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Abstract In this paper, a two-stage robust optimization model based on mixed-integer linear programming is 
proposed for the problem of resilience enhancement and resource scheduling optimization of distribution networks 
in coastal cities under extreme disasters. The optimization model of active distribution network power supply 
restoration is constructed to realize multi-resource cooperative scheduling by combining linearized tidal current 
constraints. A line maintenance team scheduling model is established to optimize the fault repair path and sequence. 
Design the two-stage robust optimization framework, and realize the master-slave problem iteratively solved by the 
column constraint generation algorithm. The simulation results show that under the three fault scenarios, the SRCL 
indexes of Case3 are improved by 31.108%, 39.321% and 27.42%, and the RRCL is improved by 4.355%, 19.853% 
and 6.703%, respectively, compared with that of Case2, and the voltage overrun problem can be effectively 
suppressed. The robustness analysis verifies the adaptability of the model to the uncertainty of line maintenance 
time, and provides decision support for the formulation of post-disaster recovery strategies. 
 
Index Terms mixed-integer linear programming, distribution network disaster recovery, two-stage robust 
optimization model, column-constrained generation algorithm, grid fault repair 

I. Introduction 
In recent years, various extreme events have occurred frequently, especially for distribution networks, which are 
highly susceptible to blackouts due to various extreme natural disasters due to the fragile infrastructure and radial 
distribution lines [1]-[3]. In order to cope with these adverse effects, strategies and methods need to be adopted to 
enhance the ability of distribution networks to cope with disasters [4]. Collaborative utilization of local fixed power 
sources in the distribution network and mobile emergency resources to complete the restoration of the distribution 
network is an important means to reduce outage losses and enhance urban resilience [5]. After an extreme event, 
the distribution grid is disconnected from the larger grid, and multiple distribution lines are damaged, creating 
multiple independent electrical islands of power loss [6]. 

For this situation, distributed power sources in the distribution grid and dispatch emergency repairers can be 
coordinated to repair damaged critical paths to restore important loads, thus reducing losses [7], [8]. In this regard, 
during the dynamic change of the availability of damaged lines, the structure of each island in the distribution 
network changes accordingly, and each formed electrical island should maintain a radial topology, i.e., dynamic 
radial topology [9]-[11]. Based on this, a decision model based on mixed integer linear programming is proposed to 
ensure that post-disaster mobile resource scheduling is synchronized with distribution network load restoration, 
while the radial topology of the distribution network needs to be ensured in order to achieve synergistic scheduling 
of fixed and mobile resources [12]-[17]. 

In this paper, we synthesize the roles of voltage regulating equipment, microgrid, and network reconfiguration to 
establish an active distribution network power supply restoration model based on mixed integer linear programming 
model. Considering maintenance resource scheduling, a line maintenance team scheduling model is proposed. A 
two-stage robust optimization model is established, and the column and constraint generation algorithm is used for 
the co-optimization of the model. The effectiveness of the proposed model is investigated by comparing the 
resilience indexes of distribution networks in three scenarios under three fault conditions. The sensitivity problem of 
discrete robustness is analyzed to evaluate the impact of uncertainty in repair time of each type of faults on the total 
cost of distribution network restoration. 
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II. two-stage robust optimization model for distribution networks based on mixed integer 
linear programming 

Nowadays, environmental degradation causes extreme weather events in coastal cities with high frequency, which 
affects the normal and stable power supply of the distribution network, causes huge economic losses, and even 
jeopardizes social stability. Therefore, for large-scale distribution network outages, it is necessary to develop 
corresponding distribution network restoration measures to improve the resilience of the distribution network to 
ensure the safety and stability of the distribution network. 
 
