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Abstract Heterogeneous cloud infrastructures in cloud computing resource provisioning can improve the fault 
tolerance of cloud computing environments, but they also bring about difficulties that bring about cloud computing 
resource allocation. In order to enhance the efficiency of heterogeneous resource scheduling and allocation, this 
paper proposes a heterogeneous cloud resource scheduling algorithm based on the Improved Competitive Particle 
Swarm Algorithm (ICSO), which utilizes the chaos optimization strategy to initialize the particle swarm, and 
introduces Gaussian variants to update the victory particle positions to improve the diversity of the populations and 
to enhance the global searching ability. Simulation experiments of heterogeneous cloud resource scheduling are 
set up to explore the optimization effect of heterogeneous cloud resource scheduling of ICSO algorithm. Comparing 
the CSO algorithm and the ACO algorithm, the ICSO algorithm in this paper has a lower GD value and obtains a 
larger HV value in all 15 experimental data, and is able to search for the optimal solution for heterogeneous cloud 
resource scheduling in about 100 generations. 
 
Index Terms competitive particle swarm algorithm, chaotic optimization strategy, Gaussian variation, 
heterogeneous cloud resources, resource scheduling 

I. Introduction 
With the rapid development of cloud computing technology, the evolution of the technical architecture between 
different cloud computing vendors is not uniform, and it is difficult to achieve the sharing and collaborative scheduling 
of resources between different types of cloud resources and cloud platforms [1]. 2021 On May 24, 2021, it was 
jointly issued by the National Development and Reform Commission and other departments as the “Implementation 
Plan for the Arithmetic Hub of the National Integration of Big Data Center Collaboration and Innovation System,” 
which mentions that it is necessary to promote the data center Rational layout, supply and demand balance, green 
intensification and interconnection [2], [3]. Construct a new type of arithmetic network system integrating data 
centers, cloud computing, and big data, realize cascade scheduling of arithmetic at different levels, realize clusters 
and regional data centers within urban areas to carry out integrated scheduling, and realize integrated resource 
scheduling between multiple clouds, between clouds and data centers, and between clouds and networks [4]. Carry 
out the integrated co-innovation of arithmetic power with algorithms, data, and application resources [5]. In this 
context, the research on cloud resource elastic scheduling technology to address heterogeneous multi-cloud 
scenarios is proposed. 

Many problems of resource scheduling in cloud environments are solved using heuristic algorithms. Compared 
to global search to find an optimal solution, heuristic algorithms can give an approximate optimal solution within a 
limited computational cost [6], [7]. There is a great variety of heuristic scheduling algorithms, the common ones are 
Min-Min & Max-Min (Min-Min & Max-Min) algorithms, Highest Earliest Fulfillment Time (HEFT) algorithms, and 
Rounds-Rolling (RR) algorithms [8]-[10]. The main advantage of the Min-Min algorithm is the short response time 
and the main disadvantage is that it causes an unbalanced load on the resources. In order to overcome the 
limitations of this algorithm, Chen, H et al. proposed the Max-Min (Max-Min) scheduling algorithm, which assigns 
tasks with longer processing time to resources with higher computational power at the beginning, which reduces 
the task processing time and response time and also improves the resource utilization [11]. Raeisi-Varzaneh et al. 
proposed an advanced Max-Min algorithm based on Cost-Aware for the task scheduling problem in cloud computing 
systems, which aims to improve the maximum completion time, waiting time, resource utilization, and cost as 
compared to traditional algorithms [12]. Ahmed, Z et al. A new clustering-based Max-Min scheduling algorithm for 
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cloud computing environment can effectively reduce the total maximal span of variable-length tasks and improve 
virtual machine utilization [13]. The above studies proposed various types of improved Max-Min algorithms for 
scenarios where there are more short tasks than long tasks, the main drawback is that the short tasks remain 
unexecuted and starvation occurs [14]. 

