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Abstract In the context of the digital era, the use of intelligent algorithms to improve production efficiency and 
decision support is receiving attention from many production enterprises. In this paper, an AttLR-LSTM-based time 
series model of production data is proposed based on time series data features, combined with LSTM network and 
attention mechanism to realize accurate prediction of key indexes of production devices, and an intelligent 
recommender system based on collaborative filtering algorithm is designed to improve the decision support 
capability and efficiency in the production process. In the comparison experiments with different machine learning 
models, the prediction effect of this paper's method is improved by 88.91% and 60.92% compared with the LSTM 
with long-term time series data as input and the LSTM with short-term time series data as input, which fully proves 
the validity and stability of this paper's method in the prediction of the operating state of production devices. 
Meanwhile, the real-time business indicator recommendation system designed in this paper not only has high 
satisfaction, but also receives unanimous praise for its accuracy and confidence. 
 
Index Terms time series, LSTM, attention mechanism, recommender systems, real-time business metrics 

I. Introduction 
Digital production is an important research direction in the field of intelligent manufacturing nowadays, which refers 
to the advanced technologies such as big data, cloud computing and artificial intelligence in order to realize the 
optimization and intelligent management of the production process [1], [2]. The characteristics of digital production 
data present significant features such as high dimensionality, real-time and dynamics, and the data come from a 
variety of sources, including sensors, real-time monitoring systems, historical production records and equipment 
operation information [3]-[5]. The rapid growth and complexity characteristics of these data bring great challenges 
to traditional data processing and production decision support systems, and there is an urgent need to build an 
efficient real-time business indicator recommendation system to explore the potential value in production data and 
support production management decisions [6]-[9]. 

Digital production involves multiple data sources, and the diversity of these data sources makes the data format 
and content show a high degree of heterogeneity, which brings challenges to the integration and analysis of data 
[10]. At the same time, there is a real-time requirement for production data, which requires the system to be able to 
respond quickly to changes in the production process [11]. For example, monitoring data transmitted by sensors in 
real time needs to be processed quickly for immediate decision support [12], [13]. Further, digitized production data 
usually exhibit high dimensionality and contain multiple variables and parameters, such as temperature, pressure, 
flow rate, chemical composition, etc. The complex interactions of these dimensions require advanced data mining 
and machine learning techniques to reveal potential patterns and trends [14]-[16]. 

The article first elaborates the time series model and its representation, commonly used similarity measures. 
Then it combines the LSTM network for production data time series modeling, and embeds the attention mechanism 
to enhance the model performance, which enables the model to obtain a fairly accurate prediction result. 
Subsequently, the diesel production part of a catalytic cracking unit as well as other key indicators are taken as 
examples to verify the effectiveness of the method proposed in this paper by comparing it with commonly used 
regression prediction methods. Further, a real-time business indicator intelligent recommender system based on 
collaborative filtering algorithm is designed, and finally, the proposed recommender system is subjected to 
performance tests and user satisfaction experiments. 
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II. Research on modeling and analysis of production timing data 
II. A. Time series modeling and characterization 
A time series model is a statistical model used to analyze time series data in which the data points are arranged in 
chronological order. It describes a stochastic process that varies over time, with observations at each moment t  
combined as time series data. Time series models can be used to predict future trends, detect cyclical changes, 
and explore relationships with other variables. A time series S  is defined as: 

   1 2 3, , , , , ,t nS x x x x x    (1) 

In Eq. (1), 
tx  denotes the observation corresponding to time point t . 

 
II. A. 1) Time series representation 
Time series representation, i.e., the method of time series dimensionality reduction. Time series dimensionality 
reduction is to represent the original time series in another space by transforming the original time series to a lower 
dimensional space or by feature extraction [17]. In time series clustering, dimensionality reduction has an important 
role. Time series are usually represented in four ways: data-adaptive representation, non-data-adaptive 
representation, model-based representation and data-based representation methods, the representation of time 
series is shown in Figure 1. 
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Figure 1: The representation of the time series 

The data adaptive representation method performs on all time series in the dataset and tries to minimize the 
global reconstruction error using arbitrary length (unequal) segments. This technique has been applied to different 
methods such as segmented polynomial interpolation (PPI), segmented polynomial regression (PPR), segmented 
linear approximation (PLA), segmented constant approximation (PCA), adaptive segmented constant approximation 
(APCA), singular value decomposition (SVD), natural language, symbolic natural language (NLG), symbolic 
aggregation approximation (SAX), and iSAX.The data adaptive representation can approximate each series better, 
but comparison of multiple time series is more difficult. 

