 
Index Terms Improved Drosophila algorithm, Support vector machine, Population segmentation, Electromechanical 
fault diagnosis 

I. Introduction 
In recent years, with the development and application of machine learning technology, machine learning-based 
failure prediction and diagnosis methods for electromechanical systems have gradually become a research hotspot 
[1], [2]. Failure prediction and diagnosis of electromechanical system is a key issue, which can help us to detect 
system failures in advance and take timely measures to avoid catastrophic consequences such as production line 
downtime [3]-[5]. 

Machine learning is a method of automatically discovering patterns and laws in data through learning and mining 
of large amounts of data, and making predictions and judgments in this way, and supervised learning, unsupervised 
learning, integrated learning, deep learning, etc. are commonly used methods and techniques [6]-[9]. In 
electromechanical system fault prediction and diagnosis, machine learning can be applied to the following aspects: 

(1) Feature extraction and selection: Electromechanical systems usually have a large amount of sensor data, 
including temperature, pressure, current, vibration, and many other signals [10], [11]. Machine learning can analyze 
these signals to extract and select the most relevant features to help us better understand the system state and 
failure modes [12], [13]. 

(2) Failure prediction: Based on historical data and features, machine learning can construct prediction models 
for predicting the probability or time of failure in electromechanical systems [14], [15]. This can help us develop a 
reasonable maintenance plan and replace components with higher failure risks in time, thus reducing the losses 
caused by failures [16], [17]. 

(3) Fault diagnosis: When an electromechanical system fails, machine learning can perform automatic diagnosis 
by analyzing the failure patterns and characteristics to find out the cause and location of the failure, so as to guide 
the maintenance and repair work [18]-[21]. 

Literature [22] describes the application of deep learning techniques in system fault prediction and proposes a 
new deep learning-based fault diagnosis method for electromechanical systems based on the limitations of deep 
learning models, which possesses the advantages of ease of use and adaptability and is supported by unsupervised 
stacked self-encoders and supervised discriminant analysis. Literature [23] describes the application of 
electromechanical actuators and proposes an automatic motor fault detection and isolation method with long and 
short-term memory neural networks, pointing out that the algorithm has good fault detection capability and the 
method can accomplish the fault isolation task. Literature [24] describes the development of intelligent fault 
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diagnosis in electromechanical systems (EMS) and initiates the study of various combinations of electromechanical 
faults in EMS, introduces the use of wavelet features extracted from current and vibration signals, develops a defect 
detection system based on Support Vector Machines, and discusses the results of the study. Literature [25] points 
out the shortcomings of traditional methods of fault diagnosis in electromechanical systems and emphasizes the 
effectiveness of utilizing predictive maintenance (PM) and deep learning (DL) methods, in order to help the 
technicians of electromechanical systems to understand the use of PM using the DL methodology for multi-fault 
diagnosis, work on the DL technique applied to PM in electromechanical systems is discussed, revealing that electric 
motors are the most selected devices for PM. Literature [26] proposed a deep learning and optimization algorithm 
based fault diagnosis and predictive maintenance method for electromechanical equipment and verified that the 
method achieved significant performance improvement with good accuracy and generalization ability, which helps 
to improve productivity and ensure equipment safety. Literature [27] emphasized the importance of failure prediction 
of electromechanical equipment and proposed a failure prediction method based on spatio-temporal graph 
information, which was verified to be feasible and accurate, and could accurately complete the task of long-term 
and short-term failure prediction. Literature [28] proposed a hierarchical multiscale dense network for fault 
identification in electromechanical systems, aiming to learn the intrinsic and multiscale feature information 
necessary for fault identification of mechanical signals under non-stationary conditions, and verified that the method 
can achieve state-of-the-art performance compared to some competing methods. Literature [29] proposed a 
scalable and lightweight convolutional neural network framework based on high-dimensional raw condition 
monitoring data for the automatic detection of multi-electromechanical faults in wind turbine generators, revealing 
that the fault detection system has a good performance and its classification accuracy is very high. Literature [30] 
proposed a current-assisted vibration fusion network aimed at diagnosing faults in electromechanical drive systems 
and designed a current-assisted fusion module to achieve full fusion of cross-modal information, showing that the 
proposed method has strong robustness and diagnostic performance. Literature [31] constructed a fault diagnosis 
system and used LSTM neural network to construct a fault diagnosis model for electromechanical equipment, 
revealing that the model has high accuracy, recall and F1, and the training time and prediction time are very short, 
which can be used for fault prediction and diagnosis of electromechanical equipment. Literature [32] proposed a 
rolling bearing fault diagnosis method for electromechanical equipment - weighted prototype network, which 
effectively solves the shortcomings of the small number of effective samples and the long-tailed distribution of the 
health monitoring data, enhances the dependence of the samples on the global data, and improves the accuracy 
of the model classification. Literature [33] proposed an improved deep learning-based fault diagnosis framework for 
EMAs, which is based on a triple network with coupled clustering loss, and was revealed to improve the performance 
of traditional deep learning-based methods through experiments on real EMA datasets from NASA. Literature [34] 
proposed a deep learning based cross-sensor domain adaptive approach for mechanical fault diagnosis and 
designed different tasks to simulate different cross-sensor domain adaptive problems in fault diagnosis, which 
demonstrated that the method has a very high detection accuracy in most of the tasks. The above study explores 
the application of machine learning methods such as deep learning, optimization algorithms, and long and short-
term memory neural networks in the prediction, targeting, and detection of electromechanical faults, and by 
comparing them with the traditional methods, they show excellent fault detection capabilities with very high accuracy 
rates. 

