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Abstract This paper takes a harvester as an example to analyze the components of a precision operation control 
system for agricultural machines. A target detection model (SSD) is introduced for pedestrian detection in the 
farmland environment. The SSD-Mobilenet network model is used to improve the detection real-time. Further fusion 
of Feature Pyramid Network (FPN) realizes multi-scale feature extraction for detecting targets and enhances target 
detection accuracy. Design a depth sensor-based combination of far and near field stubble multi-information 
detection scheme to improve the accuracy and stability of agricultural land environment detection. Verify the 
effectiveness of the method in this paper through model training and simulation experiments, etc. The results show 
that the threshold value is set to 0.55, and the sensor detection effect is the best. In the model training, the value of 
the intersection and merger ratio is close to 1, and the loss value is close to 0. The enhanced target detection 
algorithm has a higher recognition effect than the 2 comparative algorithms in all 6 types of pedestrian states. In the 
special scene simulation experiments, the average reward value of this paper's algorithm is finally stabilized in the 
interval of 0.1 to 0.3, and the path length is stabilized at about 100 steps with less fluctuation, and the precise 
operation assistance effect is better than the comparison algorithm. 
 
Index Terms enhanced target detection, feature pyramid network, multi-scale feature extraction, pedestrian 
detection on agricultural land, precision operation of agricultural machines 

I. Introduction 
Under the national strategic background of increasing level of mechanization of agricultural production and rapid 
development of urbanization, land transfer has accelerated and large-scale farms have become the direction of 
development [1], [2]. While pursuing efficiency improvement of agricultural machinery operation, farm managers 
need to strictly control the operation quality [3]. However, traditional agricultural machinery is limited by manual 
operation, high labor intensity, the quality of operation is completely dependent on the skills of the driver, and field 
night operation is basically unattainable [4]-[6]. In addition, affected by the current situation of agricultural non-
structural production environment and the shortage of professional operators of agricultural machinery, the 
performance of traditional agricultural machinery can no longer meet the actual production needs [7], [8]. At present, 
unmanned farms supported by intelligent farm machinery are being constructed at an accelerated pace, and the 
precision operation control system of farm machinery is in urgent need of further breakthroughs under the new 
mode of unmanned autonomous farm machinery operation. 

Precision agriculture is the main development trend of modern agriculture worldwide [9]. Its core guiding idea is 
to use satellite global positioning system, geographic information system and remote sensing technology to obtain 
the spatial and temporal differences of various factors affecting the growth and yield of crops in the farmland, and 
adopt targeted field operation measures to avoid the waste of resources and environmental pollution caused by 
blind inputs into the farmland, and to improve the yield and quality of the crops at the same time [10]-[13]. Meanwhile, 
intelligent algorithms are one of the key technologies to realize agricultural precision operations. Taking agricultural 
equipment as a carrier, based on the intelligent algorithm's intelligent perception of the operating status of 
agricultural machinery, crop, soil, environment and other information, shared by data transmission, the decision-
making model is constructed, so as to guide the precise monitoring and intelligent management of agricultural 
equipment and promote the development of agricultural machinery intelligence [14]-[17]. It can free drivers from 
heavy work, reduce fatigue, improve productivity and maneuvering safety, and have a significant role in promoting 
the realization of the intelligence of China's agricultural machinery and the precision of agricultural production [18]-
[20]. 
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The intelligent development of agriculture cannot be separated from the accurate recognition and harvesting of 
agricultural objects supported by intelligent algorithms. In this paper, from the design of sensors and control units, 
etc., an enhanced target detection algorithm is introduced into the system to improve the accuracy of pedestrian 
and agricultural object detection of the harvester. The combination of Mobilenet network and feature pyramid 
network (FPN) with the target detection algorithm is utilized to improve the detection effect. The stubble multi-
information detection scheme combining far and near views is used to improve the accurate environment detection 
and agricultural objects harvesting under the autonomous navigation of the harvester. Combined with simulation 
experiments and other analyses, we analyze the optimization effect of this paper's method in the precision operation 
control system of agricultural machines. 

