
International Journal for Housing Science and Its Applications 
Publish August 5, 2025. Volume 46, Issue 3 Pages 3579-3592 

3579 

 
https://doi.org/10.70517/ijhsa463302 
 

 

Exploring the Enhancement Path of Generative Model-Based 
Optimization of Natural Language Generation in Multi-Round 
Dialogues 
Na Zhang1,* 
1 College of Computer and Artificial Intelligence, Henan Finance University, Zhengzhou, Henan, 450046, China 

Corresponding authors: (e-mail: znwang1010@126.com). 
 
 

Abstract Dialogue generation is a key research direction in natural language processing, and the adversarial 
generative network GAN has been widely used in the field of dialogue generation. In this paper, based on the 
reinforcement learning method, combining the generative adversarial network with the proximal policy optimization 
algorithm, a PPO-GAN dialogue generation model is proposed, and experimental validation of the model is carried 
out. The experimental results show that, comparing with the Adver-REGS dialog generation model that uses policy 
gradient to train GAN, the PPO-GAN model achieves the optimal values of similarity metrics BLEU-1, BLEU-2, 
BLEU-3, and BLEU-4, which are 19.7, 14.6, 10.8, and 9.5, respectively, and outperforms Adver-Regs in terms of 
correctness, smoothness, and relevance in generating replies. It also outperforms the Adver-REGS model in terms 
of correctness, fluency, and relevance of generated responses. In addition, comparing the Seq2Seq-Attention, 
REGS, RCDG, and PAML models, the PPO-GAN model also achieves higher quality of dialog generation and 
outperforms in terms of consistency of generated dialog. This study opens up a feasible path for optimization of 
multi-round dialogue generation and provides strong support for human-machine dialogue learning. 
 
Index Terms reinforcement learning, proximal policy optimization, generative adversarial networks, dialogue 
generation 

I. Introduction 
Currently, the development of dialog systems has gone through an evolutionary process from rule-based dialog 
systems, statistical machine translation-based dialog systems, to today's deep learning-based dialog systems [1]. 
In this process, dialog systems have continuously improved their generative capabilities, from simple single-round 
dialogs to open-domain multi-round dialog generation [2], [3]. Multi-round dialog generation refers to the ability of a 
dialog system to naturally and coherently conduct multiple rounds of dialog within the scope of a single topic and 
interact with the user in depth [4]. Compared to single-round dialogue generation, multi-round dialogue generation 
requires a more in-depth understanding and analysis of the context, as well as the need to maintain the coherence 
and consistency of the dialogue [5]. In real life, people's daily conversations are often in the form of multi-round 
conversations, so multi-round dialog generation is of great significance in the practical application of AI technology. 

It is difficult to define the concept of Natural Language Understanding (NLU) accurately, in terms of human 
comprehension thinking, Natural Language Understanding should be the whole process of processing, analyzing 
and thinking about language, that is to say, mapping language to a reasonable logical representation, which is 
commonly known as Natural Language Understanding [6], [7]. User conversations are usually with certain intentions, 
and intention understanding is the process of analyzing the intention of a user's sentence, and deep learning is 
widely used as intention analysis in the field of natural language generation (NLP) [8]. Zheng, Y et al [9] pointed out 
that NLU as an important part of the dialog system, its ability to detect out-of-domain (OOD) inputs is crucial in 
practical applications, and the role of NLU focuses on linguistic analysis, which is mainly aimed at understanding the 
semantics of the text, and the intention. Abro, W. A et al. constructed a natural language understanding framework 
for use in the domains of information search and opinion construction, which consists of two sub-models, an intent 
classifier and parameter similarity, and fine-tuned the model with an attentional mechanism for recognizing user 
conversational intent [10]. Tian, J et al. proposed a new intent model, and Knowledge Graph of Requirements (KGR) 
to extend the scope of requirement knowledge for conversational AI bots, which can effectively reduce redundancy 
in conversations and improve the performance of user intent recognition for multi-round dialog strategies [11]. 