Non-data-adaptive methods are a suitable representation for fixed-length (equal-length) segmented time series, 
and their comparison is usually relatively straightforward. These methods include wavelet transform, discrete 
wavelet transform (DWT), Chebyshev spectral polynomials, discrete Fourier transform, stochastic mapping, 
segmented aggregation approximation (PAA), and transposable segmented linear approximation (IPLA). 

Model-based methods are a stochastic way of representing time series, which include Markov models, Hidden 
Markov Models (HMM), statistical models, time series bitmaps, and Autoregressive Moving Average (ARMA). These 
methods can be data-adaptive, non-data-adaptive, and model-based compression depending on the requirements 
of specific application scenarios. Users can define the compression ratio according to their applications for more 
efficient time series storage and processing. 

In the data-based approach, the compression ratio is automatically defined based on the original time series. The 
basic idea is to preserve as much important information in the time series as possible by compressing the time 
series. These methods usually rely on the characteristics of the data, such as the smoothness, periodicity and trend 
of the data, as well as the spectral characteristics and autocorrelation of the time series. 
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II. A. 2) Similarity measures 
In the field of time series, the computation of distance is based on approximate matching rather than exact matching. 
Commonly used similarity measures include Euclidean distance, dynamic time regularization, Manhattan distance, 
Chebyshev distance, and longest common subsequence. Among them, Euclidean distance and dynamic time 
regularization are the most commonly used similarity measures in time series clustering. Euclidean distance is a 
simple and commonly used distance measure for most data types. It can directly calculate the distance between 
vectors and is easy to understand and implement. Dynamic time regularization, on the other hand, is a more flexible 
method that can deal with the presence of temporal offsets and distortions in time series. Compared with Euclidean 
distance, dynamic time regularization is more suitable for dealing with time series data. 

(1) Euclidean distance 
Euclidean distance is a commonly used distance metric that measures the spatial distance between two points, 

which is the true distance between two points in Euclidean space. Euclidean distance can be calculated by the 
following formula: 

 2 2 2
1 1 2 2( , ) ( ) ( ) ( )n nd x y x y x y x y        (2) 

where 
1 2( , , , )nx x x x   and 

1 2( , , , )ny y y y   denote the coordinates of the two points, respectively. 
(2) Dynamic Time Warping 
Dynamic Time Warping (DTW) is a time series similarity measure based on dynamic programming, which 

measures the similarity between two time series that may have different lengths or speeds.DTW matches the 
corresponding elements in two sequences by bending and stretching the two sequences on their time axes, and 
calculates their distance or similarity. In DTW, each time series is viewed as a sequence of time points and 
corresponding eigenvalues.The main idea of the DTW algorithm is to minimize the distance between the 
corresponding points of the two time series by stretching or compressing the time axis of the sequences and to find 
an optimal correspondence.The computational process of DTW can be divided into the following steps: 

a. Calculate the distance matrix: for two time series X  and Y , first calculate the distance matrix between them 

D , where ( , )D i j  represents the distance between the i th point in X  and the j th point in Y . 
b. Calculate the cumulative distance matrix: Define a cumulative distance matrix C , where ( , )C i j  denotes the 

minimum distance from the 1st point in X  to the i th point, and from the 1st point in Y  to the j th point. 
c. Initialization: initialize the first row and column of C  to positive infinity. 
d. Recursive Calculation: Calculate the value of ( , )C i j  in order from the upper left corner to the lower right 

corner. The specific calculation is: 
  ( , ) ( , ) min ( 1, 1), ( 1, ), ( , 1)C i j D i j C i j C i j C i j       (3) 

That is, from the three positions ( 1, 1)i j  , ( 1, )i j , ( , 1)i j  , choose a cumulative distance of the smallest 
value, and then add ( , )D i j  to get the value of ( , )C i j . 

e. Return result: the final  ,C N M  obtained is the DTW distance of sequence X  and sequence Y . 
Where N  and M  are the lengths of sequence X  and sequence Y  respectively. The process of recursive 

computation can be realized by dynamic programming. 
 