II. A. Optimization model for active distribution network power restoration 
II. A. 1) Objective function 
In this paper, the objective function is constructed by minimizing the total cost of power supply restoration, which is 
calculated by converting the power of the disconnected loads and the number of actions of the regulating equipment 
uniformly into a cost. Equation (1) gives the expression of the objective function: 
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where: , ,i j n   - node number; ij   - branch number; 
N   - all nodes in the system set, including the virtual 

substation nodes, R F
N N N     ; 

B   - the set of all branches in the system, including virtual branches, 
R F

B B SW    ; 
SW  - the set of all branched circuits with switches in the system, R F

SW SW SW    ; R
B  - the 

set of actual branches; F
SW  - set of virtual branches with switches; D

N  - the set of load nodes, D R SS
N N N    ; 

SS
N  - the set of actual substation nodes; F

N  - the set of virtual substation nodes only; R
SW  - the set of - the set 

of all actual branches with switches in the system, R O C
SW SW SW     ; O

SW   - the actual set of branches that 

disconnected the switch before the fault; C
SW  - the set of actual branches that are in the pre-failure closed switch; 

DG
N - the -the set of nodes of the DGs; CB

N  - the set of nodes of CBs; OLTC
N  - the set of nodes of on-load regulator 

transformers (OLTCs) - the set of nodes of on-load regulator transformers (OLTCs); VR
B  - the set of branch circuits 

of regulators (VRs); DG
N

  - set of nodes with DGs with black-start capacity; LS
i - - the cost of not meeting load 

demand loss at node i , $/kW; ,D D
i iP Q --Active/reactive power demand at node i  rated voltage, kW, kVar; 0~1 

variable 
i

LS
Sy   - whether the zone Si

  containing node i   is energized or not, 1
i

LS
Sy    is energized, otherwise 

0
i

LS
Sy   ; Si

  - the zone containing node i  ; SW
ij   - the cost of the branch ij   switching operation, $; SW

îj  -- ij  

branch switch operation; DGp DGq,i i   - the cost of changing the active/reactive output of DG at node i , $/kW, $/kVar; 

ˆ ˆ,DGp DGq
i i   - regulation of DG active/reactive dispatch at node i , kW, kVar; CB

i  - the cost of running state of CBs 

at node i , $; ˆCB
i  - the amount of -The amount of regulation of the number of CBs connected at node i ; OLTC

i  

- the cost of changing the operation of OLTC at node i , $; ˆOLTC
i  - the amount of regulation of the OLTC operation 

at node i ; VR
ij  - the cost of changing the VR operation at the branch ij , $; ˆVR

ij  - the regulation of VR at branch 

ij , kV; MG  - the cost of forming a microgrid, in $; 0~1 variable DG
i  - When 1DG

i  , there is at least one DG 

with black-start capacity operating in the microgrid containing node i . 

The first term of the objective function   is the cost of loss of unsupplied total active load, the second term is 
the cost of switching operations, the third term is the cost of active and reactive dispatch regulation of the DGs, the 
fourth term is the cost of CBs action, the fifth and sixth terms are the cost of operation of the OLTCs and VRs, 
respectively, and the last term is the cost of formation of the microgrid. 
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II. A. 2) Linearized tidal constraints 
The linearized tidal equation is: 
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ij l ij Bij l         (11) 

  ,0 , , 1, ,Q s R
ij l ij Bij l         (12) 

where: R
N  - the set of actual nodes; ,ij ijP Q  - branch ij  Active/reactive power, kW, kVar; , ,ij ij ijR X Z  - resistance, 

impedance, impedance values of branch ij ,  ; SQ
ijI  - the square of the magnitude of the current on the branch 

ij , A ; ,SS SS
i iP Q  - active/reactive power input to the substation at node i , kW, kVar; CB

iQ  - reactive power injected 

by CB at node i , kVar; ,DC DG
i iP Q --Active/reactive power of the DG at node i , Kw,kVar; ˆˆ ,D D

i iP Q  - active/reactive 

power demanded by loads at node i , kW, kVar; , SQ
i iV V  - voltage amplitude at node i  and its square, kV; VR

ij  - 

VRs  model with auxiliary variables ( 0VR
ij   for branches without VR); 

ij  - the slack variable in the calculation of 

the branch voltage drop ( 0ij   for the unswitched branch); 
ijM  - the calculation of the ij  branch voltage Big-M 

value of the drop; SW
ij  - whether the branch ij  switch is on or not, 0SW

ij   means it is on, otherwise 1SW
ij  . 

