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Abstract Considering the spatial distribution and temporal evolution characteristics of extreme meteorological 
hazards, this paper constructs a combined model (CNN-LSTM) of convolutional neural network (CNN) and long-
short-term memory network (LSTM), and designs the training process of the model. Certain salient features of the 
environmental change data are captured by the CNN spatial model and these features are used as inputs for 
constructing the LSTM time series dataset, which reveals the interactions between the hidden features in the data 
and the space, and thus improves the accuracy of the prediction results. The diffuse reflection coefficient of the 
solar panel is also calculated as well as the parameters of the model are determined to finalize the environmental 
change-sensitive nonlinear modeling of the current output characteristics of the solar cell, which is experimentally 
demonstrated and analyzed. The CNN-LSTM model in this paper outperforms the single LSTM model in the four 
evaluation indexes of RMSE, MAE, MAPE and R² in the training and test sets, and it is able to more accurately 
capture the small fluctuations of the solar cell current output power in response to the environmental changes, and 
shows stronger robustness and generalization ability. The reliability and sensitivity of the solar cell are better when 
the insulating film thickness is 0.2 mm and 0.8 mm, and it has better sensitivity to both temperature and relative 
humidity, which provides reference information for the sensitivity of solar cell current output to environmental 
changes using the time series data analysis method. 
 
Index Terms CNN-LSTM model, diffuse reflection coefficient, solar cell, current output characteristics, 
environmental sensitivity 

I. Introduction 
With the proposal of “double carbon” goal, various industries have taken various measures to reduce carbon 
emissions, and the addition of photovoltaic power generation system has become one of the effective methods of 
green power supply [1], [2]. Photovoltaic power generation system is a new type of power generation system that 
utilizes the photovoltaic effect of the semiconductor material of solar cells to directly convert solar radiation energy 
into electrical energy [3]. It has become one of the effective ways of energy supply due to its advantages of 
cleanliness, environmental protection and wide coverage [4]. However, solar cells are greatly affected by both light 
intensity and ambient temperature, which are external environmental factors, and the output characteristic curve 
will change dynamically with time, resulting in the energy conversion efficiency of PV power generation system and 
environmental changes are closely related [5]-[7]. Among them, low photoelectric conversion efficiency and other 
issues have become a major constraint on the development of photovoltaic power generation industry [8]. How to 
ensure the maximum energy conversion of photovoltaic power generation system under the dynamic change of 
solar light intensity and ambient temperature is the key to realize solar energy as an efficient and reliable energy 
supply [9], [10]. At the same time, due to the uncertainty and stochastic characteristics of photovoltaic power 
generation, which is susceptible to the PV surrounding environment, weather, and other factors, the process data 
collection is also common to the phenomenon of missing data [11]-[13]. Therefore, by collecting multivariate, 
multidimensional, and large-scale time series data of the current output of PV power generation system, it helps the 
data subsequent modeling, prediction, and other mining work, and its research work has an important value of 
popularization and application [14]-[16]. 

In this paper, the CNN model is used to extract the environmental change spatial feature data of solar cell current 
output, and then the extracted data features are input into the LSTM model to further deal with the temporal 
dependence between the data from a higher level. Then the two models were fused to obtain the CNN-LSTM 
network model, and its design algorithm and construction process were introduced. By capturing information in 
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different spatial scales and time scales, it is adapted to different complex data patterns. In order to solve the problem 
of the large difference between the output voltage value and the actual voltage value of the traditional solar cell, the 
output factor of the solar cell is calculated and the parameters of the model are determined, and the harmonic 
components are used to assist in the construction of the nonlinear modeling of the output characteristics of the solar 
cell. Finally, the prediction results of the model are analyzed and the environmental sensitivity of solar cells is studied 
as an example. 

II. CNN-LSTM based solar cell current output model construction 
II. A. CNN-LSTM neural network 
II. A. 1) CNN networks 
CNN is a special class of neural network, very suitable for processing data with spatial structure. CNN can directly 
accept multi-channel matrix data without element rearrangement, make full use of the spatial properties of the 
training set, and its as a spatial model is able to extract spatial information from the data in an automatic and 
hierarchical way. CNN is mainly composed of convolutional layer, pooling layer and activation layer. 