II. B. Relevant Grounded Theory 
II. B. 1) LSTM networks 
Although RNN will encounter the problem of gradient disappearance in the process of propagation, however, the 
Long Short-Term Memory Network (LSTM) solves this problem very well, by adding the input gate, forgetting gate 
and output gate on top of the RNN to make the information selectively pass through, and the gradient is propagated 
in a linear way after the derivation, so the gradient disappearance problem is avoided, and the contextual information 
can be retained for a longer period of time. In the internal structure of LSTM, the propagation of information is 
controlled by three gates i.e., input gate, forget gate and output gate, the input gate mainly allows information to 
enter selectively, i.e., it decides how much new information enters into the cell's state. 

At moment t , the input gate is calculated as shown in equations (4) and (5): 

 1 1

1 1 1

I H C
t t t t
i ii i hi h ci c

i h c

w x w b w s  

  

      (4) 

 ( )t t
i ib f   (5) 

The forgetting gate mainly determines what kind of information needs to be discarded from the cell in the process 
of information flow, because new information has to come in and old information naturally has to be forgotten, and 
the forgetting gate is calculated as shown in equations (6) and (7): 
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 1 1

1 1 1

I H C
t t t t

i i h h c c
i h c

w x w b w s     

  

      (6) 

 ( )t tb f   (7) 

After the above operation, the state of the cell needs to be updated in the way shown in equations (8) and (9), 
and the output gate is mainly gated to finally decide what information will be output. The output gate is calculated 
as shown in equations (10) and (11), and based on the filtering of the output gate, the final output result is shown 
in equation (12): 

 1

1 1

I H
t t t
c ic i hc h

i h

a w x w b 

 

    (8) 

 1 ( )t t t t t
c c i cs b s b g a

   (9) 

 1

1 1 1

I H C
t t t t
w iw i hw h cw c

i h c

w x w b w s 

  

      (10) 

 ( )t t
w wb f   (11) 

 ( )t t t
c w cb b h s  (12) 

In the equation, the weight matrices ( *h
w  or 

*hw ) with the symbol h  both denote a generalization, representing 

any line pointing from the previous moment to the current moment. All the variables with symbol a  on the left side 
of the equation represent the results calculated by weighting, while the variables with symbol b  represent the 

values calculated by the activation function. In the above weights, 
ilw  represents the weight between the input 

data t
ix  and the input gate, 

clw  represents the weight between the cell state of the previous moment and the input 

gate, iw    represents the weight between the input data t
ix   and the oblivion gate, cw    represents the weight 

between the cell state of the previous moment and the oblivion gate, 
iww  represents the weight between the input 

data t
ix  and the output gate, and 

cww  represents the weight between the cell state with the weight between the 

output gate, 
icw  denotes the weight of the input layer of the LSTM network [18]. 

 
II. B. 2) Attention mechanisms 
(1) Structure and Principle of Attention Mechanism 

The attention mechanism is an approach proposed to mimic the ability of a person to focus on part of the 
information while acquiring it.   

Attention mechanism is equivalent to a weighted calculation for the results of different moments, which 
establishes a correlation between the current results and the outputs of the previous period of time, making the 
outputs of different moments have different impacts on the current results, which is also more in line with the actual 
situation of industrial production, and is calculated as shown in equations (13)-(15): 

 tanh( )t w t wu w h b   (13) 

 
1

exp( )

exp( )

T
t w

t T T
t wk

u u

u u







 (14) 

 t t
t

s h  (15) 

where 
ww  and 

wu  are the weighting matrices of the attention mechanism, indicating which information needs 
to be reinforced. 

tu  is the result of the first weighting calculation, and 
wb  represents the bias term. 

th  represents 
the input of the attention mechanism which is the output of the LSTM model at different moments, and 

t  is the 
weight that finally acts on the output 

th  at different moments. 
(2) Improved learning method of attention mechanism 
Since the ordinary ATTENTION calculation is relatively simple, it can't get the dependency relationship between 

temporal data well, especially for the more temporal data such as PTA and ethylene. Therefore, this paper proposes 
a new calculation method of the attention mechanism namely the maximum attention mechanism. The calculation 
is shown in Eqs. (16)-(21): 