II. Technical analysis of precision operation control system for harvester 
This chapter systematically elaborates the harvester-related hardware design, introduces target detection 
algorithms and depth sensors, etc., to realize the harvester's precise recognition of agricultural targets and detection 
of harvesting and so on. 
 
II. A. Harvester hardware design 
II. A. 1) Sensor selection and layout 
The decision on sensor selection and layout is based on factors such as operating environment, specific system 
requirements and cost-effectiveness. The vision sensor model is Hikvision DS-2CD2085G1-i, which provides image 
data with 1920×1080 resolution and 35fps frame rate, and is set in the front of the machine to observe the crop and 
terrain; the GPS module is selected from the Beidou Satellite Navigation Module, which provides accurate 
centimeter-level positioning data, and is set on the top of the machine to ensure a smooth signal; the laser radar 
(LiDAR) DJI Livox Horizon is used for high-resolution 3D scanning and obstacle detection, which is set around the 
machine; and Kobelco K50 is used for temperature and humidity sensors, which monitors the temperature and 
humidity of the operating environment, and is set around the machine. 
 
II. A. 2) Control units and actuators 
In the hardware design of the control unit and actuators, the central control unit adopts Huawei Kunpeng 920 
processor, and the motor controller selects MCAC706, which is suitable for high-precision control and supports 
precise speed and position control. The servo drive is Siemens V90 for precise control of motor movement; the 
sensor interface of the actuator is CONTRINEX sensor/actuator S12 wiring connector S12-4FNG-000-NNT3, which 
ensures fast and reliable data exchange and synchronized control. 
 
II. B. Improved model design based on target detection algorithm (SSD network) 
II. B. 1) Introduction to the SSD model 
The task scenarios need to be considered in the model design: 1) Due to the complexity of the farmland scene, 
there are squatting or lying pedestrian application scenarios for the pedestrian detection task, and there is a demand 
for small target detection. 2) Pedestrians are mostly moving targets, which still require high real-time detection 
capability on hardware devices with low-computer power for reasoning. 3) A high target detection accuracy is 
required. Considering the above three points, SSD series model can well meet the demand. 

SSD model is a single-stage detector based object detector with the advantage of miniaturization compared to 
other deep learning models.SSD models usually have fewer parameters and computational requirements, so they 
can be run on edge devices more easily. It also has fast detection speed and high accuracy. On edge devices, the 
advantage of processing speed can help in fast detection and response in real-time applications. Since SSD models 
are relatively small, they have lower computation and storage requirements and low power consumption for daily 
operation, which can reduce energy consumption and extend device battery life. 

 
II. B. 2) SSD model improvement 
To reduce the computational complexity of the SSD-VGG16 detector, the Mobilenet network model is used to 
replace the VGG16 network to improve the real-time performance of the SSD detector. The second-generation 
Mobilenet network model (i.e., MobilenetV2) is selected as the backbone network model for the SSD detector.The 
SSD-MobilenetV2 detector follows the design of the SSD-VGG16, and the front-end MobilenetV2 network employs 
six feature maps of different sizes for the back-end detection network to perform multi-scale target detection. There 
are some problems with the SSD-MobilenetV2 detector due to the change of the backbone network from VGG-16 
to MobilenetV2. 

A comparison of the size of the multilayer feature maps extracted by the SSD-VGG16 and SSD-MobilenetV2 
backbone networks reveals that the size of the feature map extracted by the MobilenetV2 network in the first layer 
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is half of that of the VGG16 network, which makes the target detection range of the MobilenetV2 network only half 
of that of the VGG16 network in terms of the corresponding feature maps, leading to its lower detection accuracy in 
practical applications. On the other hand, the 38x38 feature maps provided by the MobilenetV2 network are shallow 
features, making it difficult to extract effective image feature maps. In this study, we try to use the FPN module to 
fuse the output feature maps of the MobilenetV2 network to improve the detection accuracy without adding too 
many parameters. 