After identifying the user's intention, the next action is dialog state tracking, which is one of the core of a dialog 
system, dialog state tracking estimates the user's dialog goal in every conversation, usually also using slot-filling 
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patterns or semantic frames [12], [13]. Liao, L et al. with the help of MultiwoZ 2.1 dialog dataset proposed a method 
to track dialog states by stepwise inference of dialog transitions, which outperforms the state-of-the-art methods [14]. 
Li, Q et al. proposed a modifiable state prediction model for dialog state tracking that uses a two-stage prediction 
process that addresses the problem of error propagation in existing models [15]. Khan, M. A et al. combined BERT, 
stacked bi-directional LSTMs and multiple attention mechanisms to address the scalability challenge, and 
constructed a new end-to-end dialog state tracking framework by dealing with unseen pairs of slots and re-training 
the model in the context of changes in the domain ontology [16]. Heck, M et al. proposed a new framework for dialog 
state tracking (TripPy-R), which can be trained without fine-grained supervision and is robust to sample sparsity and 
new concepts for learning to track [17]. Since there are interactions and dependencies between questions and 
answers in a multi-round dialog, this requires some correlation between the responses generated by the model and 
the context [18]. The above research work focuses on the problem of modeling context, using hierarchical neural 
networks and attention mechanisms, etc. to encode multi-round context, and differentiating the importance of 
utterances in different rounds in order to enhance the model's understanding of the context and to help generate 
replies that are more relevant to the context of the multiple rounds. 

In this paper, we combine generative adversarial network and proximal policy optimization algorithm to construct 
a multi-round conversation generation model PPO-GAN. The algorithm generates conversations through the GAN 
model, differentiates between generated and real conversations through the discriminative model, adopts proximal 
policy optimization to train the GAN, and applies Monte Carlo sampling (MC-Search) to generate the conversation 
through Monte Carlo Sampling (MC-Search) while ensuring monotonous and non-decreasing training of the 
generation model. Calculate the reward corresponding to each word in the generated responses. And the generative 
model is trained based on forced guidance, and the rewards obtained from the discriminative model can be reused 
by limiting the gradient of the generative model iterations. In order to verify the effectiveness of the model, it is 
compared with other models in experiments, and the consistency of the multiple rounds of dialog generated by the 
model is evaluated. 

II. Dialogue generation model based on reinforcement learning and proximal policy 
optimization 

In order to achieve the optimization of natural language generation in multi-round conversations, this paper proposes 
a PPO-GAN conversation generation model that combines a reinforcement learning approach with a proximal policy 
optimization algorithm. 
 
II. A. Enhanced learning 
Reinforcement learning, in which the agent learns behavioral actions from the environment and maximizes the 
numerical reward payoff by interacting with the state of the environment, is often used to solve sequential decision 
problems. This section focuses on the Markov decision process and the policy gradient algorithm in reinforcement 
learning. 
 
II. A. 1) Markov decision-making process 
Markov Decision Processes (MDPs) [19] are a general framework for solving sequential problems and can be used 
to model reinforcement learning problems. A Markov decision process follows Markovianity, which means that in a 
sequential task, the next state 1ts   at the current moment t  is related only to the current state ts  and the current 

action ta , and is independent of the history state. A finite MDP can be represented by a quaternion ( , , , )S A R f  as 

follows: 
(1) S  is the set of all states in the environment, and ts S  denotes the state of the agent at moment t . 

(2) A  is the set of possible actions to be performed by the agent, and ta A  denotes the action taken by the 

agent at moment t . 
(3) :R S A     is the reward function, which is the immediate payoff value tr   obtained by the agent for 

performing the action ta  in the state ts  at the moment t , and can be expressed as ~ ( , )t t tr R s a . 

(4) : [0,1]f S A S    is the state migration function, which is the probability that the agent performs the action 

ta   to transfer to the next state 1ts    at the moment t   located in the state ts  , which can be expressed as 

1 ~ ( , )t t ts f s a . 

The ultimate goal of agent learning in a reinforcement learning problem is to maximize the cumulative expected 
reward payoff to obtain the optimal policy. The cumulative reward from the initial moment t   to the termination 
moment T  is defined as: 
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where tG  is called the payoff or cumulative reward and (0,1]   is called the discount factor. 
The state-value function, ( )V s , represents the expected reward that the agent receives for following the strategy 

  from state ts  to the end of the episode: 

 ( ) [ ]t tV s G s s
 ∣E  (2) 

The state action value function, ( , )Q s a , represents the expected reward that the agent receives for following 
the policy   from executing the action ta  from state ts  to the end of the episode: 

 ( , ) [ , ( )]t t t tQ s a G s s a s
   ∣E  (3) 

A policy   is a strategy for an agent to take action ta  in state ts , which is a mapping from state space S  to 
action space A . A policy   is said to be optimal, denoted as * , when the expected payoff obtained by the agent 
by following the policy ( )s  is greater than or equal to the expected payoff value of any other policy. 