 
1

Tatt hh  (16) 

 
1

1 1
1

exp( )
max( )

exp( )

i

i

i

att
att soft att

att
 

  (17) 
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2att hHM  (18) 

 
2

2 2
2

exp( )
max( )

exp( )

i

i

i

att
att soft att

att
 

  (19) 

 
2 2exp ( )att and att  (20) 

 
1 2max( , )att att att  (21) 

As can be seen from the above formula, where h  is the intermediate output of the model, after the softmax 
calculation of the formula an attention weight of 

1att  will be obtained, and then through the calculation of the formula 
as well as the expansion will also obtain an attention weight of 

2att , making the dimensions of 
1att  and 

2att  are 
the same. Finally, the maximum value is taken from the corresponding position of the weight matrix of the formula. 
Compared with the ordinary attention calculation, the attention calculation method designed in this paper can more 
accurately obtain the dependency relationship between time series data. 

 
II. C. Production data time series modeling 
Modeling and analysis of production is a set of processes from data processing to result analysis [19]. The flow of 
time series modeling and analysis is shown in Fig. 2. 
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Figure 2: Sequential modeling analysis process 

According to the figure, the operational steps for modeling and analyzing the production data are shown below: 
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Step1 Acquire the data collected by DCSPTA device for 253 time points and divide the training set and test set, 
in which the training set is 173 entries and the test set is 80 entries. 

Step2 Perform the normalization operation on the training set and test set, keeping the data values of each 
dimension in the range of 0-1. 

Step3 For the model AttLR-LSTM proposed in this paper, the data obtained in Step 2 needs to be regularized. 
Step4 After the completion of data regularization, the design of AttLR-LSTM algorithm is carried out, and the 

algorithm is implemented and trained using the deep learning framework. 
Step5 Set the termination condition of training, observe the change of error in the process of training, and decide 

whether to carry out human intervention. 
Step6 After the training is completed, the above proposed algorithm outputs the running results of the training 

data and test data respectively, and performs the inverse normalization process according to the formula to obtain 
the output data of the same scale as the real data. 

Step7 Comparative error analysis of each algorithm according to the output obtained in Step 6, to prove the 
effectiveness and superiority of the proposed method in PTA data modeling. 

Step8 Conduct production analysis based on the results of the model proposed in this paper to determine the 
optimization scheme of production operation and verify the effectiveness of the optimization.   

III. Experiments on time sequence analysis of the operating status of production units 
III. A. Data description 
The experiments in this section use the diesel part of the input and output data of a catalytic cracking unit as a 
sample for the study. In this section, single-step predictions of several FCC unit key metrics are performed using 
the methodology of this paper. The key indicator data are real data collected from the decentralized control system 
of the FCC unit. The bit numbers of the key indicators to be predicted are TIC2108, TI2074, TI2102, TI3056, and 
TIC1005, and the related indicators of the key indicators are screened by experts based on the reaction mechanism, 
with a sampling interval of 3 minutes. In order to cross-sectionally compare the effect of MST-LSTM among different 
data, the last 3000 data of each indicator are used as the dataset. 

Among them, FIC2021 includes 6 relevant indicators such as wax oil consumption, etc. The relevant indicators 
of TIC2108 include 20 indicators such as light diesel oil out of the device, cold oil slurry out of the device and the 
top of the fractionating tower, etc. The relevant indicators of TI2074 include 17 indicators such as the pump outlet, 
the steam inlet, the residue into the raw material oil buffer tank, and the inlet of the steam bag of the slurry steam 
generator, etc. The relevant indicators of TI2102 include 8 indicators of data of the external dumping of oil slurry, 
the pump outlet, and the bottom of the fractionating tower. The related indicators of TI3056 include 8 indicators such 
as supplemental absorbent inlet, hot water exchange buffer tank, etc. The related indicators of TIC1005 include 25 
indicators such as the control level of the reactor vapor extraction section, the pressure drop of the reactor to-be-
generated ramps slide valve, and the steam outlet, etc. The related indicators of TIC1005 include the control level 
of the reactor vapor extraction section, the pressure drop of the reactor to-be-generated ramps slide valve, and the 
steam outlet. 

