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Abstract Industrial robotic arms have flexible maneuverability and have been widely popularized in various 
industries, therefore, the study of mobile robotic arm motion planning and control system has very important 
theoretical and practical value. In this paper, an optimal time-impact trajectory planning method for the robotic arm 
is proposed, which adopts five times non-uniform B-spline function to construct interpolation curves in the joint 
space, replaces the motion constraints of the robotic arm with the constraints of the control vertices of the B-spline 
curves of each order, and uses multi-strategy improved viscous bacterial algorithm to optimize the objective function. 
Simulation and experimental results show that the proposed improved mucilage algorithm can effectively improve 
the performance of the SMA algorithm, and the optimal trajectory planner is able to obtain a safe and smooth time-
impact optimal trajectory under the premise of satisfying the joint constraints with the running time less than 15s 
and the impacts in the range of [10-7 rad, 10-3 rad]. This study ensures that smaller shocks are generated during 
the motion process, which makes the motion control performance of the robotic arm improved. 
 
Index Terms robotic arm, 5 times B-spline curve, improved SMA algorithm, optimal trajectory planning 

I. Introduction 
In recent years, with the continuous development of automation, the application of robotic arms has become more 
and more widespread [1]. The robotic arm is a highly integrated space mechanical system with the integration of 
machine, electricity, heat and control [2]. With the development of science and technology, especially the birth of 
aviation aircraft, robots and other intelligent machinery, so that it has been widely used, the robotic arm as in the 
trajectory of the support, service, etc. to the attention of people [3]-[5]. And the trajectory planning of the robotic arm 
is the key link in its work [6]. 

The trajectory planning of the robotic arm refers to determining the movement trajectory of the robotic arm so that 
it can accomplish the predetermined tasks in a specific environment [7], [8]. The trajectory planning algorithm, 
mainly includes two aspects of path planning and velocity planning. Path planning refers to determining the path for 
the movement of the robotic arm, while velocity planning refers to determining the movement speed of the robotic 
arm on a specified path [9]-[11]. Reasonable robotic arm trajectory planning algorithms can enable robotic arms to 
complete work tasks efficiently and improve work efficiency, which are widely used in industrial, medical, and service 
fields [12], [13]. In industry, robotic arms can complete various complex work tasks such as assembly, handling and 
welding on production lines, and the application of robotic arm trajectory planning algorithms can help robotic arms 
accurately and efficiently complete various tasks and improve productivity [14]-[17]. In the medical field, robotic 
arms can assist doctors in surgical operations, reduce surgical risks and improve surgical accuracy [18], [19]. The 
application of robotic arm trajectory planning algorithms can enable the robotic arm to realize precise movement 
trajectories during the surgical process to ensure the safety and success of surgery [20], [21]. And in the service 
field, the robotic arm can accomplish tasks such as carrying and cleaning of dinner plates [22]. The application of 
robotic arm trajectory planning algorithms can enable the robotic arm to move flexibly in a narrow space to 
accomplish various service tasks and provide a better service experience [23], [24]. 