(1) Convolutional layer: the most important feature of CNN is the convolutional operation. The convolution layer 
can maintain the spatial continuity of the input data, detect local patterns in the input data, and can extract the local 
features of the data. The 2D convolution operation in CNN can be formulated as: 

 1l l l l
i i i iX X K b    (1) 

where   is the convolution operation; l
iX  is the l th layer feature mapped by the i th convolution kernel, l

iK ; 

the convolution kernel, l C H W
iK     , is the three-dimensional weighting tensor, where C   is the number of 

channels, H W  is the kernel size; 1l
iX   is the 1l  th layer feature; and l

ib  is the bias. 

The convolutional layer essentially performs inter-correlation operations, automatically processing the correlation 
features between the input data to achieve feature extraction, and gradually mapping the features to the high-
dimensional space. Specifically, feature extraction is performed for all grid attributes within the spatial sensing field, 
thus fully utilizing the adjacent grid information. 

(2) Pooling layer: the pooling layer can extract grid attributes that are not disturbed by spatial location, improve 
the sensory field of subsequent features, and enable the network to obtain global information: in addition, the pooling 
layer can also realize the downsampling of the output of the convolutional layer, reduce the dimension of the 
intermediate hidden layer, and reduce the computational volume of the next layers while retaining important features. 

The pooling layer generally uses maximum pooling or average pooling, and the average pooling used in this 
paper can be formulated as: 

 1l l lX X P   (2) 

In the formula, each element of the pooling kernel l C H WP    has a value of 1/ ( )H W . 

(3) Activation layer: the activation layer is able to introduce nonlinear factors to realize the mapping to the high-
dimensional nonlinear space and further enhance the expressive ability of the network. Considering the non-
negative number of grid faults predicted by the model, the specific activation function is set to be ReLU. it can 
accelerate the model convergence and enhance the sparse representation of the neural network at the same time: 

 ( ) max( ,0)ReLU x x  (3) 

II. A. 2) LSTM networks 
LSTM is a special type of recurrent neural network (RNN) specifically designed to process temporal data. Compared 
to standard RNNs, LSTMs not only share parameters through input temporal sequences, but also have advantages 
in long sequence processing and gradient vanishing problems.As a temporal model, LSTMs have the ability to 
efficiently capture both long- and short-term temporal dependencies in sequences through the introduction of a 
gating mechanism, which can be used to satisfy temporal prediction tasks at different scales. 

The core idea of the LSTM network is the introduction of an internal memory unit called a cell, which retains the 
information in the input sequence over long time intervals and controls the input and output of the information. The 
memory of the LSTM network for the sequence is kept in the cell, which is also regulated by the input gate i  and 

the forgetting gate f . In each time step, the LSTM network calculates the cell state and output of the current 

moment and passes them to the next moment based on the inputs, the output of the previous moment, and the cell 
state of the previous moment, which are weighted and summed and controlled by some gating mechanisms, 
including the input gate i , the forgetting gate iotaf  and the output value of the output gate o : 
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 1( [ , ] )i ii W h x b      (4) 

 1( [ , ] )f ff W h x b      (5) 

 1tanh( [ , ] )t g t t gg W h x b   (6) 

 1( [ , ] )t o t t oo W h x b    (7) 

 1c f c i g        (8) 

 tanh( )t t th o c   (9) 

where , ,f i oW W W  are the weight matrices of the oblivion gate, the input gate, and the output gate, respectively; gW  

is the weight matrix used to compute the new cell state; , ,f i ob b b   and x , ,f i ob b b   are the bias vectors for the 

forgetting gate, the input gate, the output gate, and the new cell state, respectively; 1[ , ]t th x  denotes the vector 

that splices together the output of the previous timestep, 1th  , and the input of the current timestep, x ; g   and 

c  are the candidate cell states and the cell state at the current moment, respectively; h  is the final output of the 

LSTM;   is the Hadamard product;   and tanh are the sigmoid and tanh activation functions, respectively: 
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II. A. 3) CNN-LSTM networks 
CNN-LSTM networks [17], [18] enable the integration of spatial model CNNs and temporal model LSTMs into a 
unified framework, aiming at overcoming the limitations of the respective models, integrating the advantages of 
CNNs in spatial feature extraction and LSTMs in temporal dynamic modeling, which can capture information in 
different spatial scales and temporal scales, and make the models more adaptable to different complex data patterns. 
The data input to the CNN is relatively independent from the rest of the dimensions due to the batch size where the 
dimensions are located, and the CNN generally processes the rest of the dimensional data in parallel. Therefore, 
the input data format of CNN needs to expand the batch size into the product of timing length and batch size, and 
ensure a certain degree of ordering. The output of CNN is reshaped to separate the timing length as a separate 
dimension, forming the standard input format of LSTM, which is used as the input of LSTM, so that it can further 
learn the timing correlation relationship at a higher level. 
 