 
III. B. Performance evaluation 
The experiments in this section take FIC2021 as an example for experimental testing, and the prediction results of 
FIC2021 of this paper's method after 100 iterations of training are shown in Fig. 3, respectively. It can be intuitively 
found that the prediction results of this paper's method are very accurate, in most cases the model can effectively 
predict the target value more accurately, and the error rate is 5%, in other words, with an accuracy of about 95%, 
which is in full compliance with the industry standard of 95% accuracy. 

 

Figure 3: Predictive result 
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III. C. Time scale impact analysis 
In order to further explore the impact of different time scales on the prediction performance of the method in this 
paper, experiments were conducted in this section with time series of different lengths as inputs to the long time 
series processing module and short time series processing module, respectively. In conducting the comparison 
experiments, several regression evaluation metrics are used to ensure the validity of the comparison experiments, 
which are MAE, Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (MSE). 

First, the performance of the model when different length time series are used as long time series processing 
modules is investigated. The model of different length long time series processing module is defined as LSTM-l-n, 
and n is the input length of long time series processing module. The length of the short time series processing 
module is fixed to 10, and time series of lengths 30-80 are selected as inputs to the long time series processing 
module. The effect of the long time series on the predictive indicator TI2102 is shown in Table 1. Taking point TI2102 
as an example, with the growth of the input time series in the long time series processing module, the predictive 
ability of the model first gradually increases and then gradually decreases, and the performance gap reaches 66.77% 
at most. 

Table 1: Influence of long-term time series on TI2102 

Model MAE MAPE RMSE 

AttLR-LSTM-l-30 0.5825 0.005 0.7989 

AttLR-LSTM-l-40 0.2872 0.0113 0.3912 

AttLR-LSTM-l-50 0.2333 0.0015 0.3613 

AttLR-LSTM-l-60 0.4304 0.0042 0.5427 

AttLR-LSTM-l-70 0.6419 0.0066 0.871 

AttLR-LSTM-l-80 0.7021 0.0156 0.9717 

 
Then, this section experimentally analyzes the prediction performance of the model when different lengths of time 

series are used as the short time series processing module.The model of the short time series processing module 
with different lengths is defined as LSTM-s-n, and n is the length of the input of the short time series processing 
module.The LSTM-s-n fixes the length of the long time series processing module as 60, and time series with lengths 
of 6-15 are selected as the input to the long time series processing module. The effect of short-term time series on 
the predictor TI2102 is shown in Table 2. Taking point TI2102 as an example, as the input time series in the short 
time series processing module grows to about 9, the model's prediction remains relatively stable, after which the 
model's prediction ability decreases with the growth of the input time series. The gap in the predictive ability of the 
model with the length of the short time series input can vary up to 61.53%. 

Table 2: The effect of the short time series on the prediction index TI2102 

Model MAE MAPE RMSE 

AttLR-LSTM-s-6 0.1787 0.0018 0.3436 

AttLR-LSTM-s-7 0.1809 0.0017 0.3012 

AttLR-LSTM-s-8 0.2006 0.0324 0.3521 

AttLR-LSTM-s-9 0.1582 0.0017 0.2764 

AttLR-LSTM-s-10 0.4298 0.0046 0.529 

AttLR-LSTM-s-11 0.4414 0.0386 0.5154 

 
III. D. Optimization of model time scale parameters 
The input time series scales of the long time series processing module and the short time series processing module 
have a large impact on the prediction performance of the LSTM model. In order to maximize the performance of the 
model, Bayesian optimization method is used in this section for hyper-parameter tuning of the long time series 
processing module and short time series processing module of the method in this paper. The Bayesian optimization 
results of the prediction model are shown in Table 3. 
III. E. Comparative Experimental Results 
In order to verify the effectiveness of the model proposed in this paper in predicting the key indicators of catalytic 
cracking, the method of this paper is compared with Support Vector Regression (SVR), Decision Tree (DT), Random 
Forest RF, ADABOOST, Multi-Layer Perceptron (MLP), Bootstrap Aggregate Regression, and LSTM. In order to 
ensure the validity of the comparison experiments, this chapter calculates the regression prediction indexes of input 
key indicators and their related indicators long time series LSTM and input key indicators short time series LSTM 
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respectively.The prediction results of FIC2021, TIC2108, TI2074, TI2102, TI3056 and TIC1005 are shown in Tables 
4 to 9, respectively. As shown in the table, the MAE, MAPE and RMSE of this paper's method show the best 
performance in several different indicator prediction experiments, which fully proves the prediction performance of 
this paper's method on the key points of FCC. In the TI2074 indicator dataset, the prediction effect of this paper's 
method is improved by 88.91% and 60.92%, respectively, compared with the LSTM with long-term time series data 
as input and the LSTM with short-term time series data as input. 
 