Literature [25] proposed a trajectory planning method based on the improved dynamic multiple swarm particle 
swarm optimization algorithm, verified the effectiveness of the algorithm through simulation results, and revealed 
that the improved dynamic multiple swarm particle swarm optimization algorithm effectively improves the work 
efficiency and convergence speed. Literature [26] discusses the six-axis robotic arm trajectory planning problem 
based on deep reinforcement learning, proposes a multi-objective optimization method based on deep 
reinforcement learning and optimal planning motivation, and illustrates the effectiveness of the proposed method 
through simulation experiments. Literature [27] describes the applications, roles and limitations of robotic arms, and 
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emphasizes the importance of trajectory planning for robotic arms, revealing the effectiveness of the method in 
robotic arm trajectory planning by means of a 6-degree-of-freedom robotic arm, as well as a trajectory planning 
method with a MATLAB program and particle swarm optimization. Literature [28] based on the traditional robotic 
arm trajectory planning method with low adaptability and other problems, proposed a method to plan the trajectory 
of robotic arm by using the trajectory learning and generalization properties of dynamic motion primitive, verified the 
feasibility of the method in robotic arm trajectory planning, and improved the adaptability and generalization 
performance of robotic arm trajectory planning. Literature [29] combined the Non-Superiority Sorting Genetic 
Algorithm-II (NSGA-II) and Achievement Scalarization Function (ASF) to propose a method for solving the joint 
trajectory of minimum hourly jumping moment of a six-axis industrial robot based on hybrid multi-objective 
optimization technique to obtain higher positioning accuracy, and the method obtained good optimization results. 
Literature [30] introduced a particle swarm optimization algorithm for robot trajectory planning to optimize the joint 
angles or paths of robotic arm motion, and improved it by introducing an adaptive weight strategy and a random 
perturbation term, which revealed that the algorithm improves the acceleration of the robotic arm and outperforms 
the traditional planning methods. Literature [31] introduced an optimal trajectory planning method for industrial 
robots, emphasizing the application of path tracking, and verified that the method can effectively solve the optimal 
trajectory of the path tracking problem, which is characterized by wide adaptability and high feasibility. Literature 
[32] used a polynomial curve-based trajectory design method to analyze the motion trajectory planning problem of 
a robotic arm, and showed by comparison that the trajectory optimization method is suitable for real-time trajectory 
planning. Literature [33] outlined the motion model and trajectory planning method of the robotic arm, and used 
genetic algorithm-improved particle swarm algorithm (PSO) to optimize the motion trajectory of the robotic arm, and 
simulation experiments pointed out that the improved PSO algorithm has fast convergence speed, and the lowest 
degree of adaptability after stable convergence. Literature [34] proposed a solution method to minimize the cost of 
moving the robotic arm along a specified path under input torque/force constraints based on the consideration of 
coupled nonlinear dynamics of the robotic arm, using dynamic programming to find the position, velocity, 
acceleration and torque that minimize the cost, and simulation experiments revealed the effectiveness of the method. 
Literature [35] explored an improved adaptive multi-objective particle swarm optimization method for time- and 
collision-based optimal trajectory planning of a multi-degree-of-freedom robotic arm, showing that the optimal 
trajectory planning method for the manipulator improves the efficiency of the movement of the manipulator, the 
tracking accuracy, as well as the operational efficiency and stability of the manipulator. Literature [36] proposed an 
optimal time trajectory planning method for robotic arm based on the improved tuna swarm optimization (TSO) 
algorithm, which is optimized on the basis of the standard TSO algorithm. Literature [37] introduces the role of space 
robotic arm, which can effectively replace humans to complete various on-orbit tasks, and describes the current 
research status of space obstacle avoidance trajectory planning and motion trajectory planning, and examines the 
basic principles and practical applications of space robotic arm trajectory planning methods. The above research 
emphasizes the importance of robotic arm trajectory planning and proposes methods for robotic arm trajectory 
optimization based on dynamic multiple swarm particle swarms, deep reinforcement learning, genetic algorithms, 
and improved TSOs, revealing that these methods effectively improve the efficiency and tracking accuracy of the 
robotic arm. 

Aiming at the efficiency of industrial robotic arm execution as well as the vibration and mechanical wear generated 
by the impact during the motion process, this paper proposes an optimal time-impact trajectory planning method for 
robotic arm to optimize two coupled and contradictory motion performance indexes, namely, the robotic arm joint 
motion time and the added acceleration (impact). The motion trajectory executed by the robotic arm is converted 
into a position-time sequence in the joint space through inverse kinematics, the interpolation curve is constructed 
in the joint space using a 5-times inhomogeneous B-spline function and replaces the motion constraints of the 
robotic arm, and an improved SMA algorithm is proposed for solving. The solution process is as follows: firstly, the 
better population is sought as the initial population through the Tent mapping inverse learning strategy to improve 
the convergence speed of the algorithm, and secondly, the viscous bacteria are optimized by updating the position 
through the adaptive weights strategy and the perturbation strategy, adjusting the algorithm exploration ability and 
exploitation ability, so as to optimize the objective function. Finally, the improved SMA is compared with GWO and 
two other state-of-the-art metaheuristic algorithms on four benchmark functions, and the improved SMA algorithm 
is used to solve the time-impact optimal trajectory planning problem for a redundant seven-degree-of-freedom 
robotic arm. 
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II. Optimal trajectory planning for robotic arm with improved SMA 
II. A. Kinematic modeling of the robotic arm 
The kinematics of the robotic arm includes forward kinematics and inverse kinematics [38], and the forward and 
inverse kinematics of the robotic arm are illustrated in Fig. 1.FK refers to the computation of the position and attitude 
of the end-effector of the robotic arm based on the angle of each joint of the robotic arm, while IK refers to the 
computation of the corresponding joint angle based on the position and attitude of the end-effector of the robotic 
arm. 

Position and attitude

( , , , , , )x y zp p p   
Joint Angle vector

1 2 7( , , , )  

Forward 
kinematics

Inverse 
kinematics

 

Figure 1: Kinematics of the manipulator 

Before studying the inverse kinematics of a robotic arm, an FK model is required. The DH parameters can 
determine the structure of the robotic arm and are widely used to model the kinematics of robotic arms. Table 1 
shows the DH parameters of the studied robotic arm, where , , ,i i i ia d   denote the linkage length, linkage torsion 
angle, linkage offset, and the range of joint angles, respectively. 