II. B. CNN-LSTM model design based on battery current outputs 
II. B. 1) Data pre-processing 
The data are first pre-processed, and the data set is divided into training set and validation set according to the ratio 
of 9:1. In the data cleaning stage, each parameter is first analyzed and processed, including the processing of data 
outliers, missing values, and the standardization of data and other operations. When dealing with outliers, data with 
obvious abnormalities in certain parameters are first deleted; at the same time, data without yield are deleted to 
exclude the interference of human factors. 
 
II. B. 2) Data normalization 
Due to the different value ranges and different units of the collected feature data, the input and output data are 
processed in order to better train the model and achieve better convergence, excluding the influence of different 
dimensions between production indicators. In this paper, the data values are mapped to the interval [0, 1] using the 
normalization method with the normalization formula: 

 min

max min

x x
X

x x





 (12) 

where X  is the normalized value, x  is the eigenvalue of a production indicator, minx  is the minimum value of 

the production indicator, and maxx  is the maximum value of the production indicator. 
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II. B. 3) Model Design and Algorithm Construction 
The model first receives the data using a CNN and extracts spatial features related to temporal variables from the 
convolutional and pooling layers of the CNN. After data cleaning, the extracted features are passed to the LSTM 
layer to extract temporal features from the sequence data. Ultimately, based on the CNN-LSTM approach, the model 
can generate predictions of solar cell current output in the fully connected layer. The input of the model is the 
significant feature parameters extracted by the CNN, and the output is the solar cell output data.The CNN-LSTM 
model mainly consists of a CNN module and an LSTM module.The CNN module contains one convolutional layer 
with a convolutional kernel size of 3, a convolutional kernel number of 64, an activation function of ReLU, and one 
layer of maximal pooling, with a pooling layer size of 2. The LSTM module contains 128 nodes, and the random 
dropout rate (Dropout) of LSTM is 0.2. The loss function of the model uses MAE. 
 
II. B. 4) Model Training Process 
According to data preprocessing and model design and algorithm construction, the training process of the model 
can be obtained. First, the data are preprocessed to remove the missing values and outliers; subsequently, the data 
are normalized by algorithm adjustment to obtain the experimental data that will be input into the model. After that, 
the training of the model begins. 
 
II. C. Nonlinear modeling of solar cell output characteristics 
II. C. 1) Calculating the output factor of a solar cell 
The shape factor from one differential area element 1dA  to another differential area element 2dA  in a solar cell 

can be expressed by 1  2d ddF  , when the 2 area elements have the following relationship: 

 1 2

1 2

1 2
22

cos cos
d d

d d

dE dA
S

 




  (13) 

Since the definition of each parameter can be converted to the case of a finite area of the solar surface, the output 
factor can then be expressed as: 

 1 2

1 21 2

1 2
2 12

1

cos cos1
d d

d dA A

E dA dA
A S

 



   (14) 

Based on the output factor, the equivalent circuit of the joint solar cell is used to calculate the solar cell output 
current. The output current is obtained as: 

 exp ( ) 1
pw c

pw pn rf pw c
cb

U i Rq
i I I U i R

AkT R

       
 (15) 

pwi  is the panel output current; pnI  is the photogenerated current; U  is the external voltage of the solar cell; 

cR  is the series resistor; cbR  is the parallel resistor; rfI  is the reverse saturation current of the diode; k is the 

Boltzmann constant; q is the electronic charge; A  is the diode characteristic factor in the solar cell; and T is 

the solar cell surface temperature. 
 
II. C. 2) Determination of model parameters 
Since the series resistance cR  has a very small value but the parallel resistance cbR  is extremely large and is 

known from the expression for the output characteristics of a solar cell in an ideal state: 

 exp 1pw pn rf
q

i I I
AkT

     
 (16) 

Setting five parameters, the parameters of solar cell output characteristics can be expressed as follows according 
to the current and voltage corresponding to the maximum power output from the solar energy: 
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where: mU  is the voltage out of the maximum power point; mI  is the current at the maximum point; Uc  is the 

open-circuit voltage; and 1 2C C  is the characteristic coefficient. Due to the effect of temperature and light factor on 

the solar cell, the corrected output equation for voltage is calculated as: 

 
( 1) sd

c

I S S I

V T R I








    
     

 (18) 

where:   is the current temperature correction coefficient of solar cell;   is the correction coefficient of voltage 

temperature. Transform Eq. (18) and substitute it into Eq. (17) to finally obtain 4 model parameters, solar cell output 

voltage V  , output current I  , and start-up gap 1S  , instantaneous ambient temperature 1T  . Based on the 

parameters of the above four models, the nonlinear modeling of the current output characteristics of solar cells is 
finally completed. 
 