The HEFT scheduling algorithm schedules all tasks to the computing node that enables the earliest completion 
of the task, and the algorithm greatly improves the task completion rate. However, the algorithm is expensive to 
maintain resources and task information and ignores the communication overload problem during the scheduling 
process [15]. Many variants of the HEFT algorithm in subsequent studies have also been used to solve scheduling 
problems in cloud environments, such as the modified HEFT method proposed by Dubey, K et al. with the objective 
of minimizing the processing time of all the tasks to efficiently schedule the tasks to the running compute nodes but 
the algorithm does not take into account the resource utilization of the compute nodes, which creates an imbalance 
in the load [16]. Gupta, S et al. proposed an enhanced version of the HEFT algorithm for task scheduling in cloud 
computing environments and achieved better results in minimizing the total completion time of workflow tasks 
running on virtual machines [17]. Hai, T et al. proposed improved versions of three HEFT algorithms (MXCT, MNCT, 
AVBS) that are improved improvements in task scheduling in cloud environments improve resource scheduling 
toughness and efficiency compared to the basic HEFT algorithms [18]. Faragardi et al. proposed a novel resource 
allocation mechanism and workflow scheduling algorithm (GRP-HEFT) to minimize the completion time of a given 
workflow under the budget constraints of the hourly-based cost model of the LAAS cloud and outperforms other 
HEFT techniques [19]. 

The RR algorithm defines a circular queue where each task is executed in turn.The RR algorithm defines a 
constant amount of time quantum, if the task is not completed within a quantum, it returns to the circular queue to 
wait for the next round of scheduling [20]. The main advantage of this algorithm is that the tasks are all executed in 
turn without waiting for the completion of previous tasks, i.e., the tasks can be scheduled fairly. However, if the 
circular queue is full or the workload is too heavy then it takes a lot of time to complete all the tasks, also it is difficult 
to choose the right amount of constant time in this algorithm [21]. Samal and Mishra proposed a weighted RR 
algorithm to solve the load balancing problem and improve the system response time [22]. Ghazy, N et al. proposed 
an improved round robin algorithm (ARRA) for task scheduling in cloud computing aiming to optimize metrics such 
as average waiting time, turnaround time and response time [23]. Zohora et al. proposed an enhanced RR algorithm 
for task scheduling in cloud computing systems, which dynamically adjusts the quantum time based on the number 
of available processes, and their burst lengths with high performance [24]. Although the above improved RR 
algorithm further reduces the system response time and improves other quality of service parameters, it still fails to 
balance the workload of the cloud data center and thus fails to ensure resource utilization. 

For the problem of resource elastic scheduling in cloud environment, resource utilization is very important 
indicator and there are many researches from the point of view of resource load balancing. Zou, C et al. proposed 
load balancing of resources among nodes based on resource monitoring through VM migration technique, which 
relies on the accurate monitoring of the resources of each node of the cluster [25]. Lahande et al. studied the load 
balancing mechanism in cloud computing and proposed a resource scheduling algorithm based on a reinforcement 
learning model to optimize cloud resource utilization and provide the best quality of service (QoS) [26]. Jangra and 
Mangla proposed an efficient load balancing framework for resource scheduling in healthcare deployment in cloud 
based environment which is energy efficient, low latency and maximum completion time and high throughput as 
compared to existing techniques [27]. PushpaLatha et al. proposed a cost-effective load balancing scheme for cloud 
computing, which significantly improves the resource utilization and performance of cloud computing by using load 
balancing techniques and compression techniques for task scheduling [28]. 

In practical application scenarios, users submit many tasks to cloud computing providers. These tasks can be 
abstracted into random independent tasks, i.e., the arrival time obeys a random distribution. These tasks have 
different workload sizes and different resource demands, and when submitting tasks, users often expect the cloud 
service provisioning platform to complete the tasks quickly, accurately and efficiently. Therefore, how to minimize 
the total delay of tasks becomes an important research element in elastic scheduling of heterogeneous cloud 
resources. 