For branches without switches, 1SW
ij  ; 

i  - pre-fault estimation of voltage amplitude at node i , Kv; A  - number 

of segments for segment linearization; l   -- index of the linearized segment; 
,ij lm   - the slope of the segment 

linearized segment 1 on branch ij ; 0
, ,

P
ij ij   - the discrete variable associated with segment 1 for active/reactive 

currents on branch ij  ; ,ij ijP P    - the non-negative variable for active power on branch ij  , kW ; ,ij ijQ Q    - non-

negative variable of reactive power on branch ij , kVar; s
ij  - length of each segment linearized to the square of 

power on branch ij . 

Constraints Eqs. (2) and (3) represent the Kirchhoff current constraints, and these equations include the active 
and reactive power injected by the DGs and the reactive power injected by the CBs. Constraint Eq. (4) represents 
the Kirchhoff voltage constraint, and the slack variable 

ij  in Eq. (4) is computed based on sw
ij  in Eq. (5), and 

 2 2
ijM V V   for the branch without VR; For branches with VR,    2 2 22VR VR

ij ij ijM V V V      . If 1SW
ij  , then 

0ij  ; if 0SW
ij  , the squared values of the voltage magnitudes in Eq. (4) are independent. Finally, the segmented 
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linearization Eqs. (6) to (12) provides the branch se
ijI , where the length of each segment of the trend-squared 

linearization is /s
ij ijVI   , and the slope of each segment is s

, ,1 (5 / 6)i j ijm    and s
, (2 1)ij ijm l   , where 1l  . 

 
II. B. Line Maintenance Fleet Scheduling Model 
Line maintenance teams, as an important disaster recovery resource, can reduce the outage time by modeling them 
rationally, optimizing the scheduling of line maintenance teams, and solving for reasonable repair paths and repair 
sequences. The line maintenance team scheduling model is an important part of the disaster recovery model by 
deciding the line maintenance team path to repair the faulty line. The line maintenance team scheduling model 
consists of two parts, the line maintenance team scheduling path model and the line maintenance team scheduling 
time model. 

Line maintenance team scheduling path model: the line maintenance team receives the instruction to start the 
post-disaster recovery work, the first from the maintenance site, after the planned maintenance path, maintenance 
of the corresponding fault line, after completion of the final return to the original maintenance site, on the way is not 
allowed to move to other maintenance sites. First of all, a maintenance team to leave the maintenance site and 
finally return to the same maintenance site for modeling, model constraints as shown in equation (13): 
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where 
, ,
MC
k l mcx  is a line maintenance team scheduling variable that indicates whether a certain line maintenance 

team mc  is scheduled from faulty node k  to faulty node l . If 
, , 1MC

k l mcx   it means that line maintenance team 

mc  is dispatched from faulty node k  to faulty node l , and if 
, , 0MC

k l mcx   it means that line maintenance team mc  

is not dispatched from faulty node k  to faulty node l . The nodes in 
, ,
MC
k l mcx  are not line nodes, but nodes on the 

movement path of the line repair team, including the repair site and the location of the faulted line, where dp  

denotes the repair team site, k  and l  denote the faulted line, mc  denotes the line repair team, DP  denotes 

the collection of the repair team sites, and / { ( )}DP dp mc  denotes the set of repair sites other than its own. 

After a line repair team mc  arrives at fault node k , it will first repair the line fault at that node, and after repairing 

the fault is completed, the team will arrive at another fault node l  to repair another line fault, and the team will not 

repeatedly pass through the same fault node, whose model constraints are shown in Eq. (14): 

 , , , , 1, , /MC MC MC
k l mc l k mc

l l

x x mc k V DP       (14) 

where MCV  denotes the set of faulty nodes and repair team sites, /MCV DP  denotes the set of faulty nodes, and 

“ 1 ” instead of “ 1 ” is because it is not necessary for a certain repair team to repair all the faulty nodes, but rather 
requires multiple repair teams to coordinate their scheduling to repair all faults. 