FPN is a feature pyramid network for target detection and semantic segmentation tasks and is a multi-scale 
feature extraction network architecture. The basic idea is to use deep convolutional neural networks to extract multi-
scale features, transfer and aggregate information through cross-layer connections, and generate feature pyramids 
with different resolutions to better adapt to objects of different scales and improve the performance of target 
detection and semantic segmentation tasks. The introduction of FPN in the target detection task can improve the 
target recognition accuracy, the traditional target detection method uses a single scale feature map, the small target 
is weakly represented on the feature map, which can easily lead to the small target missed detection or inaccurate 
detection, while FPN constructs the pyramid structure, extracts image feature maps at different levels, generates 
multi-scale feature maps, and the different levels of feature maps correspond to different scales of the target objects, 
which can effectively improve the detection accuracy of the small target, and also integrates different scales of 
objects through feature fusion. Different levels of feature maps correspond to different scales of target objects, which 
can effectively improve the small target detection accuracy, and also integrate different levels of feature information 
through feature fusion to get more accurate target detection results. 

The FPN architecture consists of a backbone network and a top network. Figure 1 shows the principle of FPN. 
The backbone network is used to extract the original image features, and then down-sampling and up-sampling 
operations are performed in the top network to generate multi-scale feature pyramids. In the down-sampling process, 
the feature map size gradually decreases and the number of channels gradually increases; in the up-sampling 
process, the feature map size gradually increases and the number of channels gradually decreases. Eventually, 
feature maps of different scales are integrated together to form feature pyramids with different resolutions. 

predict

predict

predict

 

Figure 1: Principle of FPN 

The mathematical principle of FPN can be expressed by the following equations: 
(1) Bottom-up feature extraction: 

 1 2 3 4 5( , , , , ) ( )C C C C C backbone I  (1) 

The bottom-up feature extraction principle is shown in Equation (1), where I  is the input image and iC  denotes 

the feature map of the i th convolutional layer. SSD-MobilenetV2 is used as backbone network. 
(2) Top-down feature pyramid: 

 5 5( )P top down C   (2) 

 1 ( ) 4,3, 2,, 1i i iP upsampleP lateral C i    (3) 

The top-down feature pyramid formulation is shown in (2), (3). Where iP   denotes the i  th layer of pyramid 

features, top-down denotes the top-down feature upsampling operation, upsample denotes the bilinear interpolation 
upsampling operation, and lateral denotes the bottom-up feature fusion operation. 

(3) Target detection 
Finally, a target detection algorithm is applied on the fused pyramid feature map for target detection.FPN mainly 

extracts semantic information from different scale feature maps and fuses them for target detection through bottom-
up and top-down approaches. Specifically, bottom-up feature extraction extracts multi-scale feature maps, top-down 
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feature pyramid fuses these feature maps, and finally the target detection algorithm performs target detection on 
the fused feature maps. 
II. C. Depth sensor-based multi-information detection of cut stubble 
II. C. 1) Operational conditions for autonomous navigation of harvesters 
The harvester mainly consists of two basic functions, i.e. traveling function and harvesting function, especially the 
harvesting function makes the harvester become one of the most important agricultural harvesting machines. The 
traditional harvester in the operation process, the driver needs to observe the crop in the field of a variety of 
characteristics of information, such as crop operation boundary, fall and growth, etc., the driver with experience to 
complete the harvester's direction of travel, speed and height of the cutting platform and other operations, in order 
to improve the harvest quality of the harvester. 

For the driverless harvester autonomous operation, the ultimate goal is to be able to replace the manual driving 
at the same time to ensure the quality of harvesting and operational efficiency. In order to realize the autonomous 
operation of the harvester in the field, it is not enough to study the unmanned operation of the harvester body, and 
it should be combined with the demand for harvesting operations, and it should also make real-time detection and 
feedback of the field crops while realizing the unmanned operation of the harvester body, and improve the 
autonomous harvesting function, so as to realize the precise operation of the harvester. 

Therefore, based on the premise of this design goal, while studying the unmanned driver problem of the harvester, 
the research on grain feature detection during its autonomous operation is also crucial. 