Table 1: DH parameters of the manipulator 

Arthrosis ia (m) i (rad) id (m) i (rad) 

1 0.00 -π/2 d1=0.5 -π<θ1<π 

2 l2=0.20 π/2 0 -π/2<θ2<π/6 

3 L3=0.25 -π/2 0 -π/3<θ3<2π/3 

4 L4=0.30 π/2 0 -π/2<θ4<π/2 

5 L5=0.20 -π/2 0 -π/2<θ5<π/2 

6 L6=0.20 0 0 -π/2<θ6<π/2 

7 L7=0.10 0 d7=0.05 -π/6<θ7<π/2 

 
The standard DH parameter method is used to model the FK of the robotic arm, and the chi-square transformation 

matrix of a single joint is: 

 1 0

0 0 0 1

i i i i i i i

i i i i i i ii
i

i i i

c s c s s a c

s c c c s a s
T

s c d
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 (1) 

where 1
i
i T  is the chi-square transformation matrix from joint 1i   to i , and is  and io  denote sin( )i  and 

cos( )i , respectively. 
The chi-square transformation matrix for each joint can be obtained by substituting each row of data in Table 1 

into Eq. (1): 
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The FK equation for the end-effector with respect to the base (base coordinate system) is generated by multiplying 
all the chi-square transformation matrices sequentially as shown in Equation (3): 

 7 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6End EffectT T T T T T T T T          (3) 

where End EffectorT    denotes the chi-square transformation matrix of the end-effector with respect to the base 
coordinate system. 

When the values of a set of joint variables are given in Eq. (3), the alternative representation of End EffectorT   can 
be written as: 
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   

 (4) 

where ( , , )Tx y zp p p  denotes the position element of the end-effector in the base coordinate system, and ( , , )n s a
  

 

denotes the attitude element. 
Although the attitude matrix ( , , )n s a

  
 has nine elements, it has only three degrees of freedom, and it is a unitary 

orthogonal matrix with redundancy. Therefore, the Euler angles can be used to describe the attitude of the end-
effector, calculated as: 

 2 2 )( , , ) arctan / , arctan )/ , arcta( ( ) ( ( )n /y z x x x x xa a a n s s n        (5) 

Therefore, the position and pose of the end-effector can be expressed as ( , , , , , )x y zP p p p     , where 

( , , )x y zp p p  is the position vector and ( , , )    is the pose vector expressed by the Euler angles. In summary, the 

kinematic model of the seven-degree-of-freedom robotic arm can be obtained by substituting Eqs. (2)~(5) into the 
simplification as: 
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where is  and ic  stand for sin( )i  and cos( )i , ijs  and ijc  stand for sin( ) sin( )i j   and cos( ) cos( )i j  . 
As mentioned above, the FK equations for a seven-degree-of-freedom robotic arm can be found by the DH 

coordinate method. If the joint angle vectors 1 2 3 4 5 6 7( , , , , , , )        are given, the positional attitude of the robotic 

arm ( , , , , , )x y zp p p      can be computed directly by Equation (6). However, if the positional attitude 

( , , , , , )x y zp p p     of the robotic arm is given, it is used to calculate the joint angle vectors 1 2 3 4 5 6 7( , , , , , , )        
The IK equations are highly nonlinear and are considered challenging optimization problems. Since the analytical 
method is used up the objective of the non-IK problem is to optimize the joint angle vectors of the robotic arm 

1 2 3 4 5 6 7( , , , , , , )i       


  in order to eliminate the end-effector's positional error.The FK equation is used to 

calculate the position and attitude of the end-effector. For the desired positional attitude 0 0 0 0 0 0 0( , , , , , )x y zP p p p    , 

the fitness of the candidate joint angle vectors i


 is defined as: 
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  

 (7) 

 
1

2 2 2 2
1 0 0 0( ) ( ) ( ) ( )i xi x yi y zi zf p p p p p p        
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 (8) 

 
1
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 (9) 

where 1 2 1w w   denotes the weights of position and pose errors, and ( , , , , , )i xi yi zi i i iP p p p     denote the the 

bit position of the end-effector corresponding to the joint angle vector i


, which can be calculated by Equation (6). 

The fitness function defined in Eq. (7) consists of position and attitude errors. It is worth noting that in previous 
studies, many researchers only considered the position and not the attitude, reducing the complexity of the IK 
problem. Although these algorithms obtained high accuracy, they deviated from many real-world application 
scenarios. The position and attitude of the end-effector are considered together to obtain the complete position of 
the robotic arm. 