The scheduling instruction stipulates that each faulty line only appears in the scheduling path of one line 
maintenance team, i.e., each faulty line requires only one line maintenance team to repair it without the participation 
of other line maintenance teams, which avoids the waste of maintenance resources, and at the same time 
accelerates the process of repairing faults to increase the recovery of power supply. The model constraints are 
shown in equation (15): 

 , , 1, /MC MC
l k mc

mc l

x k V DP    (15) 

The scheduling time model of the line maintenance team: the line maintenance team arrives at a faulty line at a 
certain moment, carries out maintenance work for a certain period of time, and rushes to the next faulty line after a 
period of time after the completion of the repair, and so on and so forth until the fault is completely repaired. Set the 
moment when a line repair team mc  arrives at a faulty node k  as ,

,
MC AR
k mcA ; the repair time of the faulty node k  

is set to 
,
RP
k mcT  and assume that any repair team spends the same amount of time repairing the same fault; set the 

moment when the repair of the faulty node k  finishes as ,MC RP
kA ; set the time taken by the line repair team mc  

to move from fault node k   to fault node l   to be 
, ,
TR
k l mcT  ; and set the moment when the line repair team mc  
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reaches fault node l  from fault node k  to be ,
,
MC AR
l mcA . From this, we can get the expression of the time relationship 

between the line maintenance team from arriving at fault node k , after repairing the fault, moving to fault l , as 

shown in equation (16): 

 , ,
, , , , ,
MC AR MC AR RP TR
l mc k mc k mc k l mcA A T T    (16) 

At this time, the line maintenance team scheduling variable 
, , 1MC

k l mcx   , however, the scheduling path is not 

necessarily in the order of fault node k  to fault node l , so in order to perform a global unified modeling, the 

moment when the maintenance team reaches fault node l  must be constrained by the line maintenance team 

scheduling variable 
, ,
MC
k l mcx , which loosely transforms Eq. (16) into Eq. (17), i.e: 
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where M  denotes an extremely large constant. The inequality constraint (17) defines the upper and lower bounds 
of ,

,
MC AR
l mcA , which determines the moment when the line repair team mc  arrives at the faulted node, and the next 

step needs to be a reasonable modeling of the moment when the line repair team mc  repairs the completed fault 
,MC RP

kA  as shown in equation (18): 

 , ,
, , , , ,MC RP MC AR RP MC MC

k k mc k mc l k mc
mc l

A A T x k V    
 





   (18) 

where ,MC RP
kA  denotes the moment when the repair is completed at node k , any line repair team repairs fault node 

k  , then the moment when fault k   is repaired can be determined by the expression. Eq. (18) determines the 

moment when the line repair team reaches the latter fault node l , and then it is necessary to model the moment 

when the line repair team reaches the fault node k , if the scheduling instructions do not schedule a line repair team 

to reach the fault node k , then its corresponding line repair team reaches the moment when the fault node k  
,

,
MC AR
k mcA  is 0, as shown in equation (19). 

 
,

, , ,0 , ,MC AR MC MC
k mc l k mc

l

A M x mc k V       (19) 

II. C. Two-stage robust optimization model construction and solution 
The distribution network quantifies the impact of equipment at each node on the system resilience under extreme 
weather conditions and allocates standby power at key nodes to improve the system resilience, and proposes a 
multi-objective optimization model to determine the location and capacity of the gas-fired unit, which turns the 
optimization of the system resilience into the optimization of the economic cost. A two-stage robust optimization 
(RO) model is established to comprehensively consider the resilience improvement of the grid system. 

In order to seek to achieve the shortest fault repair time under the worst conditions, the following model is 
established: 

 

,
1

, , , ,

, ,

,

min max min

[ , , , , ]

[ ( )]

[ ]

d

D

r d
X Yu

d r R

g t g t ij t ij t

b i j

r d

X P Q P Q

u T t

Y







 



 
 




 (20) 

where: 
,r d  is the time required by the overhaul team d  to repair the faulty line element r , D  is the number of 

overhaul teams, and 
dR  is the set of faulty elements. 
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The stage 1 decision vector is X  , with the objective of system hardware reinforcement to minimize the 

configuration cost, and the stage 2 decision vector is Y  , with the objective of minimizing the amount of load 
shedding and uncertainty variables, in order to seek the fastest restoration of the faulty components under the worst 
path. 