Support Vector Machines, as an efficient classification and regression algorithm, have been widely used in the 
prediction of electromechanical faults, however, the performance of SVMs is largely dependent on the selection of 
parameters such as the penalty factor and kernel parameters. Considering that the Drosophila algorithm has 
improved the optimization performance for support vector machines, but it has the problems of low accuracy and 
easy to fall into the local optimum, this paper proposes an improved Drosophila algorithm, which realizes the position 
update of the better subpopulation and the worse subpopulation by dynamically dividing the Drosophila populations 
and according to the different step-size determination methods. The performance of this paper's algorithm is verified 
in practical applications, which provides new ideas for the application of intelligent algorithms in the industrial field. 

II. Optimized SVM based on Drosophila algorithm for electromechanical fault prediction 
model 

II. A. Data collection and pre-processing 
II. A. 1) Data collection 
The temperature sensor can accurately determine the temperature of the generator coolant, the vibration sensor 
can effectively monitor the vibration status of the generator rotor, and the current sensor is specifically designed for 
real-time detection of changes in generator current. The data collected by these sensors provide timely information 
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feedback on the operating status of the equipment, which helps to detect and recognize potential signs of failure in 
time. 

In model training, the collection of historical fault records is of indispensable importance as they provide valuable 
training samples for the model. Taking transmission lines as an example, insulator breakdowns, line short circuits 
and other faults have occurred in the past, and these detailed fault records not only record the time, location and 
type of faults, but also describe in detail the impact of the fault on the equipment. By deeply analyzing these historical 
fault records, researchers can discover the unique characteristics of different failure modes, thus providing solid 
data support for future fault prediction and equipment diagnosis. Its calculation formula is: 
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where: ,X Y  is the variable characteristics. ,i ix y  is the sample value of the variable characteristics. ,ix y  is the 
mean value of the variable features, which indicates the degree of linear correlation between the variables. During 
feature selection, the correlation coefficient can be used to predict the features that are most relevant to the 
diagnosis. 

 
II. A. 2) Data cleaning and pre-processing 
Data cleansing [35] is one of the key steps in ensuring data quality and usability. In this phase, issues such as 
outliers, missing values and duplicates in the data need to be identified and dealt with. 