Aiming at the heterogeneous cloud resource scheduling problem in large-scale cloud computing environment, 
this paper firstly constructs a mathematical model and a resource cost model for cloud computing task scheduling, 
on the basis of which a heterogeneous cloud resource scheduling algorithm based on the Improved Competitive 
Particle Swarm Optimization (ICSO) algorithm is proposed. Adaptive Gaussian variation is introduced into the CSO 
algorithm, which is used to update the position of the winning particles, while a chaotic initialization strategy is 
introduced to initialize the initial population. The adaptivity function containing task completion time, power 
consumption and load balancing degree is established to improve the convergence speed and optimization 
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efficiency, and to improve the search accuracy of the algorithm. The optimization performance of the ICSO algorithm 
in this paper is tested through algorithm simulation, and simulation experiments of heterogeneous cloud resource 
scheduling are carried out using WorkflowSim simulation platform to verify the optimization effect of the ICSO-based 
heterogeneous cloud resource scheduling algorithm proposed in this paper. 

II. Cloud Computing Task Scheduling Model 
Cloud computing is considered to be the most prominent technology in the IT field, which brings great convenience 
to users by virtue of its on-demand and pay-as-you-go advantages [29]. Resource allocation in cloud computing 
belongs to the large-scale multi-task scheduling problem, which has always been a hot research topic and is one 
of the most important and critical problems in cloud computing. 

In the field of cloud computing, considering the differences in the demand of different tasks for different resources, 
it is necessary to briefly simulate the details of the task costs and explain the connection between different resource 
costs and user budget costs. To address this issue, this paper proposes a resource overhead model. 

The resource overhead model is decomposed into 3 parts: CPU, memory, and bandwidth. Based on the resource 
definition, a multi-objective optimal scheduling model is proposed on the basis of the resource cost model to achieve 
multi-objective optimal scheduling in cloud computing environment. 

 
II. A. Mathematical modeling 
In this paper, it is assumed that there is n  task and these tasks should be processed on m  computing resources 
(also known as virtual machine nodes), with the ultimate goal of minimizing the execution time and optimizing the 
resource utilization of CPU, memory and bandwidth. When the number of tasks is less than the resource nodes, 
tasks are assigned according to a first-come-first-served algorithm; if the number of tasks is greater than the 
resource nodes, they are assigned according to a scheduling algorithm. In addition, tasks are not allowed to migrate 
between resources, i.e., a task can only be assigned to one computing resource node. To formulate the problem, 
task set 1 2 3{ , , , , }i nT t t t t   is defined as n  independent tasks and 1 2 3{ , , , , }i nR r r r r   is a resource node. Thus, 
the relationship between computational resources and tasks is represented as follows: 
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where: element jiP  represents the correspondence between a computing resource node jR  and a task iT . jiP  

is 1 when task iT  is running on compute resource jR  and vice versa, i.e., {0,1}jiP   is 0. 
 

II. B. Resource Cost Model 
In cloud computing, tasks and resources are contradictory. The cost of different resources is different, which leads 
to the difference in task cost. To address this issue, this paper proposes a resource cost model which combines 
CPU processing power, memory and network bandwidth to give dB 3 optimization objectives for total task elapsed 

time maxRT , power consumption E  and system load degree. 
 
II. B. 1) Total time spent on tasks maxRT  

The processing time of each task varies depending on the CPU computing power of each computing resource node. 
The processing time of the i st task on compute resource node j  can be expressed as: 
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where: iL  is the length of task i , and CjR  denotes the CPU computing power of compute resource node j , the 

completion time for compute resource node j  to process all tasks on the current node is: 
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Since the total system elapsed time maxRT  is the maximum value of the time consumed by each computing 
resource to accomplish their respective tasks, the formula is as follows: 
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 max ( ),1jRT MAX RT j m    (4) 

II. B. 2) Power consumption E  
The power consumption required to complete the task is related to the CPU utilization, and the system power 
consumption is the sum of the power consumption of each computing resource. According to the energy 
consumption formula E P T  , the total power consumption E  of the system is: 
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where: OCjR  and jRT  denote the CPU utilization and task completion time of computing resource j , respectively. 