Considering the amount of load shedding and the number of configured contact switches, the following constraint 
model for minimizing the cost of both is developed: 

 ,
1 2 ,

1 1 ,

min
h tie

T T
L Shd

ij t
Y

t j S t i j S

f c P c a
   

     (21) 

where 
1c  is the unit cost of load abandonment, 

2c  is the unit investment cost of contact switch, 
lcS  is the set of 

lines, and T  is the total operating time. 
Eqs. (20) and (21) portray the maintenance travel time uncertainty model and the distribution network short-time 

reconfiguration optimization model, respectively, and the 2 models can be solved conjointly by establishing the 
coupling relationship between the faulty element state and the restoration state, i.e., the integrated model: 

 
1 , 2 , , 3 ,

1 1 , 1

min max min
lc lc d

T T D

l shd i j t u r d
t j S t i j S d r R

F c P c a c 
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 
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 
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where: 
3c  is the unit time cost of fault repair. 

The model is decomposed into the master problem (MP) and subproblems (SP), and iterated repeatedly to obtain 
the optimal solution: the MP minimizes part of the problem and relaxes part of the constraints, thus providing a lower 
bound on the optimal value, while the SP maximizes part of the problem to provide a feasible solution to the original 
problem, which can be used as an upper bound on the optimal solution. The master problem and subproblems are 
continuously updated and converged to obtain the optimal solution. 

The MP form is as follows: 

 

min

. . 

,

,

X

T
l

l l

s t AX b

q Y l K

BX CY g Eu l K







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where q  , b   and g   are constant matrices, A  , B  , C   and E   are constant coefficient matrices,    is an 

auxiliary variable, 
lu
  is the worst-case travel scenario for the l th iteration, 

lY  is the auxiliary matrix added to the 

main problem for the l th iteration, and K  is the maximum number of iteration number of iterations. 

The SP form is as follows: 

 
*

max min

. . 

T
u Y l

l

q Y

s t CY g BX Eu




  
 (24) 

where *X  is the optimal solution to the master problem. 

The subproblem (24) is transformed into the following single-level optimization problem according to the dyadic 
theory: 

 


,max ( )

. . 

0

T
u
T

g BX Eu

s t C q
 




  



 



 (25) 

For ( )TEu  , an auxiliary variable   is introduced with the same dimension as u  as follows: 

   min max minu u u u     (26) 

where 
maxu  is the worst value of the scene and 

minu  is the best value of the scene. 

This bilinear term can be transformed into: 
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 
max min min

[( ) ] T

T T T T Tu E u u E u E       (27) 

A matrix H  of variables of the same dimension as E  is introduced and linearized using the large M  method: 

 
(1 ) (1 )

n mn n

m mn n mn m mn n

M H M

E M H E M

 
   
  
      

 (28) 

The main and subproblems are solved iteratively by the Column and Constraint Generation (C&CG) algorithm, 
the algorithm flow is shown in Fig. 1. 

Start

End

Set the number of iterations k = 1, lower bound LB = 
-∞, upper bound UB = +∞

Given a set of journey scenarios, solve the master 
problem

Get the optimal distance, update the lower bound of 
the original problem

Solve the subproblem to get the worst travel time, 
update the upper bound of the original problem

UB-LB ≤ iteration accuracy?

Output the optimal overhaul 
scenario

Y

Create
 variables, add

 constraints
 to the master

 problem

 

Figure 1: Two stage robust optimization solution process 

III. Simulation Analysis of Post-Disaster Resilience Enhancement and Resource 
Dispatch Optimization of Distribution Grid in Coastal Cities 

III. A. Test System and Simulation Scenario Setting 
In this paper, a nodal distribution network is selected as the test simulation system, which is equipped with 4 line 
contact switches, 51 line sectional switches, 8 nodes as critical load nodes, and the distribution network contains 3 
MGs. In order to describe the simulation results in a more understandable way, energy storage is selected as a 
typical flexibility resource. Voltage measurement devices are installed at nodes 5, 8, 16, 25, and 31, and the 
measurement devices sample data every 15 minutes to obtain operating voltage data, and nodes 4, 7, and 15 are 
used as flexibility resource nodes. 