The optimal policy is solved using a generalized policy iteration consisting of policy evaluation and policy 
improvement. Policy evaluation refers to the process of computing the value function with the policy known, and 
policy improvement refers to the process of improving the policy by the value function. The solution of the value 
function Q  in policy evaluation follows the Bellman equation in recursive form: 

 
1 1, ~ ~ 1 1( , ) [ ( , ) [ ( , )]]

t tt t s E t t a t tQ s a R s a E Q s a 
 

    E  (4) 

The optimal state action value function under the optimal policy also follows the Bellman equation: 

 * ( , ) max , ,t t tQ s a R s s a a


     E  (5) 

II. A. 2) Strategy Gradient 
The policy gradient approach is an important method for solving reinforcement learning problems. Unlike value 
function-based reinforcement learning methods that first directly compute the value function by iteration and then 
improve the policy based on the value function, policy-based reinforcement learning methods optimize the policy by 
directly parameterizing the policy to compute the direction in which the policy may be updated. Since the magnitude 
of each update is small, parameterized policy methods are more likely to converge. 

The policy gradient method parameterizes the policy by means of a stochastic policy network ( , )t ts a   with 

parameter  . During the training process, the agent updates the policy by optimizing the gradient, with the ultimate 
goal of making the objective function optimal. The objective function can be defined as the expected return about 
the strategy: 

 
0

( ) ( ; ) ( )t
t

t

J r P R


    




   
 
 E  (6) 

where ( ; )P    denotes the probability of occurrence of the sequence  . 

The objective function is iteratively updated by the gradient descent method, i.e., the derivatives of the objective 
function with respect to   are found and its parameters are updated with the following update formula: 

 
1 ( )t t J        (7) 

where    is the step size of the network parameter update, which is continuously updated with iterations to 
eventually converge. 
 
II. B. Optimization Algorithm for Proximal Policies 
The PPO algorithm [20] is an improved algorithm based on the TRPO algorithm [21]. Each iteration of the TRPO 
algorithm tries to select an appropriate step size from the current strategy such that the cumulative return obtained 
from the new strategy is monotonically increasing. Its objective function is as follows: 
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where ( , ) ( , ) ( )t t t t tA s a Q s a V s
        is the dominance function. 
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∣
  is the importance sampling 

weight, also known as the ratio of old to new strategies. ( )t ta s  ∣  denotes the probability distribution of the target 

strategy, and ( )t ta s ∣   denotes the probability distribution of the current behavioral strategy. The ( , )KLD     

denotes the average KL dispersion of the new strategy   over the old strategy  . 
In order to control the update magnitude of the strategies, the PPO algorithm employs two different optimization 

schemes, both of which can better limit the discrepancy between the old and new strategies. The PPO algorithms 
described in this paper all use a truncated objective function approach. 
 
II. B. 1) Truncated objective function method 

In the PPO algorithm, ( , )tk   , i.e., the importance sampling weights, are restricted to an interval, and the step size 

of the update is limited by controlling the size of the interval. Compared to the TRPO algorithm, which uses KL scatter 
for limiting, the PPO algorithm uses ( , )tk    for limiting, which is simpler and easier to implement. The objective 

function of the PPO algorithm is as follows: 
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where  ( ) ( , ),1 ,1t tC clip k         denotes the truncation term, which constrains the importance sampling 
weights ( , )tk    constrained to be within [1 ,1 ]   , with ò  as the limiting parameter. The min  function serves 
to minimize the original and truncated terms, so that the truncated term acts as a restriction when the policy update 
is offset outside the predetermined interval. 
 
II. B. 2) Adaptive KL Penalty Coefficient 
The KL scatter is constrained using an adaptive KL penalty coefficient  . The method eliminates the constraints by 
constructing a Lagrangian function with the following objective function using the adaptive KL penalty coefficients: 
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Because it is difficult to determine the value of the penalty coefficient   in different problems at different stages, 
it is not possible to optimize the policy network parameters directly using Eq. (10). The size of the penalty coefficient 
  is adjusted according to the relationship between the size of the sample-estimated average KL scatter 

KLD  and 

the defined target value 
targetD . The formula for 

KLD  is as follows: 

 ( , ) ( ), ( )KL t tD KL s s          
 ∣ ∣E  (11) 