Table 3: Prediction model beeses optimization results 

Point bit Model MAE MAPE RMSE 

FIC2021 
MST-LSTM-60-10 0.3669 0.0086 0.3548 

MST-LSTM-45-14 0.3567 0.0078 0.3384 

TIC2108 
MST-LSTM-60-10 0.1786 0.0031 0.2394 

MST-LSTM-81-4 0.1723 0.0049 0.2346 

TI2074 
MST-LSTM-60-10 0.122 0.0004 0.1504 

MST-LSTM-30-7 0.0783 0.0002 0.1004 

TI2102 
MST-LSTM-60-10 0.4291 0.0032 0.5255 

MST-LSTM-43-6 0.1968 0.0019 0.3435 

TI3056 
MST-LSTM-60-10 0.1852 0.0034 0.2578 

MST-LSTM-81-4 0.0778 0.0022 0.101 

TIC1005 
MST-LSTM-60-10 0.1848 0.0004 0.2305 

MST-LSTM-81-4 0.1607 0.0002 0.2033 

 

Table 4: Predicted results on FIC2021 

Model MAE MAPE RMSE 

SVR 6.34 0.2 9.006 

DT 2.98 0.14 6.128 

Bagging regression 1.71 0.1691 3.886 

RF 1.83 0.14 5.364 

Adaboost 1.95 0.15 4.055 

MLP 2.13 0.17 2.599 

Long input LSTM 5.6032 0.1183 5.896 

Short input LSTM 3.1759 0.1046 4.455 

Ours 0.4236 0.0089 0.3511 

 

Table 5: Predicted results on TIC2108 

Model MAE MAPE RMSE 

SVR 2.0782 0.04 2.713 

DT 0.3087 0.0402 0.4332 

Bagging regression 0.1153 0.045 0.4958 

RF 0.3619 0.05 0.4977 

Adaboost 0.3775 0.0406 0.6345 

MLP 6.8186 0.1545 8.3337 

Long input LSTM 0.2503 0.0055 0.3687 

Short input LSTM 0.1554 0.0086 0.5803 

Ours 0.1755 0.00336 0.3557 
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Table 6: Predicted results on TI2074 

Model MAE MAPE RMSE 

SVR 0.7668 0.0306 0.9205 

DT 0.1341 0.1073 0.2056 

Bagging regression 0.2544 0.0022 0.2846 

RF 0.1142 0.015 0.1436 

Adaboost 0.1376 0.0023 0.2256 

MLP 1.3738 0.0137 1.8826 

Long input LSTM 0.681 0.0022 0.8747 

Short input LSTM 0.1932 0.0005 0.2294 

Ours 0.0755 0.0002 0.0983 

 

Table 7: Predicted results on TI2102 

Model MAE MAPE RMSE 

SVR 3.1903 0.0222 3.8404 

DT 0.8219 0.0156 1.1264 

Bagging regression 1.4973 0.0256 2.011 

RF 0.6286 0.0886 0.8489 

Adaboost 0.7881 0.0414 1.0446 

MLP 0.5867 0.019 0.6743 

Long input LSTM 4.4167 0.0223 5.6599 

Short input LSTM 0.302 0.0243 0.4374 

Ours 0.1982 0.003 0.3422 

 

Table 8: Predicted results on TI3056 

Model MAE MAPE RMSE 

SVR 0.2518 0.237 0.0481 

DT 0.0945 0.1241 0.0501 

Bagging regression 0.141 0.1574 0.0353 

RF 0.0844 0.1108 0.0315 

Adaboost 0.1715 0.1598 0.0621 

MLP 0.129 0.0953 0.0171 

Long input LSTM 0.1978 0.0177 0.2386 

Short input LSTM 0.1703 0.0133 0.2196 

Ours 0.1058 0.0334 0.1355 

 