1) Outliers handling. Outliers in data can be detected and handled through statistical methods such as box-and-
line plots or threshold-based methods. For example, the presence of values significantly outside the normal range 
in the temperature sensor data of an electrical device may imply sensor malfunction or environmental anomalies 
that need to be dealt with. 

2) Missing value processing. Missing values may affect the training and prediction results of the model, so 
appropriate methods need to be taken to deal with them. Common methods include interpolation, mean padding, 
or model-based padding methods to ensure data integrity and availability. The formula for this is: 
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povx  is the pre-missing value observation. mux  is the post missing value observation. nodt  is the timestamp of 

the observation before the missing value. pevt  is the timestamp of the observation after the missing value. 
3) Normalization. Scaling the range of values of different features to the same scale helps to eliminate the 

difference in magnitude between the features. For example, in electrical equipment fault prediction, data of different 
magnitudes such as temperature and current are scaled uniformly to ensure the accuracy and stability of model 
training. 

4) De-noise. Noise interference may affect the quality of the data and the performance of the model, so de-noising 
measures are needed. Common methods include filtering techniques such as moving average, median filtering or 
wavelet transform to reduce the effect of noise in the data. 

 
II. B. Electromechanical fault prediction model based on IFOA-SVM 
II. B. 1) Support Vector Machine Algorithm 
SVM [36] is a machine learning method based on the principle of statistics, which is often used to deal with 
classification problems under small samples.The idea of SVM to deal with classification problems is to maximize 
the distance between the hyperplane and the interface between the hyperplane and the partitions under different 
samples by constructing the optimal hyperplane, which is expressed as: 
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where i  is the slack variable in the linearly indivisible case, 0i  . 1,2, ,i n  .   is the hyperplane normal 

vector. ix  is the sample value. iy  is the label value. b  is the set threshold. C  is the penalty parameter. 
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The objective function is transformed by introducing Lagrange multipliers: 
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A partial derivation of   and b  to 0 yields its dual form as: 
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In the nonlinear case, the introduction of a kernel function mapping yields: 

 ( , ) ( ), ( )T
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This leads to the derivation of the decision function as: 

 
1

( ) sgn ( , )
n

i i i j
i

f x y K x x b


   
 
  (7) 

where iy  is the desired output. ix  is the input sample vector. n  is the total number of samples. ( )x  is the 

mapping function. ( , )i jK x x  is the kernel function, which is generally a radial basis function. The specific expression 

for ( , )i jK x x  is: 

 2( , ) exp( || || )i j i jK x x g x x    (8) 

The parameters that affect the classification performance of SVM are the penalty parameter C  and the kernel 
parameter g . 

 
II. B. 2) Drosophila algorithm for bicluster differential step size 
The basic FOA algorithm [37] has six main steps, which are detailed below: 

Step 1: Initialize the relevant parameters. It mainly includes the size of the Drosophila population (i.e., the number 
of individual Drosophila) Popsize . Maximum number of iterations (i.e., the condition under which the iteration stops) 
Maxiter  . The search step length L   of Drosophila individuals. Initial center position of the population 
( _ , _ )X axis Y axis . 

Step 2: Start the search process. Each Drosophila individual iF  conducts a flight search randomly in its own line 
of sight to the surrounding according to the search step L  to find food. 
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Step 3: Calculate food concentration. Calculate the food concentration determination value iS  , which is the 

reciprocal of the value of the distance between the location of the individual Drosophila iF  and the origin of the 
coordinates. 
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Step 4: Calculate the fitness. Calculate the fitness value iSmell  of the Drosophila individual iF , which is obtained 

by substituting iS  into the fitness function. 