If 
KL targetD D , it implies that the strategy update is restricted, so make / 2  , which is equivalent to relaxing 

the restriction on the KL scatter constraint. If 
KL targetD D , it means that the strategy update is too large, so make 

2    , which is equivalent to strengthening the restriction on the KL scatter constraint. where the penalty 

coefficient   is equivalent to the adaptive learning rate. The updated penalty coefficient   will be used in the next 
round of policy update. Even if there is a large difference between the KL scatter and 

targetD , the penalty coefficient 

  can be adaptively adjusted relatively quickly. 
The dominance function estimation method and the optimization method of adding extra entropy reward are also 

employed in the PPO algorithm to further improve its performance. Constructing the dominance function using 
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Generalized Advantage Estimation (GAE) reduces the variance so that the algorithm does not produce large 
fluctuations.GAE is calculated as follows: 

 
1
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When applying the PPO algorithm to a network structure with shared parameters of the Actor-Critic method, in 
addition to the truncated payoffs, the objective function adds an error term on the estimation of the state-value 
function and an entropy regularity term on the policy model to encourage exploration. Thus, the optimized objective 
function is as follows: 

 2
~ , ~ 1 2( ) ( ) ( ( ) ) ( , )

t t

CLIP CLIP
s a t target tL J c V s V c H s

           

 E  (13) 

where 
1c  and 

2c  are two constant hyperparameters. 2( ( ) )t targetV s V   is the mean-square error of the state-value 

function, the smaller the error the better. ( , )tH s   denotes the entropy value of the strategy 
 , the larger the 

entropy the better. 
 
II. C. PPO-GAN Multi-Round Dialogue Generation Model 
II. C. 1) Pre-training to generate models 
The structure of the generative model is shown in Fig. 1, which is an encoder-decoder structure with an attention 
mechanism. Both the encoding part and the decoding part of the generative model are composed of RNNs. First, 
the encoding part uses the RNN to encode the input word 

kh  into a vector representation 
km . Then, an attention 

mechanism is used to obtain the effect of each word in the input dialog on the words that will be generated during 
the decoding process. Finally, the output 

tc  is conditionally generated. In this case, the attention mechanism is 
computed by performing a dot product operation to obtain the similarity weight t

k  from the hidden output 
km  at 

each moment of the encoder and the hidden state 
1tz 
 at the previous moment of the decoder, and utilizing the 

softmax function to transform t
k  into probability to get ˆ t

k . In this case, ˆ t
k  represents the weights of the input 

word encoding vector 
km  when generating the word at the t th moment, and the weighted summation yields the 

effect of each word in the input dialog on the words that will be generated in the decoding process tm . 
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Figure 1: Generative model structure 

The goal of the generative model is to maximize the probability that each output is a true reply, and the generative 
model is pre-trained using MLE as the loss function: 
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where    denotes the parameters of the generative model and 
1: 1( , )t tp x x h ∣   denotes that the next word 

generated is the true reply word given the input dialog h  and the true reply word 
1 1( , , )tx x   the probability that 

the next word produced is a true reply word. 
II. C. 2) Pre-trained discriminant models 
The structure of the discriminative model is shown in Figure 2 as a hierarchical neural network. First, one RNN is 
used to encode the input h  of the conversation, and another RNN encodes the real replies x  or generated replies 
c , and the hidden state of the last moment of the RNN is used as the encoding vector of the sentence to get the 
sentence level information. Then, the encoding of the sentence is used as the input vector of the next layer of the 
RNN, and the hidden state of the 2nd layer of the RNN contains the whole dialog level information. Finally, a binary 
softmax layer is added for classification. 

softmax

RNN

RNN

x3

or
c3

RNN

x2

or
c2

RNN

x1

or
c1

RNN

h2

RNN

h1

RNN

RNN
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Figure 2: Discriminant model structure 

Pre-training discriminative models using cross entropy as a loss function: 

 
1 2( , ) ( , )1 2

1 1
( ) log ( , ) log(1 ( , ))

| | | |x h S c h S

L D x h D c h
S S 

 

 
    

 
   (15) 

where    denotes the parameters of the discriminative model. ( , )D x h   denotes the probability that the 

discriminative model judges a true response as a true response, and ( , )D c h   denotes the probability that the 

discriminative model judges a generated response as a true response. 
 