 
II. C. 2) Combined near and far view stubble multi-information detection program design 
In order to realize the autonomous operation of combine harvester in the field, this paper designs a depth sensor-
based stubble multi-information detection scheme combining far and near views. Figure 2 shows the top view of 
the depth sensor arrangement relationship. 
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Figure 2: Top schematic diagram of arrangement relationship of depth sensors 

According to the depth sensor characteristics and harvester autonomous operation detection needs, the combine 
harvester harvesting operation should satisfy the following relationship equation: 

 0 1D D  (4) 

 0
1

2
   (5) 

Eq, 1D  - is the vertical distance between the depth sensor and the stubble cut boundary line, m , 1D  - is the 
minimum effective depth detection threshold of the depth sensor, m ,   - is the angle between the horizontal 
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viewing direction of the depth sensor and the longitudinal centerline of the combine body, °, 0  - is the horizontal 
field of view range of the depth sensor, °, 1  - is the near field of view range, °. 

The left line of the horizontal field of view of the depth sensor in the figure should be parallel to the operation 
direction of the combine, where 0  is the horizontal field of view angle of 91.3°. 

The stubble multi-information detection method combining the near and far view is specified as follows: the depth 
sensor completes the identification of the spike head region and the fallen region in the near view detection range 
4C , and obtains a certain length of stubble boundary line information as well as a lateral ridge in the far view range, 

and guides the combine harvester to accurately travel to complete the harvesting operation of the crop. 
To further determine the optimal installation height and angle of the depth sensor, and to consider the effect of 

actual field illumination, Figure 3 shows the specific experimental image acquisition process. 
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Figure 3: Side view of the arrangement relationship of the depth sensor 

According to the characteristics of the depth sensor and the harvester's autonomous operation detection needs, 
the height of the depth sensor from the ground should be maintained at more than double the height of the plant 
and less than double the height of the plant, with the following relational equation: 

 1[ ] 2[ ]H H H   (6) 

 0
1

90
2

    (7) 

Eq, 1H  - is the height of the depth sensor above the ground, m ,  H  - is the maximum plant height of the 
applicable grain for the harvester, m ,   - is the downward tilt angle of the vertical framing direction of the depth 
sensor, °, 0  - is the vertical field of view range of the depth sensor, °. 

The lower edge line of the vertical field of view of the depth sensor in the figure should be perpendicular to the 
ground, where 0  is the vertical field of view angle of 65.7°. 

According to the above design scheme of horizontal and vertical installation of the depth sensor, it can ensure 
that it can effectively obtain the 4L  information of the stubble line and the information of the horizontal field ridge, 

and effectively reduce the interference of redundant information caused by the large field of view, as well as avoiding 
the direct exposure of sunlight on the lens of the sensor, which improves the accuracy and stability of the depth 
detection in a large field environment. 

Because the depth camera detects a three-dimensional three-dimensional space, it is also necessary to establish 
a three-dimensional coordinate system model to analyze the relative positional relationship between the machine-
camera-crop when determining the specific installation location. Figure 4 shows the depth sensor coordinate system 
model. 

The reference coordinate system of the depth camera can be expressed as: 

 ( , , , )R O Ox Oy Oz  (8) 
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where O  is the origin of the coordinate system, usually the harvester carries the depth camera along the direction 

of Oz , in the reference coordinate system, the angle between the infrared beam projected by the depth sensor and 

the Ox   axis is   , the depth data measured by the depth sensor can be expressed in the transverse plane 

coordinate system as  ,   , then its conversion relationship with the two-dimensional right-angle coordinate 

system is as follows: 
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Figure 4: Depth sensor coordinate system model 
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Its positional relationship satisfies the following relational equation: 

 
sin

h
s


  (10) 

Eq, S  - is the distance between the depth camera and the ground along the Oz  axis, m , H - is the mounting 
height of the depth camera relative to the ground, m ,   - is the installation pitch angle of the depth camera, °. 

According to the above three-dimensional coordinate system model of the relationship between the parameters, 
the relevant data into the relationship equation can be roughly deduced the optimal installation height and pitch 
angle of the sensor. 