 ( )i iSmell function S  (11) 

Step 5: Information Recording. Record the fitness value of the Drosophila individual with the largest iSmell  in 
the current iteration and the coordinates of the location where it is located. 
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  , , max( )b b ibestSmell X Y Smell  (12) 

Step 6: Population aggregation. Record the largest bestSmell   in all iterations, and after that, the fruit fly 
population aggregates towards the location of the optimal fruit fly individual obtained in the current iteration. 
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Step 7: Iterate repeatedly. Repeat the execution of Step 2 Step 6, and after reaching the maximum number of 
iterations Maxiter, the algorithm stops and outputs the optimal result. 

In step 2 of the above FOA calculation, the individual fruit fly searches for food in flight according to the search 
step length L , which determines the scope and precision of the individual fruit fly search. The value of L  needs 
to be set by human beings, and whether it is set reasonably or not has an important influence on the final 
optimization result of the algorithm. For example, when the value of L  is set to a large value, the step size of 
Drosophila individuals will become larger, which is easy to miss the potential optimal solution. On the contrary, when 
it is set too small, although the search of Drosophila individuals is more delicate, it will greatly increase the amount 
of computation and reduce the search efficiency. Therefore, how to reasonably and efficiently determine the value 
of L  is particularly critical to improve the performance of FOA. To address this problem, this paper proposes the 
IFOA algorithm on the basis of FOA. Its main idea includes two parts, one is to divide the Drosophila population 
dynamically. The second is the position update of different populations according to the difference step. 

Regarding the dynamic division of the population, it is mainly realized by the following equation. 
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where iD  is the distance between the Drosophila individual iF  and the optimal Drosophila individual beuF  in the 

current iteration. meanD  is the average of all distances as shown in the following equation. 
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The Drosophila population is then dynamically divided into two subpopulations, i.e., the better subpopulation and 
the worse subpopulation. 

Regarding the position update of different populations according to the difference step, it is mainly realized by the 
following equation. 
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where iter   is the current iteration number. Maxiter   is the maximum number of iterations. lgt   is the logistic 
transformation function, as shown in the following equation. 
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When the Drosophila population completes one iteration, it will be divided into better and worse subpopulations 
by dividing the Drosophila population into two subpopulations, and then the better subpopulation will complete the 
position update by calculating the adaptive change of the step size yL , while the worse subpopulation will complete 
the position update with the initially set step size L  . The step size of the better subpopulation will adaptively 
decrease according to the increase of the iteration number, which ensures that the population can search in a wide 
range with a larger step size at the early stage, and search in a small range with a smaller step size at the later 
stage, realizing the balance of convergence accuracy and speed. The worse subpopulation is positionally updated 
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according to the original fixed step size L , which ensures the global optimization search ability of the population. 
At the same time, since the population is re-divided after each iteration is completed, i.e., the individuals and the 
number of individuals contained in the two subpopulations are dynamically changing, this realizes the information 
exchange between the two subpopulations, which is more helpful to improve the search effect. 

 
II. B. 3) Optimization of SVM parameter selection based on IFOA 
When using SVM to deal with nonlinear problems, the selection of the penalty parameter C  and kernel parameter 
g  directly affects the final classification results of the model. In order to improve the classification accuracy of SVM, 
IFOA is utilized to select the optimal SVM parameters based on sample data, and the specific process is as follows. 

Step l, set the number of populations M , the maximum number of iterations iterationT , and utilize the Tent-logistic 

chaotic mapping to generate the initial position information 0 0( , )X Y  of Drosophila individuals. Since the number of 
variables to be optimized is 2, the position update formula of the Drosophila individual is: 
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where i  is the current number of iterations.   is the dynamic adaptive step size parameter. 
Step 2, calculate the distance D  between the individual position and the origin, and get the flavor concentration 

determination value P  after solving the reciprocal. 
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Step 3, set the variable to be optimized penalty parameter C  and the kernel parameter g  as a function of the 
flavor concentration determination value P . 
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In step 4, the fitness function is set to the classification error rate of the SVM. Input the optimization parameters 
determined by the flavor concentration determination value P   into the SVM to obtain the value of the fitness 
function, i.e., the food flavor concentration iSmell  at the location of the fruit fly individual. The minimum fitness 
value and the corresponding individual location during each iteration are recorded. 
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where index  is a location index based on the current food flavor concentration. 
Step 5, iterate the FOA population to determine whether 1iSmell   is less than iSmelll , and if this condition is 

satisfied, update the globally optimal food flavor concentration, bestSmell , and the corresponding globally optimal 
location; otherwise, continue iterating. 