II. C. 3) Confrontation training 
(1) Rewards for Generating Conversations 

In this paper, we use Monte Carlo Sampling (MC-Search) method [22] to calculate the rewards corresponding to 
each word in the generated responses. The process of generating a dialog using MC-Search is shown in Figure 3. 
With the first t  words 1:tc  known, the generation of the whole sentence is continued to be completed from the 

model distribution, generating a total of N  sentences, 1 ~ Nc c . In calculating the reward, the average of these N  

sentence rewards is the reward for the t th word. This process is repeated until rewards are obtained for all words. 

c1 …… ct

ct+1 … cw

ct+1 … cw

ct+1 … cw

…

c1

c2

cN

 

Figure 3: Using MC-Search to generate dialogue 
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The word reward is calculated as shown in equation (16): 

 1

1
( , ),

( , )
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N i
ti
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D c h t w
R c h N

D c h t w







  
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where ( , )tR c h  denotes the reward for generating the word 
tc , and i

tc  denotes the i th sentence of the response 
generated when computing the reward for the t  th word using MC-Search. ( , )i

tD c h   denotes the probability of 
being judged as a true conversation when using the inputs h  of the conversation and the generated replies i

tc  as 
inputs to the discriminative model. ( , )D c h  denotes the probability of being judged as a true dialog when using the 
generated entire dialog as input to the discriminative model, using it as a reward for the last word. 

(2) Training the generative model using the PPO algorithm 
The process of training the generative model using the PPO algorithm is shown in Figure 4. First, the dialog input 

is fed into the generative model to generate responses to the dialog. Second, the input of the dialog and the 
generated replies are fed into the discriminative model to get the rewards. Finally, the rewards obtained from the 
discriminative model are used to guide the generative model to update the parameters and improve the quality of 
the dialog generated by the generative model. In this, MC-Search method is used to get the reward for each word. 

Generating 
Models

Response

Response

Discriminative 
Models

Reward

Input

…

 

Figure 4: Adversarial training generation model 

The loss function for training the generative model using the PPO algorithm is as follows: 
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 ( , )t
tR R c h  (19) 

In Eq. (17),   denotes the parameters of the generative model, i.e., the parameters of the strategy  . ( )tm   

is an agent objective function of the generative model, which represents the rate of change of the model parameters 

at the t th word of training. tR  denotes the reward for the t th word. The  ( ),1 ,1tclip m      ensures that the 

rate of change of the model parameters is between (1 ,1 )   , and is 1   when the value of ( )tm   is less than 

1   is 1   when the value of ( )tm   is less than 1   and 1   when the value of ( )tm   is greater than 1  . 

The function takes the smaller value between ( )t tm R  and ( ( ,1 ,1 ))tclip m     , which ensures that when getting 

a high reward, the value of ( )tm   increases but does not exceed 1  , and that the value of ( )tm   decreases but 

is not less than 1   when a low reward is received. This allows the generative model to be adaptively trained in 

multiple iterations. In Eq. (18), 1: 1( , )t tp c c h ∣   means that given the input dialog h   and the generated word 

 1 1, , tc c   , the probability that the next generated word is tc  .   is the parameter of the strategy   , i.e., the 

parameter of the generative model being iterated. old  is the parameter of the strategy old , i.e., the parameter of 
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the generative model of the last adversarial training. 1( , , )tc c  is generated by the strategy old . In equation (19), 

( , )tR c h  is the reward for generating the word tc  using the strategy old . 

When using the PPO algorithm to train a dialog generation model for GAN, ( )tm   is a proxy objective function 

of the generation model, and the rate of change of the model parameters is guaranteed to be within a certain range 

by adding a regular term, so that ( )tm   approximates the objective function of the generation model  1: 1 ,t tp c c h  , 

and the direction and step size of the parameter update of the generative model are obtained by optimizing the agent 
objective function ( )tm   with regular terms. Meanwhile, since ( )tm   is a lower bound of the generative model 

objective function, this ensures that the updates of the generative model parameters are monotonically non-
decreasing, and the model can be better trained. 

(3) Using Forced Guidance to Train Generative Models 
During adversarial training, it may happen that the discriminative model is trained well enough while the generative 

model is not trained enough. Forced guidance can be used to avoid this situation. The training method of forced 
guidance is the same as that of pre-training the generative model, using the real dialogues in the dataset and using 
MLE as the loss function to train the generative model. This ensures that the generative model will have a real 
dataset to guide the training during adversarial training. 

 
II. C. 4) Algorithmic steps 
The specific steps of the PPO-GAN algorithm are as follows: 

Step1: Pre-train the generative model G
 by maximizing the loss ( )L  . 