Table 9: Predicted results on TIC1005 

Model MAE MAPE RMSE 

SVR 1.4102 -0.0016 1.6207 

DT 0.6899 0.0025 0.9237 

Bagging regression 0.6797 0.0035 0.9359 

RF 0.7176 0.0026 0.9751 

Adaboost 0.865 0.0018 1.1397 

MLP 0.9914 0.0042 1.4462 

Long input LSTM 0.6508 0.0009 0.5853 

Short input LSTM 0.283 0.0026 0.2341 

Ours 0.1616 0.0003 0.2056 
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IV. Real-time business indicator recommendation system design and experiments 
IV. A. Intelligent Recommendation System Design 
IV. A. 1) System architecture design 
The overall architecture of the business indicator recommendation system can be divided into four main components: 
data acquisition module, data storage and management module, recommendation algorithm module and user 
interaction interface module. The data collection module is responsible for collecting real-time production data from 
multiple data sources, including sensor data, historical production records and external environmental data, etc. 
Through efficient interfaces and data processing technologies, it realizes rapid acquisition and preliminary cleaning 
of data. The collected data will be transferred to the data storage and management module. This module adopts 
distributed database technology to support massive data storage and efficient retrieval, and at the same time, it 
needs to realize data version control and permission management to ensure data security and consistency. After 
data storage, the recommendation algorithm module is the core part of the system, based on collaborative filtering 
algorithm for data analysis and recommendation [20]. The module first performs feature extraction and similarity 
calculation on the data. Then, the user behavior data is used to generate personalized recommendations to ensure 
the accuracy and relevance of the recommendations. Finally, the user interaction interface module is responsible 
for presenting the recommendation results to the user in an intuitive way and supporting the user to make 
personalized settings and feedback to enhance the user experience of the system. The system design also needs 
to consider the logical relationship between modules and data flow, through the feedback mechanism of information 
flow, forming a closed-loop system, so that the recommendation algorithm can be continuously optimized according 
to the user feedback to improve the recommendation quality and system performance. The basic framework of the 
system is shown in Figure 4. 

Data Acquisition Module 

Data Storage and 
Management Module 

Recommendation 
Algorithm Module 

User Interaction Module 

Real-time Acquisition 

Storage and Retrieval 

Generating
 Recommendations 

User Feedback 

Personalisation
 Settings

 

Figure 4: System basic framework 

IV. A. 2) Data acquisition and pre-processing 
The data acquisition module requires real-time data from multiple sensors and data sources. After data acquisition, 
data preprocessing must be performed to improve the quality and usability of the data. Data preprocessing includes 
steps such as data cleaning, data integration, and data conversion. First, data cleaning is used to remove errors 
and missing values. Assuming that in the collected pressure data, some sensors record abnormal values due to 
malfunctions, a threshold range, such as 0 kPa to 5000 kPa, needs to be set, and any value outside the range will 
be labeled as anomalous and deleted or replaced. Second, data integration involves combining data from different 
data sources into a unified format. For example, a temperature sensor may have data in degrees Celsius while a 
flow sensor has data in cubic meters per hour, so it is important to standardize them to the same unit for subsequent 
analysis. 

 
IV. A. 3) Collaborative Filtering Algorithm Implementation 
Collaborative filtering algorithms are divided into two main categories: user-based collaborative filtering and item-
based collaborative filtering. User-based collaborative filtering relies on the similarity between users, while item-
based collaborative filtering focuses on the similarity between items. In this system, item-based collaborative filtering 
algorithm is chosen, which has the advantage of effectively handling sparse data and improving the accuracy of 
recommendation. 
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The first step in the item-based collaborative filtering algorithm is to construct the user-item rating matrix, denoted 
as R . Where, ,u iR  denotes the rating of item i  by user u . If the user has not rated the item, the value is 0. In 

order to calculate the similarity between items, it is first necessary to define the similarity measure. The commonly 
used cosine similarity can be expressed as equation (22): 
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where ,i jS   denotes the similarity between item i   and item j  , and U   is the set of all users. The formula 

derives the degree of similarity between items by calculating the correlation between the user ratings of two items. 
After that, a recommendation list can be generated for the user by combining the calculated similarity matrix. The 

recommendation algorithm is mainly based on the user's historical ratings and the similarity of the items, and the 
formula is shown in equation (23): 
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In Eq. (23), 
,

ˆ
u jR  represents the predicted rating of item j  by user u , and I  is the set of items that have been 

rated by user u . 
This formula generates a personalized recommendation for the user by taking into account the user's ratings of 

similar items in a weighted summation manner. 
 