Step 6, iterate until the maximum number of iterations, record the information of Smell and the corresponding 
individual position at this time, and output the optimal penalty parameter C  and kernel parameter g . 

 
II. C. Standard function test of the improved Drosophila algorithm 
II. C. 1) Test Functions 
In order to verify the effect of the improved FOA algorithm, the standard function is generally used first to test it, this 
paper uses the Sphere function, Schaffer function, Griewank function and Rastrigin function which are four 
commonly used intelligent algorithms to test the performance of the function, in order to better highlight the effect 
of this paper's algorithmic improvements, respectively, with the standard FOA, the decreasing step size FOA, this 
paper In order to better show the effect of the improvement of this paper's algorithm, the standard FOA, the 
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decreasing step FOA, and the improved FOA of this paper, respectively, are used to carry out simulation 
experiments on these four standard functions to find the minimal value of the function by matlab, and compare the 
test results. 
 
II. C. 2) Test results and analysis 
The parameters of the improved Drosophila algorithm are set: the population size is 20, the maximum number of 
iterations is set to 500, the minimum value of weight is 0.01, and the maximum value of weight is 100, because the 
purpose of the IFOA in this paper is to optimize the RBF kernel function parameter σ of the SVM and the penalty 
factor C. Therefore, the dimensionality of the test functions are all set to 2, and the annealing coefficient is 1. The 
parameters of the FOA, DS-FOA, and the IFOA settings are the same. The same, for each test function are 
individually run 10 times respectively to calculate the optimal value, the worst value, the average value, the standard 
deviation of the four indicators to reflect the algorithm's performance of the search for excellence, the test results 
are shown in Table 1. 

From the test results, it can be seen that whether it is a complex multi-peak function or a simpler single-peak 
function, the IFOA algorithm has very good optimization results compared to the other two, the DS-FOA algorithm 
optimization results than the standard Drosophila algorithm to be higher than the standard Drosophila algorithm by 
two orders of magnitude, there is a certain degree of improvement, but the ability to improve is limited, and this 
paper improves the Drosophila algorithm compared to the other two algorithms, optimization effect has greatly 
improved, for the Sphere function, the IFOA algorithm has a much better performance. Sphere function, the IFOA 
is improved by nearly more than 170 orders of magnitude, and the standard deviation is zero, indicating that the 
algorithm has better stability. For the Schaffer function, Griewank function and Rastrigin function, the optimal and 
worst values of the IFOA solution are 0, which is consistent with their actual values, indicating that the improvement 
effect is extremely obvious. From the above results, it can be seen that compared with FOA, the index values of 
IFOA solving test function are closer to the actual values and reach the expected results of this paper. And the 
indexes of IFOA's optimization search are also much better than DS-FOA, indicating that the improved fruit fly 
algorithm in this paper helps the algorithm jump out of the local optimal solution very well and improves the 
convergence speed and accuracy of the algorithm. 