Where, OCjR  The computational formula can be expressed as: 
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II. B. 3) System loadability dB  

The load degree of a computing resource node during a task being executed is mainly determined by the number 
of tasks assigned to the current node and the computing power of the node. Take , ,Gj Mj BjR R R   to denote the 

availability of CPU, memory and bandwidth on compute node j  respectively; , ,Ci Mi BiT T T  to denote the number of 
resources required for task i  relative to CPU, memory and bandwidth respectively. Then the utilization of compute 
node j  is: 
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 1 2 3 1k k k    (8) 

where: 1 2 3, ,k k k  denotes the weights of CPU, memory and bandwidth respectively. 
Reflecting the load of the system in terms of the standard deviation coefficient of utilization between each 

computing resource, the system load degree dB  is: 
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In equation (9), OavgR  is the average resource utilization of the whole system. 

III. Heterogeneous Cloud Resource Scheduling Algorithm Based on ICSO 
To improve the security of cloud computing environments, developers often leverage infrastructure heterogeneity 
to increase the difficulty of detection by attackers and improve the security of cloud computing environments. 
However, at the same time, heterogeneous cloud infrastructures can bring challenges in cloud computing resource 
allocation. For this reason, this chapter will propose a heterogeneous cloud resource scheduling algorithm based 
on the Improved Competitive Particle Swarm Algorithm (ICSO) to improve the efficiency of resource scheduling and 
allocation. 
 
III. A. Task Scheduling Strategy 
III. A. 1) Competitive particle swarm algorithm 
Particle Swarm Optimization (PSO) algorithm, as one of the most classical swarm intelligence algorithms, is widely 
used to solve single objective optimization problems (SOPs) due to its simple implementation and fast convergence 



Research on key technology of elastic scheduling of heterogeneous cloud resources based on quantitative computing methods 

511 

[30]. In each iteration process firstly, the population is randomly divided equally into 2 groups, and the two groups 
of particles are compared competitively two by two, according to the size of the adaptation value are the winner and 
the loser, the winner will directly enter the next generation, and the loser learns from the winner and updates its own 
position and speed according to Eq. (11) and Eq. (12): 

 1 2 3( 1) ( ) ( ( ) ( )) ( ( ) ( ))L L w L Lv t r t v r x t x t r x t x t        (11) 

 ( 1) ( ) ( 1)L L Lx t x t v t     (12) 

where: ( ), ( )w Lx t x t  denotes the position vectors of the winner and the loser, respectively; ( 1)Lv t   denotes the 

velocity vector of the loser; t  is the number of iterations; 1 2 3( ), ( ), ( ) [0,1]pr t r t r t   is three random vectors obeying a 

uniform distribution and having the same dimension as the solution vector;   is a parameter used to control the 
effect of ( )x t  on the update of the loser's position; ( )x t  has two meanings, one denotes the average position of 
all particles, which is global in nature, and the other denotes the local average position of particles in the domain, 
which is local in nature. In this paper ( )x t  the global average position is used. 

 
III. A. 2) Improved Competitive Particle Swarm Algorithm 
In order to enhance the diversity of the population and balance the exploration and development of the population, 
this paper draws on the idea of variation in genetic algorithm and introduces adaptive Gaussian variation in the 
CSO algorithm, which is used to update the position of the winning particles, and at the same time introduces a 
chaotic initialization strategy to initialize the initial population [31]. 

1) Chaotic initialization strategy 
In this paper, a chaotic optimization strategy is used to initialize the particle population. In this paper, the method 

of Logistic mapping is selected to generate the initial chaotic sequence. The expression of this mapping is: 

 1 (1 )n n nx x x    (13) 

where: nx   is the chaos variable; parameter (0,4]   ; n   is the order number of the chaos variable, 
1,2,3, ,n m  . In the mapping image when 3.5699 4  , the system is in a chaotic state, in this paper   takes 

the value of 4. 
In this paper, we initialize the particle swarm positions by using chaotic licentious generation of oxen, and the 

specific steps are as follows: 
(1) For the n  initial particle positions in the D -dimensional space, a D -dimensional vector is first randomly 

generated as the first chaotic vector, i.e., 1 [0,1]pr  ; 

(2) Perform 1n   iterations of each dimension of 1r  using Eq. (13) to generate 1n   chaotic vectors 2 3, , , nr r r ; 
(3) Mapping the generated n  chaotic vectors to the solution search space according to Eq. (14): 

 max min
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
    (14) 

where: min max,x x  is the upper and lower limits of the search space, respectively; ix  is the position information of 
the i rd chaotic initialized particle. 