 
II. B. Optimal trajectory planning model of robotic arm based on time shock 
II. B. 1) Description of the problem 
Discretizing the motion trajectory to be executed by the robotic arm in Cartesian space, a sequence of spatial 
position matrices iT   can be obtained, and through inverse kinematics the spatial position sequence can be 

converted into a sequence of joint positions of the robotic arm 1, 2, , , , 0,1,2 ,
T

i i i j i N ip p p p p i n        and 

1 j N  , N  denotes the number of joints of the robotic arm, and ,j ip  denotes the position of the j th joint at 

time node it . The joint position-time node sequence is: 

 {( , ) | 0,1, , }i iQ p t i n    (10) 

By interpolating the above joint position-time node sequence by a polynomial or spline function, the joint trajectory 
profile can be obtained, i.e: 
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where ,j jVC AC   and jJC   denote the maximum velocity VC  , acceleration AC  , and shock (plus acceleration) 

JC  allowed for joint j . 
Optimize the two coupled and contradictory motion performance indexes of robotic arm joint motion time and 

acceleration (impact), the former to improve the execution efficiency of the robotic arm, the latter to ensure that the 
impact of the robotic arm in the execution of the motion trajectory is reduced as much as possible. The impact is 
bounded to ensure the tracking accuracy of the trajectory, to obtain a higher operating speed, for the joint actuator, 
the smaller the joint impact accumulation, so that the driving torque change accumulation will be smaller, the 
smoother the movement of the robotic arm. 

The traditional time-optimal trajectory planning scheme is mainly used to optimize the robotic arm joint running 
time under polynomial or B-spline interpolation curves, and the impact is only used as a constraint, which can only 
guarantee that the impact is bounded during the motion process, and cannot guarantee that the impact does not 
change abruptly. The polynomial-based joint space interpolation is not locally controllable. 3-times B-spline 
interpolation does not guarantee that the shock curves are continuous, and it will result in the sudden change of 
shocks. 

In view of the above problems, 5 times B spline function is used to construct the trajectory curves of each joint 
motion of the robotic arm, and the joint motion time and impact are taken as optimization indexes at the same time, 
so that the optimal time impact planning problem of the robotic arm is summarized as a multi-objective optimization 
problem, that is: 
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 (12) 

where the objective function ( )( 1,2 , )iS x i f   and the constraint functions ( ) 0jg x   and ( ) 0kh x   are functions 

of the decision variables 1 2( , , , )nx x x x  . 

Given a feasible solution *x A  with x A   with *( ) ( )S x S x , *x  is known as the absolute optimal solution 

to the multi-objective planning problem. If there is no x A  such that *( ) ( )S x S x , then *x  is called the efficient 
solution of the multi-objective planning problem, which is also called the Pareto optimal solution. 

In order to improve the operating efficiency of the robotic arm and reduce the impact, the following optimization 
objective is defined: 
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N t
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    (14) 

where 1i i ih t t   denotes the time interval between neighboring nodes; and ft  denotes the total time of the joint 
motion of the robotic arm. Consider the motion constraints of the robotic arm and define the following constraints: 

 | | , 1, 2, ,j j jg p VC j N     (15) 
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 | | , 1, 2, ,j N j jg p AC j N      (16) 

 2 | | , 1, 2, ,j N j jg p JC j N      (17) 

To satisfy the impact continuous trajectory, each joint trajectory curve is at least third-order geometrically 
continuous, and 4k   is required since the k th order B-spline curve has the property of 1kC   continuity. In this 
paper, the interpolated curve construction is carried out by using the 5th order B spline function [39]. 

 
II. B. 2) B-spline interpolation trajectory construction 
The k  times B-spline curve is described uniformly as: 
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where , ( )( 0,1 , )i kN u i n   denotes the spline base of the k th B-spline; ( 0,1 , )id i n   denotes the control vertex 
of the curve. 
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where , ( )( 0,1 , )i kN u i n    is the basis function, and the basis function interval 1[ , ]i i ku u u     is defined as 

0 1 2[ , , , ]n kU u u u    as a node vector. For a point 1[ , ]i i ku u u   , there are only up to 1k   non-zero k th B-splines 

, ( )( , 1 , )r kN u r i k i k i     , and the other k th B-splines are 0. Thus the B-spline curve can be expressed also as: 

 , 1( ) ( ) [ , ]
i

r r k i i k
r i k

p u d N u u u u  
 

   (20) 

Convert the domain of definition of the interpolating curve to the domain of canonical parameters with 1k   first 

and last repetition, i.e., 0 1 1 2[ , ] [0,1], 0, 1k n k k n k n k n ku u u u u u u u u               . 
The time node it  is normalized using the cumulative chord length parameterization, i.e: 
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 (21) 