Table 1: Comparison of three algorithm test results 

Function Algorithm 
Taste value 

best worst mean sd 

Sphere 

FOA 1.691E-11 1.732E-11 1.711E-11 1.165E-11 

DS-FOA 6.701E-14 6.938E-14 6.812E-16 6.887E-15 

IFOA 3.995E-185 4.254E-189 6.335E-185 0.000E+00 

Schaffer 

FOA 1.703E-11 1.74E-11 1.717E-11 9.677E-13 

DS-FOA 6.675E-13 6.901E-13 6.795E-13 6.842E-14 

IFOA 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

Griewank 

FOA 1.731E-11 1.785E-11 1.755E-11 1.438E-13 

DS-FOA 7.837E-13 8.092E-13 7.971E-14 7.973E-15 

IFOA 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

Rastrigin 

FOA 1.282E-5 1.321E-5 1.301E-5 1.082E-7 

DS-FOA 5.111E-8 5.246E-8 5.175E-8 4.771E-9 

IFOA 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

 

III. Example validation analysis of electromechanical failure prediction model 
III. A. Data pre-processing 
The author chose the gun control box component in the fire control system of a certain type of tank as the research 
object. 

In order to avoid the computational imbalance of Bayesian network processing different orders of magnitude of 
the original data, and at the same time reduce the computational complexity of the algorithm and improve the 
performance of Bayesian network, the normalized processing results are shown in Figure 1. 

The distribution shape of the normalized data is the same as that of the original data, but the data distribution 
range is reduced to [0.2,0.8], which eliminates the influence of too large data range on data processing and improves 
the performance of the algorithm. 
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Figure 1: The data of electromechanical equipment is normalized 

III. B. Experimental results 
Four hundred groups of gun control box data were selected for experimental verification. The status of the gun 
control box was divided into five mode labels: normal, abnormal aiming control module, abnormal image stabilization 
control module, abnormal signal module from the gyroscope group, and abnormal amplifier module. In order to 
improve the reliability of the experimental results, three groups of experimental comparative analyses were 
conducted: In Experiment 1, half of the data sets in each type of state mode were extracted. The extracted 200 sets 
of data were used as training samples, and the remaining 200 sets of data were used as test samples. In Experiment 
2, 40 groups of data were extracted from each type of state pattern, 200 groups of data were extracted as training 
samples, and the remaining 200 groups of data were used as test samples. In Experiment 3, 20 groups of data are 
extracted from each type of state model, 100 groups of data are used as training samples, and the remaining 300 
groups of data are used as test samples. The sample datasets are fed into GA-SVM, GWO-SVM, IFOA-SVM, and 
BP neural network to train the samples for prediction. The number of populations in GA-SVM, GWO-SVM and IFOA-
SVM is set to be 30, the number of iterations are all taken to be 100, and the nodes of the hidden layer in the BP 
neural network are 10. Taking the prediction results in Experiment 1 as an example, the prediction results are shown 
in Fig. 2, and Figs. (a), (b), (c), and (d) are shown in Figs. (a), (b), (c), and (d), respectively, for BP neural network, 
GA-SVM, GWO-SVM, and IFOA-SVM prediction results. 

As can be seen from the figure, the prediction result of IFOA-SVM is optimal, and the prediction accuracy reaches 
100.00%, while the prediction accuracy of BP neural network is lower, which is only 32.00%.The prediction 
accuracies of GA-SVM and GWO-SVM are 70.00% and 80.00%, respectively, and the prediction accuracies of this 
paper's faulty fault prediction model are all improved to a different degree compared with the comparison model. 
The algorithm in this paper can effectively improve the accuracy of fault prediction of electromechanical equipment 
of gun control box. 

  

(a)Bp neural network prediction results  (b)GA-SVM prediction results 
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(c)GWO-SVM prediction results  (d)IFOA-SVM prediction results 