Step2: Generate the dialog  ,c h  using the generative model G
. 

Step3: Pre-train the discriminative model D  by minimizing the loss ( )L  . 
Step4: Save the generative model parameters 

old  for generating responses, after which iterative training of the 
discriminative model with the generative model begins. 

Step5: Discriminative model training, first use the generative model 
old

G  to generate dialogues, then train the 

discriminative model D  by minimizing the loss ( )L  . 

Step6: Generate dialogs using the generative model 
old

G , then use MC-Search to calculate the reward for each 

word. 
Step7: Use the PPO algorithm to train the generative model G

 by maximizing the loss ( )PPOL  . 
Step8: Train the generative model G

 by maximizing the loss ( )L   using forced guidance. 
Step9: Update the generative model parameters 

old  used to generate responses. 

III. Experimental validation of the model and analysis of the results 
In order to verify the effectiveness of the proposed PPO-GAN model, this paper experimentally compares it with the 
Adver-REGS model that uses policy gradient to train GAN, verifies the diversity and accuracy of the model's reply 
quality through automatic evaluation metrics and manual evaluation, and examines the model's practical 
effectiveness in coherent dialog generation. 
 
III. A. Model comparison experiments 
III. A. 1) Experimental setup 
(1) Experimental environment 

This experiment uses Python programming language and Pytorch framework to realize the PPO-GAN model, 
Python has rich library resources, such as matplotlib, jieba, flask, numpy, pandas, etc., and the jieba lexicon is used 
in the data processing stage to lexicalize the text data, and the PyCharm platform supports CUDA acceleration, 
using GPU and Pytorch to accelerate the computation of the model, Anaconda3 can manage the environment 
resources, built-in many deep learning library resources, it is convenient to switch the virtual environment when 
experimenting with different models. 

(2) Experimental dataset 
The dataset used for the experiments in this section is a corpus of a human-computer dialogue system project 

and specialized service phrases, which, in this system project, saves about 500,000 real human-computer dialogue 
data. The specialized service phrases include Q&A data such as city and school introduction. The training data and 
model test data allocation are shown in Table 1, and the data processing of the unsegmented data is carried out for 
this experiment. 
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Table 1: Dataset statistics 

Statistical items Corpus 

Total data 499815 

Generator pre-data 485472 

Adversarial training data 11033 

Test data 3310 

 
(3) Model parameter settings 
The experiments set two markers e and m for reading the beginning and end of a segment in a conversation, set 

the number of training times to 600, the learning rate to 0.001, and set the maximum length of a single conversation 
to 25 using the Adam optimizer. 

(4) Evaluation metrics 
1) Automatic Evaluation Indicators 
In the current natural language evaluation index, the BLEU algorithm is used to calculate the accuracy of the 

utterance.BLEU can be used to determine the degree of similarity between professional human translators and 
machine translators.BLEU evaluates the quality of the current sentence by outputting a value between 0 and 1.The 
closer the value is to 1, the better the response is. In this section of the experiment, BLEU-1, BLEU-2, BLEU-3, 
BLEU-4 will be used to evaluate the effect of dialog-generated replies. 

2) Manual evaluation metrics 
In manual evaluation, the evaluator rates grammatical correctness, utterance fluency, and relevance according to 

the evaluation criteria details. The output reply content is evaluated by contextual dialog information, user input and 
other information. Finally, the average of the evaluation scores of multiple evaluators is taken as the final score. 
 
III. A. 2) Evaluation of experimental results 
(1) Loss function 

In order to verify the effectiveness of the PPO-GAN model, some of the data in the corpus is taken to train the 
model, and the loss function for training is shown in Figure 5. At the beginning of training, the loss function function 
value is large and the network is fitted faster. The loss function value reaches a relatively stable state by 600 iterations. 
After 600 iterations of model training, due to the presence of low-quality data in the training dataset, there will be a 
certain impact on the training, which will lead to small fluctuations in the loss function, but does not affect the overall 
quality of the training model. 

 

Figure 5: PPO-GAN loss function 

Increasing the number of neurons in the PPO-GAN model is experimented and the loss function under different 
neurons is shown in Fig. 6. It can be observed that the loss function decreases less as the number of training times 
increases, and the loss function does not reach a steady state at 3000 times. The value of the loss function leveled 
off at 4000 iterations. The experiment proves the effectiveness of the PPO-GAN model in dialog training. However, 
increasing the number of neurons does not reduce the loss function value due to the limitations of the model structure 
and dataset. 
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Figure 6: Loss functions under different neurons 

Some data from the corpus were selected for the experiment on the PPO-GAN model. The PPO-GAN loss function 
in this experiment is shown in Figure 7, and the loss function reaches a relatively stable state when the iteration is 
up to 100 times. Between 100 and 600 iterations, the loss function has a small fluctuation, but is basically in a stable 
state, proving the feasibility of PPO-GAN model training. 