III. Effectiveness check of enhanced target detection algorithm 
In this chapter, the proposed enhanced target detection algorithm is tested through multiple sets of experiments to 
analyze the value of the algorithm in supporting precision operations of agricultural machines. 
 
III. A. Algorithm Detection and Recognition Effect Validation 
III. A. 1) Effect of threshold on detection results 
The setting of the threshold value has a large impact on the detection effect of the depth sensor, and it is crucial to 
choose the best threshold value. In this section, a comparison of the detection effect is carried out by setting different 
thresholds to determine the optimal threshold for the model in this paper. The default threshold value is 0.55. When 
the threshold value is below 0.35, the change of the improved enhanced target detection model is very insignificant, 
and when the threshold value is greater than 0.75, the improved enhanced target detection model will be greatly 
affected, and the leakage detection rate is greatly increased. So in this section, the threshold range is limited to 
between 0.35 and 0.75 for the comparative analysis of detection results. 

Table 1 shows the detection results under different thresholds. From Table 1, it can be concluded that the optimal 
threshold value is 0.55, when the threshold value is 0.55, the model's detection rate for agricultural commodities is 
as high as 96.29%, the detection rate is 91.28%, and the reconciliation mean F1 is 93.18%, and the data of the three 
indexes are better than that under other comparative thresholds. Therefore, in this paper, the optimal threshold of 
the model is set to 0.55. 
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Table 1: Test results under different thresholds 

Thresholds P(%) R(%) F1(%) 

0.35 94.61 89.21 91.33 

0.45 95.42 90.53 92.02 

0.55 96.29 91.28 93.18 

0.65 95.60 88.20 91.61 

0.75 93.23 84.22 87.31 

 
III. A. 2) Interchange and integration ratio (IOU) 
The IOU (intersection and concordance ratio) of the predicted frame to the true frame needs to be calculated in the 
agrochemical detection experiment. It is generally considered that as long as the following conditions are met is the 
correct detection result, called a positive sample. Ideally, the IOU value is 1. This situation proves that the manually 
labeled true frame and the predicted frame of the detection model are completely overlapped, i.e., the detection 
model performs well. 

 0.55
Area of Overlap

IOU
Area of Union

   (11) 

In the experimental process, the improved target detection algorithm is used by training on the publicly available 
crop dataset, exporting the output training logs and parsing their data, calculating the intersection and concurrency 
ratio of the real frame and the predicted border, recording the value of IOU for each 1 iteration, and drawing the 
change curve of IOU. Figure 5 shows the convergence of the IOU curve. The horizontal coordinate indicates the 
number of iterations, and the maximum number of iterations set is 45000. The vertical coordinate is the value of 
IOU, and the closer to 1 represents the higher accuracy of the model. After 29849 iterations of the target curve in 
Figure 5, the IOU value is basically stabilized above 0.987, close to 1, and the change is not large, which meets the 
requirement of high accuracy of target detection. 

 