The derivative vectors of each order for each joint of the robotic arm are calculated from the DeBoor-Cox recursive 
formula, which is given by the recursive formula: 
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 (22) 

In order to make each joint motion trajectory pass through 1n   position nodes in Q , it is necessary to invert 

the control points ( ) 1n k
rd R    of the B-spline trajectory equations, and from the time-position sequences, one can 

list 1n   equations, i.e.: 

 ,( ) ( ) , 0,1,2, ,
i k

i k r r k i
r i

p u d N u p i n





     (23) 
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Therefore it is also necessary to add 1k   conditions, and in this paper we take 5k   and obtain the remaining 
boundary conditions by configuring the boundary conditions, i.e: 

 
0 0 0 0( ) , ( )

( ) , ( )e e e e

p u v p u a

p u v p u a

 
  

 

 
 (24) 

where and 0a   denote the joint starting velocity and acceleration, and ev   and ea   denote the joint termination 
velocity and acceleration, respectively. 

After obtaining a system of 5n  equations containing 5n  control vertices, the control vertex equations for 
the j th joint are described in matrix form, i.e: 

 j j jA d p  (25) 

In the formula: 
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 (26) 

One can invert the control vertex jd : 

 1
j j jd A p  (27) 

The trajectory profile of joint j  on 0[ , ]nt t t  is derived from the solved control vertex vectors and temporal node 
vectors, and its derivative profiles of all orders can be deduced by DeBoor-Cox recursive formulae, viz: 
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 (28) 

II. B. 3) Motion constraints 
The derivative curves of each order of each joint deduced from 5 times non-uniform B-splines need to satisfy the 
relevant kinematic constraints, i.e., the point with the largest absolute value on the velocity, acceleration, and 
acceleration curves of each joint is required to satisfy the relevant constraints, and the analytical solving method 
usually adopts the golden section method, but the analytical method of solving for the point with the largest absolute 
value on the curves is more difficult. Then: 
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 (29) 

Replacing the kinematic constraints of each joint with the constraints of each control vertex of the B spline curve 
reduces the difficulty of the solution. 

Based on the above, the optimal time-impact planning problem for the robotic arm can be converted into a multi-
objective nonlinear constrained problem: 
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Eq. 
1

1

n

f i
i

t h




 . 

 
II. C. Model Solving for Improved Mucilage Algorithm 
II. C. 1) Basic slime mold algorithm 
The SMA algorithm is a stochastic optimization method that simulates the three phases of the food finding process 
of slime molds, i.e., food discovery, approaching food, and encircling food [40]. 

(1) Food discovery phase 
When the food concentration satisfies the condition, the weight near the region is larger; when the food 

concentration is lower, the weight of the region will be reduced, thus shifting to other regions to explore the rest. 
Then: 
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In the formula: 
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The W -weight update strategy is: 
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 (33) 

 SmollIndax ( )sort S  (34) 

In Eq. (31), r  denotes a random value in the interval [0, 1], ( )bX t  denotes the currently obtained best position, 

W   is the weight, and ( )AX t   and ( )nX t   are 2 randomly selected individuals. bv   is the control parameter, cv  

decreases linearly from 1 to 0, t  represents the current number of iterations, ( )X t  denotes the current bit, and 
p  is the selection switch. In Eq. (33), t  represents the current number of iterations, maxt  represents the maximum 

number of iterations, ( )S i   is the population after performing the ranking, and DF   is the best value among all 

iterations. The vector bF  denotes the optimal fitness value obtained during the current iteration, F  denotes the 

worst fitness value obtained during the current iteration, and condition denotes that ( )S i  is the first half of the 

population, / 2i N . SmellIndex in Eq. (34) ranks the adaptation values. 
(2) Proximity to food stage 
The proximity to food phase simulates the contraction method within the mucus vein structure, and the position 

is adjusted according to the quality of the food, i.e., the higher the concentration of the food, the greater the weight 
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of the region. Otherwise, the weights of the region are converted to other regions according to equation (35). The 
position update strategy is: 

 
1 1( ) , ;

( ) ( ( ) ( )), ;

( ),

u

b b A B

c

R B B B R z

X X t v W X t X t r p

v X t r p

   
     
  

 (35) 

where R  denotes a random value in the interval [0, 1], 1B  and uB  denote the lower and upper bounds of the 
range of the search space, and z   denotes the switching probability, which determines whether the SMA is 
exploring other food sources or searching around the best individual; the other variables are the same as in Eq. 
(31). 

(3) Surrounding food phase 
The encircling food phase is to simulate the behavior of bv , where bv  floats in the interval [ , ]a a  in a random 

manner and gradually decreases to zero as the number of iterations increases. The value of cv  floats in the interval 
[0, 1] and eventually reaches zero. 