 

Figure 7: The PPO-GAN loss function in this experiment 

 

Figure 8: Automatic Evaluation Results 

(2) Evaluation results 
In this experiment, Adver-REGS and PPO-GAN models are experimentally compared on the experimental dataset, 

and the BLEU metrics are used to demonstrate the feasibility and superiority of PPO-GAN model in natural language 
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processing, and the automatic evaluation results are shown in Figure 8. It can be seen that the similarity metrics 
BLEU-1, BLEU-2, BLEU-3, and BLEU-4 of PPO-GAN are 19.7, 14.6, 10.8, and 9.5, respectively, which are higher 
than those of the Adver-REGS model, which indicates that the generative adversarial network model combined with 
the proximal policy optimization algorithm is able to continuously adjust the parameters in the generator, and can 
ultimately generate responses that are similar to real text similar responses, which verifies the feasibility of the PPO 
algorithm in generative adversarial network optimization. 

In addition to the automated evaluation metrics, the experiment also used manual evaluation metrics. The content 
of the generated responses was rated by volunteers and the final average score was taken. The correctness, fluency, 
and relevance of the generated replies are scored for multiple dimensions of the Adver-REGS and PPO-GAN models. 

The manual evaluation results are shown in Fig. 9, and the experimental results prove that the responses 
generated by the PPO-GAN model optimized based on proximal policies in this experiment are more in line with the 
way people communicate, with better sentence fluency and better correlation between questions and answers. 

 

Figure 9: Manual evaluation results 

In addition, it is found through experiments that Adver-REGS has the problem of secure replies and poorer 
responses under casual conversations, while PPO-GAN can avoid the problems of secure replies and repetitive 
replies, with more natural replies and higher relevance of replies, and when questions are asked using specialized 
service terms, PPO-GAN generates more complete replies compared to Adver-REGS. 
 
III. B. Experiments on consistency of multi-round dialog generation 
In this section, the PPO-GAN model is applied to multi-round dialogue generation consistency experiments to further 
evaluate the applicability of the model in multi-round dialogue generation quality optimization. 

Table 2: The accuracy rates of different models on the DNLI dataset 

Model Verification set Test set 

InferSent 86.74% 86.59% 

ESIM 87.25% 89.13% 

Bert 88.52% 90.07% 

MC-Search 89.98% 91.14% 

 
III. B. 1) Experimental results of the MC-Search method 
The experiments in this section use the dataset DNLI for dialog-based natural language reasoning, which contains 
321,342 training pairs and 17,600 validation pairs and 17,600 test pairs. The performance of different models on the 
DNLI dataset is shown in Table 2. It can be seen that the PPO-GAN model using the MC-Search method has a 
better performance and achieves the optimal results on both the test and validation sets, outperforming the Bert-
based model by 1.46% on the validation set and 2.73% on the ESIM model, as well as outperforming the two models 
on the test set by 1.07% and 2.01% in terms of accuracy, respectively. The excellent performance of the PPO-GAN 
model using the MC-Search method on the dataset illustrates the ability of the MC-Search method to compute the 
rewards corresponding to each word and guide the generative model to update its parameters, thus providing the 
generator with more effective coherent features and improving the quality of the dialog generated by the generative 
model. 
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III. B. 2) Results of the automatic evaluation of dialogues 
To further evaluate the proposed models, this paper compares the Seq2Seq model (S2SA) [23] based on the 
attention mechanism, the REGS model and the RCDG model using reinforcement learning ideas, and the meta-
learning based model PAML in multiple rounds of dialog generation experiments. The results of the automated 
evaluation of the quality of the dialogs generated by the different models and the probability of generating a 
contradiction in the responses are shown in Table 3. Where PPL denotes the perplexity degree, which is used to 
evaluate and measure the predictive ability of each natural language model. The smaller the perplexity degree, the 
smoother the generated responses. AVE and GRD denote the degree of similarity between the generated responses 
and the target responses using the vector averaging method and the greedy matching method as an evaluation 
matrix, respectively. DST denotes the degree of diversity obtained by calculating the different labeling ratios. 