2) Adaptive Gaussian Variation 
Gaussian variation is introduced into the PSO algorithm to improve the diversity of particles in the solution process, 

and a multi-objective particle swarm optimization algorithm based on Gaussian variation is proposed [32]. In this 
paper, Gaussian variation is introduced into the CSO algorithm to update the position of the winning particle, and 
the variation operation is as follows: 
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where: c  is the variation step;   is the random variable obeying Gaussian distribution Gauss(0, 1); mP  is the 

variation probability. The formula for mP  is: 
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where: ,minmP   is the minimum variation rate; ,maxmP   is the maximum variation rate; k   is the current iteration 

number; N  is the maximum iteration number. As seen from the update formula, the variance probability increases 
linearly with the increase in the number of iterations. Therefore, the update of the winner after the introduction of 
adaptive Gaussian variation is shown in equation (17): 
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where:   is the multiplication operator; ( )x t  is the average position of all particles, and the difference between 
the current position of the victory particle and the average position of the global particles is used as the variation 
step; rand(0, 1) is a random number obeying the uniform distribution of [0, 1]. 

 
III. B. Design of ICSO-based cloud resource scheduling algorithm 
III. B. 1) Particle coding and fitness function design 
Let the number of tasks m  and the number of virtual resource nodes n . In this study, each particle represents a 
task allocation scheme, assuming that the solution vector represented by the particle 1 2{ , , , }nP p p p   , N  

denotes the dimension of vector P  , iN   denotes the value of the j  th dimension of vector P  , and jN i  

denotes the assignment of task j  to virtual machine i . 
Since this paper involves a multi-objective optimization process, the fitness function is associated with the total 

time taken for task completion maxT  , power consumption for task completion E  , and load balancing degreeB  3 
objectives, it is necessary to transform the multi-objective problem into a single-objective problem first. Firstly, each 
optimization objective parameter is normalized as shown in equation (18): 

 min

max min

( ) ( )

( ) ( )

f x f x
F

f x f x





 (18) 

where: F  represents the normalized value; ( )f x  denotes the size of an optimization objective parameter in the 

current system; max min( ) , ( )f x f x   denotes the maximum and minimum values of this objective parameter, 
respectively. The multi-objective optimization problem is transformed into a single-objective optimization problem 
by weighting the fitness value of a single optimization objective. The fitness function can be expressed as: 

 1 2 3i T E Bf w F w F w F    (19) 

where: if  denotes the fitness value of the i nd particle; 1 2 3, ,w w w  denotes the weights corresponding to the total 

time maxT   spent on task completion, power consumption for task completion E   and load balancing degreeB  3 

objectives, and 1 2 3 1w w w    respectively. 
 

III. B. 2) Improved task scheduling for competitive particle swarm algorithms 
The ICSO algorithm proposed in this paper is applied to the heterogeneous resource scheduling problem, and the 
specific implementation steps of the scheduling algorithm are: 

Step 1, one-to-one correspondence between the cloud computing task scheduling scheme and the particle 
positions in the ICSO algorithm, and the best position of the particle is the best task scheduling scheme; 

Step 2, initialize the parameters. Given the task set data, virtual machine parameters, the maximum number of 
iterations of the algorithm Maxcycle, the population size m , and the mutation step; 