Figure 5: The convergence of the IOU curve 

III. A. 3) Loss function 
According to the training log, the change of the loss function of the improved target detection algorithm model is 
obtained. Figure 6 shows the loss value function curve during network training, the vertical coordinate indicates the 
loss value, the horizontal coordinate indicates the number of iterations, and the maximum number of iterations is 
set to 45000 times. As can be seen in Figure 6, the loss value is decreasing with the increase of iteration number, 
when the network iteration is more than 36000 times, the loss value change is basically stable, and finally the loss 
value decreases to 0.035, which is very close to 0. From the point of view of the convergence situation, the network 
training result meets the requirements, and the depth sensor that introduces the enhanced target detection algorithm 
can be mounted on the harvester, and be used in the actual agricultural object detection and harvesting situations. 
III. A. 4) Recognition results under different pedestrian states 
In order to judge that the target detection algorithm introducing FPN has better pedestrian detection performance, 
the algorithm before and after the improvement is subjected to comparison experiments of detection and recognition 
under different pedestrian states. Table 2 shows the comparison of the recognition results under different pedestrian 
states. The improved target detection algorithm has a detection rate of 98.26% in large targets and 94.27% in full 
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targets, which is 1.37% and 0.87% respectively compared with the pre-improvement algorithm; the improved target 
detection algorithm has a detection rate of 96.59% in medium targets and 90.36% in full targets, which is 2.28% 
and 1.74% respectively compared with the pre-improvement algorithm; the improved target detection algorithm has 
a detection rate of 2.28% and 1.74% respectively compared with the pre-improvement algorithm. 1.74%; the 
improved target detection algorithm has a detection rate of 94.35% and a completeness rate of 87.68% for small 
targets, which are 2.25% and 7.26% higher than the pre-improvement rate, respectively. The improved target 
detection algorithm has a detection rate of 99.37% in unobstructed targets and a detection rate of 98.09% in full 
targets, which are 1.16% and 3.78% higher than before; the improved target detection algorithm has a detection 
rate of 96.39% in less obstructed targets and a detection rate of 92.16% in full targets, which are 3.16% and 3.86% 
higher than before; the improved target detection algorithm has a detection rate of 94.35% in small targets and a 
detection rate of 87.68% in full targets, which are 2.25% and 7.26% higher than before. The improved target 
detection algorithm has a detection rate of 93.27% and a full detection rate of 87.65% for multi-obstructed targets, 
which are 2.05% and 7.14% higher than the pre-improvement rate, respectively. We can conclude from this that the 
improved target detection model has improved the recognition results in different pedestrian states compared with 
the pre-improvement period, and can more accurately and comprehensively recognize the actual farmland situation 
in complex harvester operation scenarios. 

 

Figure 6: Loss function curve 

Table 2: Identification results under different agricultural product states 

Category Model P(%) R(%) F1(%) 

Big target 
Before improvement 96.89 93.40 94.81 

After improvement 98.26 94.27 96.09 

Middle target 
Before improvement 94.31 88.62 91.00 

After improvement 96.59 90.36 92.37 

Small target 
Before improvement 92.10 80.42 86.31 

After improvement 94.35 87.68 91.16 

No obstruction 
Before improvement 98.21 94.31 96.52 

After improvement 99.37 98.09 98.78 

Less obstruction 
Before improvement 93.23 88.30 91.21 

After improvement 96.39 92.16 94.27 

Multiple obstructions 
Before improvement 91.22 80.51 86.22 

After improvement 93.27 87.65 90.19 

III. B. Path Planning Simulation Experiments for Special Scenarios 
III. B. 1) Training Average Reward Value and Path Planning Length for the Algorithm in this Paper 
The special agricultural scenarios in this paper mainly focus on two types of farmland layouts, “I” and “U”, which 
have a high risk of deadlock for mobile devices, thus preventing them from reaching the predetermined location and 
realizing the harvesting of agricultural products. In order to test that the enhanced target detection algorithm in this 
paper can successfully recognize the farmland layout, avoid the mobile device from falling into a deadlock state, 
and try to stay away from the potentially dangerous areas, simulation experiments are set up to shorten the training 
cycle in such environments, so that the model can reach a stable state more quickly. 

The model is trained in special scenarios and the average reward value obtained by the model in each iteration 
with the length of path planning is recorded. Figure 7 shows the average reward value and path planning length of 
the model trained in special scenarios. The left side of Fig. 7 shows the average reward for each round of training, 
and analyzing the change of the average reward, it can be found that after 57 rounds of iterations, the average 
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reward rises from the initial -0.151 or so to more than 0; after 140 rounds of iterations, the average reward value 
stabilizes in the interval from 0.1 to 0.3; throughout the iteration process, the average reward has been showing an 
upward trend and the fluctuation is gradually reduced, and finally reached a stable state. The right side of Fig. 7 
shows the path length of each planning, in the initial stage, because the model has not yet fully mastered enough 
experience in breaking away from deadlocks, the path length fluctuates greatly between 50 and 250 steps, and the 
longest is almost close to 250 steps; however, with the deepening of the training and accumulation of experience in 
the model, the path length gradually stabilizes at about 100 steps, and the fluctuation amplitude is also significantly 
reduced. The experimental results show that the introduction of the enhanced target detection model in mobile 
devices can effectively guide the mobile devices to learn how to get out of the deadlock region, and make the 
algorithm eventually stabilize, so that the average reward value and path length are maintained in a good interval. 