 
II. C. 2) Improved Mucilage Algorithm Solving with Multiple Strategies 
(1) Initialization population strategy based on Tent mapping reverse learning 

To address the shortcomings of the SMA algorithm, the Tent mapping [41] reverse learning strategy is used to 
reinitialize the population in order to obtain a better initial population. 

1) Tent mapping 
It has been shown that the advantages of randomness, regularity and traversal of chaotic motion can be utilized 

to produce rich and diverse initial populations. The Tent chaotic mapping expression is: 
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 (36) 

When (0,1)  and [0,1]kx  , the system is in a chaotic state. 
2) Reverse learning strategy 
Reverse learning strategy is a method to improve the search efficiency, using the idea of seeking the reverse 

solution to its initial population to increase the diversity of the search population and thus improve the quality of the 
best point. The basic idea is: if there exists a point on the D  -dimensional space 1 2( , , , )pX X X X    and 

( 1, 2, , )ix i D   is distributed in the interval [ , ]c d , the inverse point , [0, ]i ix c d x i D     . So the population iX  

is the reverse population of iX , and the reverse population is given by: 

 i i i iX L U X     (37) 

where iL  and iU  are the upper and lower bounds, iX  is the original initial population, and iX  is the reverse 

population. The original and reverse populations are combined into a new population ( )i iX X X  , and then the 
fitness values are calculated and ranked, and the top N  points are selected as the initial population X . 

(2) Adaptive weighting strategy 
This paper introduces the adaptive weights strategy of nonlinear change, balances the algorithm exploration and 

development capacity, fully guarantees the effectiveness of the algorithm, adaptive weights as in equation (38): 
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 (38) 

where ,aiitial final   denotes the initial and final values,   is in the range of [0, 1], t  is the current iteration number, 
and T  is the maximum iteration number. 

The improved position update formula is: 
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 (39) 
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In this paper, we introduce the adaptive weighting strategy for position update, which dynamically changes the 
weights nonlinearly as the number of iterations increases. Larger weights in the early delivery can obtain a strong 
exploration ability and quickly converge to the global optimum, thus improving the convergence speed of the 
algorithm, and smaller weights are selected in the later iterations to improve the ability to jump out of the local 
optimum. 

(3) Perturbation strategy 
When the viscous bacteria update the position, the current optimal position is generally selected for updating, 

which makes the search scope narrower and the number of iterations reduced. In order to improve the efficiency of 
global search, a perturbation is chosen to add a perturbation to the current optimal position, and a greedy strategy 
is judged on the position information to determine whether the current position is optimal or not. A randomized 
perturbation of the current position is given by the formula: 

 
1( ) 0.5 ( ), 0.5,ˆ ( )

( ), 0.5

X t r X t rand
X t

X t rand

 
  

 (40) 

The greedy mechanism strategy is used to make the judgment of whether to keep the perturbation or not, and 
the formula is: 
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 (41) 

The steps of the improved SMA algorithm proposed in this paper are as follows: 
Stepl Initialize each parameter and generate the initial population X  based on Tent chaotic mapping and reverse 

learning strategy. 
Step2 Calculate the fitness value and sort it. 
Step3 Update , ,b cp v v  according to the iteration conditions. 
Step4 Update position, weights in each iteration by Eq. 
Step5 Recalculate the fitness value and select the optimal position by choosing the adapted update position 

formula at the same time. 
Step6 Perturbation update the current optimal position by using the formula. 
Step7 Judge whether the set termination condition is satisfied, if yes, output the global optimal value and the 

algorithm ends, otherwise go back to Step2. 

III. Simulations and experiments 
III. A. Performance analysis based on benchmark functions 
In order to verify the feasibility and superiority of the improved SMA algorithm, the CEC2005 test functions are 
used.The CEC2005 test functions of single-peak functions are evaluated for the local search capability and the 
multi-peak functions are evaluated for the global search capability.In this section, 4 test functions are selected from 
these 2 categories for evaluation, respectively. 
 