Step 3, Chaos initialization of the initial position of the particle swarm; 
Step 4, calculating the fitness value of each particle; 
Step 5, the population is randomly compared in a two-by-two competition and divided into a winner Winner and 

a loser Loser based on the size of the adaptation value; 
Step 6, update the velocity as well as the position of the losing particle and update the position and velocity of the 

winning particle. Calculate the adaptation value of the updated particle and update the global optimal value and 
optimal solution; 

Step 7, when the maximum number of iterations is reached, the algorithm ends and goes to step 8, otherwise 
continue with step 5; 

Step 8, get the optimal particle position, that is, get the optimal task scheduling scheme. 
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III. C. ICSO algorithm simulation experiment 
In this chapter, the simulation and comparison experiments of the proposed ICSO algorithm with CSO algorithm 
and ACO algorithm will be conducted on the cloud computing platform to test the optimization performance of the 
ICSO algorithm in this paper. 
 
III. C. 1) Experimental setup 
Five functions such as Sphere function, Rosenborock function, Rastrigin function, Griewank function, and Ackley 
function are used to differentiate in the process of comparison. 

In the experimental run, the average, standard deviation, maximum and minimum values of each algorithm for 30 
runs for different functions are given, and the upper limit of the number of iterations is set to 10000 times, if the 
method convergence meets the requirements, the algorithm execution is finished, and if the convergence does not 
reach the expected effect, then the algorithm is automatically terminated after 10000 times of execution or after 
reaching the preset accuracy. 

 
III. C. 2) Experimental results and analysis 
The experimental results obtained by the ICSO algorithm proposed in this paper with CSO algorithm and ACO 
algorithm under the action of five functions are shown in Table 1. From the table, it can be seen that the ICSO 
algorithm has a significantly higher convergence speed, and compares with the CSO algorithm and ACO algorithm 
in terms of high convergence accuracy and more stable performance. 

Table 1: The performance of algorithm 

Fucntions for category - ICSO CSO ACO 

Sphere 

Average 2.72E-04 4.16E+04 1.59E+05 

Best 4.18E-05 7.23E+02 5.33E+05 

Worst 3.32E-02 2.72E+03 2.62E+04 

Std 6.23E-05 5.33E+01 3.83E+02 

Rosenborock 

Average 5.23E-05 2.34E-03 2.01E+01 

Best 1.34E-07 6.38E+00 7.43E+00 

Worst 3.22E+00 6.20E+01 6.32E+01 

Std 6.91E-02 1.43E-01 1.23E+01 

Rastrigin 

Average 2.24E-07 1.46E+03 5.23E+02 

Best 3.42E-07 8.35E+03 8.13E+02 

Worst 2.34E+02 1.02E+04 1.23E+03 

Std 5.43E-05 4.68E+02 3.42E+02 

Griewank 

Average 7.34E-05 4.33E+00 5.54E+01 

Best 1.09E-06 3.35E+00 1.33E+01 

Worst 1.65E-05 4.74E+01 6.78E+02 

Std 3.33E+00 4.23E+01 7.23E-01 

Ackley 

Average 2.79E-02 6.34E+01 5.78E+02 

Best 3.46E-04 7.00E+20 9.88E+00 

Worst 7.33E-01 8.34E+03 8.76E+02 

Std 3.56E-02 1.10E+05 7.57E+02 

 
The convergence of the ICSO algorithm proposed in this paper with the CSO algorithm and the ACO algorithm 

with respect to the five functions running on the dataset is specifically shown in Fig. 1. Figures (a)~(e) correspond 
to the functions Sphere function, Rosenborock function, Rastrigin function, Griewank function, and Ackley function 
in that order. From the overall situation to analyze, all algorithms can achieve convergence within 10,000 iterations, 
but in comparison, the ICSO algorithm proposed in this paper reflects better adaptability and performance on various 
functions.ICSO algorithm shows strong convergence effect, on average, less than 1,000 iterations begin to 
converge, and it can ensure excellent convergence state. 
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(a)Function Sphere   (b)Function Rosenborock 

  

(c)Function Rastrigin  (d)Function Griewank 

 

(e)Function Ackley 

Figure 1: The covergence on 5 Functions 

IV. Heterogeneous Cloud Resource Scheduling Simulation Experiments 
In order to verify the optimization effect of the heterogeneous cloud resource scheduling algorithm based on ICSO 
proposed in this paper for heterogeneous cloud resource scheduling, the WorkflowSim simulation platform is used 
as the experimental environment to encode the implementation of the ICSO algorithm proposed in this chapter, to 
extend and invoke the simulation program interfaces to implement the proposed heterogeneous cloud resource 
scheduling process, and to conduct the comparative experiments with the CSO algorithm and the ACO algorithm. 
 