IV. A. 4) Training and Optimization of Recommendation Models 
After the collaborative filtering algorithm is implemented, targeted training and tuning are also required to ensure 
the optimization of the recommendation effect. In the model training phase, data selection and processing are crucial. 
Using the user's historical behavior data as the training set, relevant features are extracted and normalized so that 
the model can better learn the user's preferences. The normalization process usually adopts the Z-score 
normalization method, and the formula is shown in equation (24): 

 X
X



   (24) 

Eq. (3), X   is the original data,    is the mean of the data,    is the standard deviation, and X    is the 
normalized data. This treatment can effectively reduce the influence of the magnitude between different features 
and improve the training efficiency of the model. 

During the training process, a stochastic gradient descent optimization algorithm is used, where the parameters 
are continuously adjusted through iterations to reduce the loss of the model. An improved loss function is introduced 
during the training process by integrating the cross-entropy loss function, which is particularly effective in dealing 
with implicit feedback from users (e.g., clicking, buying behavior). The expression of the cross-entropy loss function 
is shown in equation (25): 

      , , , ,
( , )

ˆ ˆlog 1 log 1u j u j u j u j
u j D

CE y y y y


        (25) 

In Eq. (25), ,u jy  represents the actual situation (1 or 0) of whether user u  has interaction with item j , and 

,ˆu jy  is the probability that the model predicts that user u  has interaction with item j . 

 
IV. B. Experiments and results 
In order to verify the accuracy and convergence of the personalized recommendation algorithm. According to the 
simulation experiment parameters are set, Q = 41 for the clustering center, fuzzy control parameters are set to b1 
= 124, b2 = 364, simulation time is 2min (120s), 3166 running iterations, set the number of 1040 in the space of W 
individual dimensions, the population size of 10, set the experimental parameters, and begin to carry out the 
simulation and analysis, and the original dataset sampling is shown in Figure 5. 

Test the sample information collected on the user, and compare the convergence and accuracy of the traditional 
method with the experimental process, to get the comparison curve diagram, personalized recommendation curve 
comparison shown in Figure 6. Analysis of the comparison results show that the personalized recommendation 
algorithm proposed in this paper is very good response in terms of user recommendation satisfaction and 
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information accuracy, but also fully reflects the personalized recommendation algorithm proposed in this paper has 
a better performance. 

 

Figure 5: Raw data collection 

 

Figure 6: Comparison of personalized recommendation curves 

The recommendation method designed in this paper is analyzed and compared with the traditional method, and 
the PCA algorithm is compared with PSO, and the personalized recommendation satisfaction comparison results 
are shown in Figure 7. The above experimental results show that the experimental process compared with the 
traditional method, this paper's algorithm has the highest average satisfaction value of 0.962, the user accuracy 
information recommendation, to promote the transaction reached, the efficiency has been greatly improved. 

 

Figure 7: Personalized recommendation satisfaction comparison results 

V. Conclusion 
The article firstly combines LSTM network and attention mechanism for production time sequence data modeling, 
and researches a real-time business index intelligent recommendation system based on collaborative filtering 
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algorithm, realizes more efficient and accurate identification of production equipment operation state, and improves 
the decision support ability and efficiency in the production process, and draws the following conclusions after the 
test: 

(1) After 100 iterations of training, the prediction results of this paper's method on the FIC2021 metrics are very 
accurate, with about 95% accuracy, indicating that this paper's method fully meets the industry standard of 95% 
accuracy. 

(2) This paper's method shows good performance in comparison experiments. In the TI2074 indicator dataset, 
the prediction effect of this paper's method is improved by 88.91% and 60.92% over the LSTM with long term time 
series data as input and the LSTM with short term time series data as input, which proves the efficient prediction 
performance of this paper's method. 

(3) In the satisfaction comparison experiment of intelligent recommender system for time business indicators. 
Compared with the traditional method, this paper's algorithm has the highest satisfaction, with a mean value of 
0.962, thus indicating that this paper's method has good working efficiency. 
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