III. A. 1) Performance Comparison of Algorithms 
In order to further test the optimization accuracy of the improved SMA algorithm, the Particle Swarm Algorithm 
(PSO), Gray Wolf Algorithm (GWO), and Slimy Mushroom Algorithm (SMA) are selected for a comprehensive 
comparison based on the CEC2005 test function, which includes single-peak function and multiple-peak function. 
In order to fairly verify the effectiveness of the improved SMA algorithm, the test is carried out in the same running 
bad environment, and MATLAB is used to complete the simulation, and the population number of all algorithms is 
set to 100, and the number of iterations is 2000. In order to reduce the influence of chance factors on the experiment, 
each algorithm is run 50 times individually, and the optimal value, average value and variance are used as the final 
evaluation indexes to test the algorithm's equal-optimization ability, optimization search speed and stability. The 
expression, search space and optimal value of each test function are shown in Table 2, and the parameter settings 
of each algorithm are shown in Table 3. 
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Table 2: Reference test function 

Function Type Dimension Search space Theoretical optimal solution 

F1 Sphere 30 [-100,100]2 0 

F2 Schwefel’s 2.22 30 [-10,10]n 0 

F6 Ackley 30 [-32,32]n 0 

F7 Penalized1 30 [-50,50]n 0 

 

Table 3: Algorithm parameter setting 

Algorithm Parameter setting 

PSO 1 2 1.5, 0.8c c w    

GWO 1 20 , [0,1]a r r ，  

SMA 0.03, [ , ]z vb a a    

Improved SMA 0.03, 0.5, 0.9z Cr q    

 
III. A. 2) Convergence curve analysis 
The convergence curves of benchmark test functions can clearly reflect the convergence speed and convergence 
accuracy of each algorithm. The convergence curves of the four optimization algorithms on the four benchmark test 
functions (single-peak function F1, F2 and multi-peak function F6, F7) are shown in Fig. 2~Fig. 5, and (a)~(b) are 
the convergence accuracy and convergence curves, respectively. Where the horizontal axis represents the number 
of iterations, and the vertical axis represents the adaptation value, when the curve is no longer shown with the 
increase of the number of iterations, it means that the algorithm has found the optimal value, and the improved SMA 
algorithms are all able to achieve the optimal adaptation. 

 

(a) Convergence accuracy      (b) Convergence curve 

Figure 2: Single peak function F1 

 

(a) Convergence accuracy     (b) Convergence curve 

Figure 3: Single peak function F2 
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(a) Convergence accuracy      (b) Convergence curve 

Figure 4: Multimodal function F6 

 

(a) Convergence accuracy      (b) Convergence curve 

Figure 5: Multimodal function F7 

III. A. 3) Algorithm optimization comparison 
For each test function, the four algorithms are independently carried out 50 times, record the optimal value of each 
function in each group of results, and find the average and standard deviation of the results of the 50 operations, 
where the optimal value reflects the quality of the understanding, the average reflects the accuracy that the algorithm 
can achieve, and the standard deviation reflects the robustness and stability of the algorithm. The comparison 
results are shown in Table 4. 

For the single-peak functions F1 and F2, PSO and GWO did not find the optimal value, and SMA only achieved 
the optimal value in F1, while the improved slime mold algorithm achieved the theoretical optimal value in F1 and 
F2. For the multi-peak functions F6 and F7, although the improved mucilage algorithm does not obtain the optimal 
value, the solution quality is higher than that of GWO and SMA in F6, and higher than that of PSO, GWO, and SMA 
in F7, which reflects the strong ability to find the optimal value.The results of the four test letters show that the 
improved SMA algorithm is significantly better than the remaining three algorithms in terms of stability and 
robustness, and also illustrates that the introduction of Tent mapping, backward learning strategy, adaptive 
weighting strategy, and the introduction of the Tent mapping are more effective than the other three algorithms. It 
also shows that the introduction of the Tent mapping, the inverse learning strategy, the adaptive weights strategy 
and the perturbation strategy has a positive effect on the global optimization ability of the SMA algorithm, and 
reduces the chances of the SMA falling into the local optimum. The synthesized data shows that the algorithm has 
a certain improvement effect. 
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Table 4: Algorithm comparison results 

Test function Algorithm category Optimal solution Mean value Standard deviation 

F1 

PSO 2.6885 5.0112 1.2579 

GWO 6.5921e-61 9.1982e-59 2.2438e-59 

SMA 0.0000 0.0000 0.0000 

Improved SMA 0.0000 0.0000 0.0000 

F2 

PSO 6.5383 10.0115 1.5984 

GWO 4.7844e-36 9.6921e-35 1.0885e-35 

SMA 1.8845e-305 4.7641e-185 0.0000 

Improved SMA 0.0000 0.0000 0.0000 

F3 

PSO 1.555 2.0258 0.1396 

GWO 7.4454e-15 1.4845e-15 2.8972e-15 

SMA 8.1154e-09 1.9523e-05 1.1522e-05 

Improved SMA 5.6251e-19 1.3345e-13 6.4012e-13 

F4 

PSO 1.9552 2.1456 1.5624e-01 

GWO 6.5382e-03 4.0012e-02 1.3945e-02 

SMA 3.1578e-06 7.3216e-05 8.305e-05 

Improved SMA 2.6642e-06 7.1434e-05 5.8219e-05 

 
III. B. Time-shock optimal trajectory planning 
In the simulations in this section, two configurations are randomly selected as the start and end points for the robotic 
arm trajectory planning. In particular, the joint configurations of the starting point are [0.1, 0.2, 0.5, -0.1, 0.2, 0.4, 0.1, 
-0.2, 0.1] (in rad) and the joint configurations of the termination point are [1.5, 1.3, 1.7, -1.5, 1.0, 1.2, 1.8, -1.8, 2.0] 
(in rad). 