IV. A. Comparative analysis of generation distances 
Generation distance (GD) is a performance metric used to evaluate the proximity between the approximate solution 
sought in the algorithm and the real Petro front.The smaller the value of GD, the better the convergence of the 
algorithm. The GD values of ICSO algorithm, CSO algorithm and ACO algorithm are shown in Table 2. As can be 
seen from the table, the ICSO proposed in this paper has lower GD values on all 15 experimental data. The real 
Petro frontier set in the experiments is obtained by integrating the Petro-optimal solutions selected by the three 
algorithms in many experiments and ranking the top 100 approximations in a non-dominated order. The algorithms 
are all iterated 300 times, and it is obvious that CSO algorithm and ACO algorithm are more difficult for the 
convergence performance under the same conditions, inferior to the ICSO algorithm proposed in this paper. It can 
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be concluded that ICSO algorithm shows better convergence performance than the comparison algorithm in the 
above test data. 

Table 2: Comparison of GD 

Experimental data ICSO ACO CSO 

Cybershake50 0.020019 0.019358 0.006457 

Cybershake100 0.024635 0.015028 0.003811 

Cybershake1000 0.016789 0.019677 0.002122 

Epigenomics46 0.019498 0.011951 0.003659 

Epigenomics100 0.017209 0.012776 0.002403 

Epigenomics997 0.01813 0.013853 0.002055 

Inspiral50 0.021513 0.016945 0.009502 

Inspiral100 0.026483 0.017934 0.006343 

Inspiral1000 0.023822 0.01587 0.007471 

Montage50 0.024685 0.012105 0.006306 

Montage100 0.02022 0.013058 0.006481 

Montage1000 0.024729 0.015372 0.00452 

Sipht60 0.015468 0.013358 0.009413 

Sipht100 0.025547 0.01588 0.007935 

Sipht1000 0.017657 0.012561 0.006054 

 
IV. B. Comparative analysis of super volume 
Hypervolume (HV) is used to measure the quality of the nondominated solutions and also to assess the convergence 
and diversity of the solution set. The test results of the ICSO algorithm proposed in this paper with CSO algorithm 
and ACO algorithm on 15 workflow data are specifically shown in Table 3. In the test results, the ICSO algorithm 
dominates in the majority of the test results and obtains a larger HV value. It can be concluded that the ICSO 
algorithm proposed in this paper shows better diversity and convergence on the solution set than the comparison 
algorithms. 

Table 3: Comparison of HV 

Experimental data ICSO ACO CSO 

Cybershake50 0.434 0.613 0.6701 

Cybershake100 0.4563 0.5045 0.5292 

Cybershake1000 0.1048 0.2472 0.2269 

Epigenomics46 0.5448 0.7174 0.7432 

Epigenomics100 0.5013 0.6316 0.684 

Epigenomics997 0.1847 0.361 0.3628 

Inspiral50 0.3613 0.5196 0.5542 

Inspiral100 0.2557 0.3187 0.3703 

Inspiral1000 0.1088 0.1644 0.1877 

Montage50 0.4829 0.6494 0.6766 

Montage100 0.2156 0.3337 0.3618 

Montage1000 0.0547 0.1677 0.1884 

Sipht60 0.3372 0.3514 0.3965 

Sipht100 0.3437 0.5061 0.535 

Sipht1000 0.1231 0.1073 0.162 

 
IV. C. Comparative analysis of optimal solution change curves 
The optimal solution change curves of the ICSO algorithm proposed in this paper are compared with those of the 
CSO algorithm and the ACO algorithm, as shown in Fig. 2. As can be seen from the figure, compared with CSO 
algorithm and ACO algorithm, ICSO algorithm has an obvious advantage in convergence performance. In about 
100 generations, ICSO algorithm finds the optimal solution for heterogeneous cloud resource scheduling, which is 
much faster than 250 and 300 generations of CSO and ACO algorithms. Comparison results show that ICSO 
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algorithm prevents the local optimal solution from appearing and obtains a better heterogeneous cloud resource 
scheduling scheme. 