Figure 2: Different algorithms predict the results 

In order to increase the persuasiveness of the experimental results, the author conducted 10 state prediction 
experiments for each algorithm when conducting experiments 1, 2 and 3, and the comparative analysis of their 
prediction results is shown in Table 2, where the data in the table are the average values of the 10 states. Through 
the experimental comparative analysis of the training set and test set with 3 different numbers of groups, it is found 
that in the state prediction comparison of the 4 algorithms, the average time used for BP neural network prediction 
is the shortest, and with the increase of the number of groups in the training set, the average time used for IFOA-
SVM processing is close to the average time used for GA ⁃ SVM processing.The prediction result of BP neural 
network is very unstable, and the prediction results of GA-SVM are not so stable, GWO-SVM is not so stable, and 
the prediction result of GWO-SVM is not so stable. BP neural network prediction results are very unstable, GA-SVM 
prediction results are also not very stable, GWO-SVM and IFOA-SVM prediction results are more stable, and the 
more the number of training set groups the more accurate prediction of the results, but IFOA-SVM in the state 
prediction accuracy is obviously better than the other three algorithms, the algorithm prediction accuracy in three 
experiments are 100.00%, the accuracy of the prediction results of the dependence on the number of training sets 
is also less than the other three algorithms. 

Table 2: Comparative analysis of four algorithms in 1~ 3 

Comparison term 
Experiment 1 Experiment 2 Experiment 3 

Accuracy /% Time/s Accuracy /% Time/s Accuracy /% Time/s 

BP 32.00 1.856 45.00 1.564 29.00 1.455 

GA-SVM 70.00 23.451 69.00 31.145 39.00 10.213 

GWO-SVM 80.00 12.124 69.00 24.512 25.00 6.124 

IFOA-SVM 100.00 13.411 100.00 19.541 100.00 9.214 

 
Figure 3: The fitness curve of this algorithm 

 



Development of Machine Learning-based Electromechanical Fault Prediction Models 

375 

As an example, the curves of the adaptability of the improved algorithm of this paper and the adaptability of the 
gray wolf search algorithm in Experiment 1, the comparison results are shown in Fig. 3 and Fig. 4, respectively. 
From the comparison of fitness curves, it can be seen that the number of iterations used by IFOA-SVM to find the 
optimal fitness is significantly less than that of GWO-SVM, and the algorithm in this paper finds the optimal fitness 
when it is 10 iterations, and the fitness value calculated by IFOA-SVM is also significantly better than the fitness 
value calculated by GWO-SVM, which means that IFOA-SVM can find the best individual with the best fitness faster 
and better, which improves the prediction accuracy of the support vector machine and has obvious advantages. 

  

Figure 4: The fitness curve of the GWO-SVM algorithm 

IV. Conclusion 
In this paper, we propose an electromechanical equipment fault prediction model based on the fruit fly algorithm 
optimized support vector machine, which improves the optimization search accuracy and convergence speed in 
traditional machine learning training. 

Taking the population division and different step update methods as optimization points, IFOA dynamically divides 
the Drosophila population and updates the position according to the difference step on the basis of the original 
Drosophila algorithm, which achieves the balance of information searching ability of different populations and 
ensures the searching accuracy and efficiency of the algorithm. In the task of predicting the faults of 
electromechanical equipment in the gun control box, the diagnostic accuracy of IFOA-SVM reaches 100.00%, and 
the average elapsed time of the three experiments is only 14.055 s. Compared with all the compared algorithms, 
the diagnostic accuracy of the IFOA-SVM algorithm is the highest, and the operation elapsed time is less than that 
of most of the methods, which guarantees an extremely high prediction accuracy while ensuring a lower operation 
time, and verifies the accuracy and efficiency of the IFOA-SVM algorithm. the effectiveness of the IFOA-SVM 
method. 

The optimization prediction model in this paper can accurately predict the failures of electromechanical equipment, 
provide strong support for the maintenance and overhaul of the equipment, and help to detect the potential failures 
of the electromechanical equipment in advance, reduce the downtime and maintenance cost of the equipment, and 
ensure the safe and stable operation of the electromechanical system. Although the model in this paper has 
achieved more excellent results in the experiment of the gun control box, but in the future, we can still collect data 
on electromechanical failures of different types and under different working conditions to provide more experimental 
support for the testing and validation of the model. 
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