The above trajectory planning problem is solved using the improved SMA algorithm in the framework of the 
trajectory planner presented in Section 2. The population size, the maximum number of iterations and the maximum 
number of members in the archive of the algorithm are set to 100, and the number of variables to be searched is 
30. The convergence process of the improved SMA algorithm is shown in Fig. 6, with (a) to (d) representing the 
number of iterations of 1, 25, 50, and 100, respectively. Obviously, as the number of iterations increases, the slime 
mold individuals successfully converge to the concave curve (Pareto front) composed of the objective functions f1 
and f2. 

 

(a) Iteration times t = 1     (b) Iteration times t = 25 

 

(c) Iteration times t = 50    (d) Iteration times t =100 

Figure 6: The convergence of the improved SMA algorithm 
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Based on the solution A of the more compromise measure of f1 and f2 in the archive of Fig. 6, the joint motion 
trajectory curves obtained from the computation are shown in Fig. 7, with (a)~(d) being the position, velocity, 
acceleration and impact curves, respectively. Each joint accurately accomplishes the point-to-point motion under 
the premise of satisfying the constraints. Its position, velocity and acceleration curves are continuous and smooth, 
the running time is less than 15s, and the impact is between -0.30 rad/s³~0.20 rad/s³. Fig. 8 shows the 
conformational changes presented by the robotic arm executing the above motion trajectory, and the motion 
trajectory of the end of the robotic arm calculated by positive kinematics. In the figure, the end trajectory of the 
robotic arm is continuous and smooth, indicating that solution A ensures the safety and smoothness of the end 
motion of the robotic arm. 

The same conclusion can be obtained at other solutions in the archive, which will not be repeated due to space 
limitation. In practical applications, the optimal solution can be selected in the archive according to the demand, 
taking the archive shown in Fig. 6(d) as an example, if it is hoped to obtain a smaller running time, solution B can 
be selected; if it is hoped to obtain a smaller impact, solution C can be selected. 

 

(a) Position       (b) Velocity 

 

(c) Acceleration      (d) Jerk 

Figure 7: The trajectory of A 

 

Figure 8: The configuration of solution A 

Finally, the motion trajectories of solution A are experimentally verified on the experimental platform, and for each 
joint, the planned position profile is input to the driver as a control command via a network cable with a sampling 
time of 5 ms. Fig. 9 shows the motion trajectories of the joints and the trajectory tracking errors measured by the 
host computer in the experiments, and (a) and (b) are the distribution of the joint position profiles and the joint 
position errors, respectively. The error between its motion trajectory and the simulation result is roughly between 
[10-7, 10-3] rad, indicating that the robotic arm can accurately track the optimal trajectory. 
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In summary, the time-impact optimal trajectory searched by the trajectory planner can enable the robotic arm to 
complete the specified point-to-point motion safely, smoothly and accurately. 

  

(a) Joint position curve    (b) Joint position error 

Figure 9: The motion trajectory and tracking error of the experimental measurement 

IV. Conclusion 
In order to solve the time-impact optimal trajectory planning problem for redundant robotic arms, this paper proposes 
an optimal trajectory planner based on an improved viscous bacteria algorithm. The initial population is optimized 
by Tent chaotic mapping reverse learning strategy, which improves the convergence speed of the algorithm. The 
adaptive weights strategy avoids the phenomenon of local extremes of the algorithm and improves the speed of 
slime molds approaching and acquiring food, and the perturbation strategy updates the optimal position with 
perturbations to find a better global optimal value, and the algorithm is able to avoid the phenomenon of premature 
maturity. 

The performance of the improved SMA was tested using using the CEC2005 test function, and the trajectory 
planner was simulated and experimentally validated on a seven-degree-of-freedom redundant robotic arm. The 
experimental results show that the improved sticky mushroom algorithm effectively enhances the performance of 
the SMA with strong superiority. The trajectory planner successfully searches for efficient and smooth motion 
trajectories with a running time of less than 15 s and impacts between [10-7 rad, 10-3 rad]. The study enables the 
robotic arm to complete the specified point-to-point motion safely, smoothly and accurately. 
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