 

Figure 7: Average reward value and path planning length of training 

III. B. 2) Comparison of training path planning lengths for different algorithms 
Take the training path planning length as an example to compare the path planning effect of different algorithms. 
The basic PPO algorithm and an improved SDAS-PPO algorithm with better results based on the PPO algorithm 
are chosen to be compared with this paper's algorithm, and experiments are carried out under the scenarios of 
special obstacle layouts and mixed obstacle layouts.The SDAS-PPO algorithm introduces importance sampling 
technology and experience playback mechanism, and optimizes the process of action selection through the 
assistance of the selfdirected network, so as to make more accurate action decisions in the complex environments. 
to make more accurate action decisions in complex environments. 

Fig. 8 shows the comparison of the training generated path lengths of each algorithm in an obstacle environment 
with special layout. From Fig. 8, it can be observed that the algorithms in this paper show smaller and more stable 
step lengths than the basic PPO algorithm and the SDAS-PPO algorithm at the beginning of training, basically in 
the range of 60-250 steps. After a certain number of rounds of training, the PPO algorithm shows some progress, 
but its performance still has large fluctuations, and even in the late stage of training, the step size still remains above 
90 steps.The SDAS-PPO algorithm also has higher volatility than this paper's algorithm, with the highest almost 
approaching 400 steps. Compared with this paper's algorithm, the comparison algorithm is still insufficient in terms 
of stability and path planning effect. This comparison result fully proves that this paper's algorithm has an advantage 
in path planning compared with other comparison algorithms, and can better assist the precise operation of 
agricultural machinery. 
III. C. Comparison of Training Average Reward Value and Path Planning Length in Mixed Scenarios 
Fig. 9 shows the comparison of the average reward values of the basic PPO algorithm, SDAS-PPO algorithm and 
this paper's algorithm for each round of training in the mixed layout obstacle environment. Through comparative 
analysis, although the average rewards of these three algorithms are kept around 0.0 to 0.2 in steady state, the 
base PPO and SDAS-PPO algorithms are more volatile, while the algorithm in this paper performs more stably. 
Figure 10 shows the comparison of the path lengths of the three algorithms after each path planning. Through 
comparative analysis, this paper's algorithm is basically stable between 80-90 steps after 450 iterations, and is 



Research on Precision Operation Control System for Agricultural Machines Based on Enhanced Target Detection Algorithm 

4142 

better than the basic PPO algorithm and SDAS-PPO algorithm in terms of convergence speed and stability. The 
experimental results prove that the algorithm in this paper has advantages in robustness and generalization ability, 
and can provide a more stable and reliable path planning solution in diverse farmland environments to realize the 
accurate harvesting of agricultural objects by harvesters. 

 

Figure 8: Comparison of path planning length in special scenarios 

 

Figure 9: The average reward value of training in mixed scenarios 

 

Figure 10: Path planning length in mixed scenarios 

IV. Conclusion 
In this paper, an enhanced target detection algorithm is applied to improve the harvester's ability to autonomously 
navigate and harvest agricultural materials for precise operation control. The threshold value is set to 0.55, which 
can obtain the highest 96.29% detection rate, 91.28% detection rate, 93.18% reconciled mean F1. The intersection 
and merger ratio and the loss function prove that this paper's algorithm has a high recognition accuracy. Under the 
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six types of pedestrian states, this paper's algorithm can achieve the highest recognition accuracy of 99.37% and 
98.09%. The training average reward value and path planning length of this paper's algorithm in special and mixed 
scenarios indicate that the use of this paper's algorithm can assist the harvester to realize stable and accurate 
detection of the farmland environment and harvesting of agricultural materials. In the future, we can explore how to 
introduce the recognition error reporting mechanism in the algorithm to provide timely farmland environment warning 
for monitors and reduce the possibility of damage during the automated and precise operation of agricultural 
machines. 
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