II. C. 3) Completion of nonlinear modeling 
The four parameters obtained above are described using the method of harmonic analysis [19]. The initial nonlinear 
link of the solar cell output characteristics can be expressed as: 

 ( )y f x  (19) 

When the output of a nonlinear link behaves as a sinusoidal output, it can be expressed as: 

 ( ) sin tx t B   (20) 

At this point, the nonlinear link of the solar cell is at steady state output, and the ratio of the harmonic component 
to the output voltage is the model descriptive function of the final solar cell output characteristics, which can be 
expressed as: 

 1( ) SI
M A Ve

A
  (21) 

From the above equation, it can be seen that the output characteristic ( )f x  of the nonlinear model should be an 
odd function, and the sinusoidal output condition of t  can ensure that the mathematical model of the solar cell 
output characteristic does not contain a constant value component, keeping the rigor of the final model, and in 
summary, the final completion of the nonlinear modeling of the output characteristic of the solar cell. 

III. Analysis of the results of environmental sensitivity tests on the current output of 
solar cells 

III. A. CNN-LSTM based solar cell current prediction 
III. A. 1) Prediction of battery current output by different models 
This section analyzes the experimental results of solar cell current output power prediction based on LSTM and 
CNN-LSTM neural networks. This experiment uses solar cell current output power generation data from a region in 
the northern hemisphere, and mainly considers four important factors that affect the solar cell current output power: 
solar radiance, air temperature, air pressure and humidity. We compare the prediction effect of the two models in 
the training set and the test set by four evaluation indexes, RMSE, MAE, MAPE and R².The prediction effect values 
of the two models in the training set and the test set are shown in Table 1. From the table, it can be seen that the 
prediction performance of the CNN-LSTM model is better than that of the single LSTM model on both the training 
set and the test set. On the training set, the RMSE of CNN-LSTM decreases from 1.0619 to 0.9042 for LSTM, MAE 
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decreases from 0.7834 to 0.6401, MAPE decreases by 0.1485 percentage points, and the R² improves from 0.9732 
to 0.9928. 

This shows that the CNN-LSTM model is more accurate in fitting known data and is better able to capture the 
trend of solar cell current output power. On the test set, the advantage of the CNN-LSTM model is even more 
obvious. The RMSE of CNN-LSTM is reduced from 1.6771 to 1.1586 for LSTM, and the MAPE is also reduced from 
11.099% to 5.605%, and the R² is improved from 0.9096 to 0.9761. It can be seen that CNN-LSTM shows stronger 
generalization ability and significantly less prediction error in the face of unknown data, indicating that the model 
can better deal with the influence of external environmental variables. 

Table 1: The prediction of two models of training set and test concentration 

Model Data set RMSE MAE MAPE(%) R² 

LSTM Training set 1.0619 0.7834 6.175 0.9732 

LSTM Test set 1.6771 0.9959 11.099 0.9096 

CNN-LSTM Training set 0.9042 0.6401 4.529 0.9928 

CNN-LSTM Test set 1.1586 0.9868 5.605 0.9761 

 
III. A. 2) Accuracy of CNN-LSTM model prediction results 
The neural network prediction results in the training and test sets are shown in Fig. 1, where (a) and (b) represent 
the training and test sets, respectively. Through our further analysis of the model's prediction results, it can be seen 
from the comparison of the training set that the prediction curves of the CNN-LSTM model are highly overlapped 
with the actual values, while the prediction curves of the LSTM have some deviation from the actual values, 
especially at some local peaks. The CNN-LSTM model utilizes the local features extracted from the convolutional 
layer to accurately capture the small fluctuations in the solar cell current output power as a function of the 
environment. From the comparison of the test sets, it can be seen that although the prediction accuracies of both 
models have decreased, CNN-LSTM still significantly outperforms the LSTM model, and CNN-LSTM can more 
accurately capture the trend inflection points in the complex fluctuation intervals. Taken together, the model shows 
stronger robustness and generalization ability in solar cell current output power prediction. 