 

Figure 2: Convergence performances 

IV. D. Comparative analysis of task completion times 
The 200 heterogeneous cloud resource scheduling tasks are randomly assigned to 10 resource nodes, and the 
change curves of the task completion time of the ICSO algorithm proposed in this paper and the CSO algorithm 
and the ACO algorithm are specifically shown in Fig. 3. From the figure, it can be seen that with the increase of the 
number of nodes, the competition for resources between the tasks for resources weakened, the task completion 
time of CSO and ACO algorithms decreased, and the ICSO algorithm completes the task in relatively less time, and 
the comparison results show that the ICSO algorithm has a certain degree of superiority. 

 

Figure 3: Completion time 

 

Figure 4: Load distribution on different nodes 



Research on key technology of elastic scheduling of heterogeneous cloud resources based on quantitative computing methods 

517 

IV. E. Comparative Resource Load Analysis 
For 10 nodes, the heterogeneous cloud resource load of the proposed ICSO algorithm with CSO algorithm and 
ACO algorithm in this paper is specifically shown in Fig. 4. From the figure, it can be seen that the task load on 
different nodes varies mainly because of the difference in processing capability between them, compared to CSO 
algorithm and ACO algorithm, ICSO algorithm can better equalize the task load on each node, while the nodes with 
strong processing capability of CSO algorithm and ACO algorithm are assigned with fewer tasks, while the nodes 
with poor processing capability are task-heavy, and the load is extremely unbalanced on each node. 

V. Conclusion 
This paper proposes an improved competitive particle swarm optimization (ICSO) algorithm to solve the 
heterogeneous cloud resource scheduling problem and enhance the efficiency of heterogeneous cloud resource 
scheduling and allocation. Algorithm simulation is carried out on the cloud computing platform to test the optimization 
performance of the ICSO algorithm in this paper. In five function tests, including Sphere function, Rosenborock 
function, Rastrigin function, Griewank function, and Ackley function, the ICSO algorithm converges significantly 
faster than the CSO algorithm, and the ACO algorithm has a high convergence accuracy and more stable 
performance. 

Using the WorkflowSim simulation platform as the experimental environment, heterogeneous cloud resource 
scheduling simulation experiments are carried out to verify the resource scheduling optimization effect of the 
heterogeneous cloud resource scheduling algorithm based on ICSO in this paper. The ICSO algorithm in this paper 
has lower GD values on all 15 experimental data, while the CSO algorithm and the ACO algorithm have a more 
difficult convergence performance under the same conditions, and their performance is inferior to that of the ICSO 
algorithm. In the hypervolume comparison analysis, the ICSO algorithm obtains a larger HV value and has an 
advantage in the test results, showing better diversity and convergence. Comparing the optimal solution change 
curves of the algorithms, the ICSO algorithm in this paper obtains the optimal solution for heterogeneous cloud 
resource scheduling in about 100 generations, which is much faster than CSO algorithm and ACO algorithm. By 
randomly assigning 200 heterogeneous cloud resource scheduling tasks to 10 resource nodes, the ICSO algorithm 
in this paper takes relatively less time to complete the tasks, and is able to better equalize the task load of each 
node. 

Overall, the ICSO-based heterogeneous cloud resource scheduling algorithm proposed in this paper can be well 
applied to the heterogeneous resource scheduling problem in large-scale cloud computing environments to improve 
the efficiency of heterogeneous cloud resource scheduling and allocation. 
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