A comparison of the data shows that the conversation generation model PPO-GAN using MC-Search method 
achieves four optimal results. Among them, the PPO-GAN model has the smallest probability of generating 
contradictory responses, which is only 3.29%. On the other hand, for the other evaluation indexes, the PPO-GAN 
model is also more effective, compared to the traditional Seq2Seq model, the PPO-GAN model is effective because 
the use of MC-Search method, PPO algorithm, and the forced guidance method for the model training, which makes 
the quality of the model-generated replies achieved a good effect on the automatic evaluation. 

Table 3: The results of automatic evaluation 

Model PPL AVE GRD DST Contradiction rate /% 

S2SA 35.71 60.71 46.22 726 13.57 

REGS 34.83 65.24 46.85 1015 11.64 

PAML 42.52 70.38 54.31 1304 8.16 

RCDG 30.81 67.85 48.35 1289 6.48 

PPO-GAN 22.73 75.41 49.65 1502 3.29 

 
III. B. 3) Manual evaluation results 
In the manual evaluation of the multi-round dialog system, five fair and unbiased persons were invited to evaluate 
the experiments in this section. For each model 100 responses were extracted, which also included personal 
information and historical responses.The five persons were asked to score each response, evaluating the responses 
from the following three perspectives: 

(1) Fluency: 1 to 3 indicates disfluency, relative fluency, and fluency, respectively. 
(2) Contextual relevance: 1 to 3 indicates irrelevant, relatively relevant, and relevant, respectively. 
(3) Contradiction or not: 0 and 1 indicate contradiction and no contradiction, respectively. 
For fluency and contextual relevance, a weighted sum approach is used to calculate the final result. 
The manual evaluation results of different models for generating multi-round dialogs are shown in Table 4. It can 

be seen that the dialog generation model PPO-GAN using the MC-Search method achieves the lowest inconsistency 
rate of 4.95%. However, it is noted through the experimental data that the responses generated by the PPO-GAN 
model perform poorly in terms of fluency and relevance because the introduction of the consistency feature causes 
the generator to take into account the consistency feature in the generation process, which affects the original 
encoder's features, causing the encoding-decoding message transfer to receive influence, and thus causing some 
impact on the fluency and relevance of the dialog. However, on the whole, the model in this paper outperforms other 
comparative models in terms of manual evaluation, and achieves a higher quality of dialog generation. 

Table 4: Manual evaluation of dialogue quality 

Model Fluency Correlation Contradiction rate of manual evaluation /% 

S2SA 191 137 - 

REGS 204 164 10.52 

PAML 225 205 7.64 

RCDG 226 167 7.53 

PPO-GAN 221 201 4.95 
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IV. Conclusion 
In this paper, based on generative adversarial network and proximal policy optimization algorithm, we constructed a 
dialogue generation model PPO-GAN and experimentally evaluated the effectiveness of the model. 

The similarity metrics BLEU-1, BLEU-2, BLEU-3, and BLEU-4 of PPO-GAN are 19.7, 14.6, 10.8, and 9.5, 
respectively, which are higher than those of the Adver-REGS model, demonstrating the feasibility of the PPO 
algorithm in generative adversarial network training. In terms of manual evaluation, the correctness, fluency, and 
relevance scores of the PPO-GAN model-generated replies are 2.2, 1.2, and 1.9, respectively, which are also all 
better than the Adver-REGS model, indicating that the replies generated by the PPO-GAN model are more in line 
with the way people communicate, with better sentence fluency, and better relevance between questions and 
answers. 

In the multi-round dialog generation experiments, the accuracy of the PPO-GAN model using the MC-Search 
method is 1.46% and 2.73% higher than that of the Bert-based model and the ESIM-based model on the validation 
set, and 1.07% and 2.01% higher than that on the test set, respectively. It shows that the MC-Search method can 
provide more effective consistency features for the generator and improve the quality of the generated dialog 
produced by the generative model. Comparing the S2SA, REGS, RCDG and PAML models, the probability of 
generating contradictory replies for the PPO-GAN model is the smallest in both automatic and manual evaluation, 
3.29% and 4.95%, respectively, and also for the other evaluation metrics, the PPO-GAN model achieves better 
results, which indicates that the model is more effective in improving consistency of the multilaterals' dialog 
generation, and can be be used as an enhancement path for the optimization of multi-round dialogue generation. 
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