  

(a)Training set (b)Test set 

Figure 1: The training set and the test focus neural network forecast results 

III. B. Research on the environmental sensitivity of solar cells 
III. B. 1) Sensitivity of solar cells to relative humidity 
After the same treatment, five types of solar cells with different thicknesses of insulating film were tested at T=28°C 
and RH=99% to determine the relationship between the corrosion current and the thickness of insulating film to 
analyze how the thickness of the insulating film affects the sensitivity of the cells to relative humidity. The relationship 
between insulation film thickness and solar cell current is shown in Figure 2. Nonlinear fitting of the test data yields 
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6.76147 exp( / 0.24011)gI d   , and the square of the correlation coefficient is 2 0.99965R   , where gI   is the 

corrosion current, μA; and d is the thickness of the insulating film, mm. 
The results of this test show that the corrosion current decays exponentially with the increase of the insulating 

film thickness, i.e., the sensitivity of the corrosion cell to the relative humidity when it is not covered with a visible 
liquid film decreases exponentially with the increase of the insulating film thickness. 

 

Figure 2: The relationship between insulation membrane and battery current 

III. B. 2) Solar cell response to relative humidity 
Keeping the temperature constant at 18, 26, 38 and 46°C to study the response of the cell corrosion current gI  to 

the change of RH, the effect of RH on the corrosion current of the solar cell at different temperatures is shown in 
Fig. 3. 

After fitting analysis, the relationship equation between RH and corrosion current at different temperatures 

satisfies lg gI A B  ·RH  (A and B are constants). The specific relational equations at different temperatures are 

as follows (where R is the correlation coefficient): 

 18 , lg 1.71321 0.01369 , 0.97941gT I RH R    ℃   

 26 , lg 1.560134 0.0121 , 0.98019gT I RH R    ℃   

 38 , lg 1.29141 0.01208 , 0.99617gT I RH R    ℃   

 46 , lg 1.22954 0.014312 , 0.99572gT I RH R    ℃   

This indicates that the logarithm of RH and corrosion current are linearly related when the temperature is constant, 
which on the other hand proves that the solar cell current can reflect the change of RH in a timely manner. In addition, 
with the increase of temperature, the curve of the relationship between RH and corrosion current shifts upward and 
basically remains parallel, i.e., the higher the temperature, the greater the corrosion rate for a certain humidity. 

 

Figure 3: The effect of relative humidity on the current at different temperatures 
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III. B. 3) Solar cell response to temperature 
The relative humidity was kept constant at 25%, 50%, 75%, 85% and 100% to study the response of the cell 
corrosion current Ig to the temperature change, and the effect of temperature on the corrosion current of the solar 
cell at different relative humidities is shown in Fig. 4. 

After fitting and analyzing the relationship between temperature T and corrosion current under different humidity 
is derived to satisfy the form of lg gI C D T    (C, D is a constant), and its specific expression under different 

humidity is: 

 25%, lg 1.60743 0.02105 , 0.95879gRH I T R      

 50% , lg 1.21426 0.0177 , 0.9315gRH I T R      

 75%, lg 1.08241 0.02409 , 0.96521gRH I T R      

 75% , lg 0.79316 0.02243 , 0.98941gRH I T R      

 100% , lg 0.65843 0.02207 , 0.9948gRH I T R      

The test results show that: at constant RH, the temperature and the logarithm of the solar cell corrosion current 
also show a linear relationship; with the rise of RH, the linear intercept increases and all the straight lines basically 
show a parallel state, i.e., the higher the temperature is, the higher the humidity is, the greater the corrosion rate is. 

 

Figure 4: The effect of temperature on current in different relative humidity 

IV. Conclusion 
In this paper, we propose a hybrid model combining a convolutional neural network and a long-short-term memory 
network to improve the prediction accuracy of the model for solar cell current output and its sensitivity to 
environmental changes by extracting spatial features through the CNN and capturing long-term dependencies in 
the time series through the LSTM. 

(1) The CNN-LSTM model outperforms the single LSTM model in all the metrics in the training and test sets. 
Incorporating multivariate features such as solar radiation, temperature, barometric pressure, and humidity 
significantly improves the prediction accuracy of the fluctuation trend of solar cell current output power. This paper 
also provides an effective solution for the intelligent management of solar cell current output power generation 
system in the future. 

(2) The thickness of the insulating film affects the reliability and sensitivity of solar cells, of which 0.2mm and 
0.8mm thick cells have better reliability and stability. The relationship between solar cell corrosion current and 

relative humidity and temperature follows the form: lg gI A B  · RH  and lg gI C D T   , respectively. The solar 

cell has a good sensitivity to temperature and relative humidity. 
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