In this paper, the following three simulation scenarios are set up: 
Case1: This test scenario adopts the optimization model of distribution network power supply restoration to cope 

with three typical extreme disaster fault scenarios and enhance the post-disaster resilience of the distribution 
network, and does not consider the scheduling of line maintenance teams; 

Case2: This test scenario considers two phases of distribution network power supply restoration and line 
maintenance team scheduling to improve distribution network resilience, but does not consider two-phase robust 
optimization; 

Case3: The test scenario is the resilience of distribution networks in response to three typical extreme disaster 
scenarios with the RO model constructed in this paper. 
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III. B. Analysis of distribution network resilience improvement results 
III. B. 1) RO model parameterization 
The PV output curves and load fluctuation curves for four typical days of spring, summer, fall and winter throughout 
the year are derived from the actual data of the distribution network of a coastal city, and the PV output curves are 
shown in Fig. 2 and the load fluctuation curves are shown in Fig. 3. Combining Fig. 2 and Fig. 3, it can be seen that 
both PV output and load fluctuation are the largest in summer. 

 

Figure 2: Output curves of photovoltaic power in four seasons 

 

Figure 3: Seasonal load fluctuation curves 

III. B. 2) Algorithm effectiveness analysis 
Applying the RO model proposed in this paper to cope with three typical fault scenarios under extreme disasters, 
the comparison results of the survivability and resilience indicators of the distribution network under the three 
scenarios are shown in Table 1. 

The comparison results of the resilience indexes of the distribution network under the three fault scenarios in the 
three scenarios show that, for the load resilience indexes SRL and RRL enhancement, Case3 does not have an 
obvious advantage over Case1 and Case2, and the biggest SRL enhancement of Case3 over Case2 is in the Fault1 
fault scenario, with an enhancement of 1.392%, and the biggest RRL enhancement is in the Fault2 Fault2 fault 
scenario with the largest RRL improvement of 8.569%. However, in terms of SRCL and RRCL enhancement of 
critical load resilience metrics in distribution networks, the enhancement effect of Case3 has a great advantage. 
Under the three fault scenarios, the SRCL metrics of Case3 are improved by 31.108%, 39.321%, and 27.42%, and 
the RRCL is improved by 4.355%, 19.853%, and 6.703%, respectively, compared with Case2, and the RRCL metrics 
of Case3 under the three fault scenarios are more than 90%, which means that, during the continuation of the 
disaster and its recovery, the 90% of the critical load is recovered. The above analysis results show that the RO 
model proposed in this paper effectively improves the survival and recovery rates of distribution network critical 
loads under extreme disasters, and the resilience of the distribution network is significantly improved. 
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Table 1: Comparison Results of Distribution Network Indicators (%) 

 
Fault1 Fault2 

SRL SRCL RRL RRCL SRL SRCL RRL RRCL 

Case1 30.407 37.376 95.645 95.645 47.596 17.805 54.440 79.949 

Case2 32.036 37.376 98.756 95.645 50.362 17.964 90.413 79.949 

Case3 33.428 68.484 99.848 100.000 51.618 57.285 98.982 99.802 

 
Fault3     

SRL SRCL RRL RRCL     

Case1 29.661 29.683 79.129 86.227     

Case2 30.288 30.023 81.618 86.425     

Case3 31.408 57.443 88.942 93.128     

III. B. 3) Resilience enhancement results 
When the optimal scheduling of energy storage is not performed, the flexibility resource node has a high voltage 
and crosses the upper limit due to the PV output, and at the same time, there is a low voltage and crosses the lower 
limit due to the customer's high electric load and the PV output is 0. Under the Case3 scenario, the scheduling 
strategy under the case of the maximum value of the calculated energy storage is selected as the optimal strategy, 
and the nodes 4 and 7 are respectively combined with the node 15 to optimize the charging and discharging curves 
of the energy storage, as shown in Figure 4, where the storage output below the zero axis represents that the 
energy storage is in the charging state. 4, where the energy storage output below the zero axis represents that the 
energy storage is in charging state, and the energy storage output above the zero axis represents that the energy 
storage is in discharging state. After the optimization of RO model, its node voltage situation is obviously improved, 
which effectively solves the voltage overrun problem of the distribution network. 

 

Figure 4: Charge and discharge curves for energy storage optimization 

Using the RO model optimization, the generation dispatch and load restoration of each island of the distribution 
network after the disaster is shown in Fig. 5. As can be seen in Fig. 5, the RO model transfers the power from silos 
2 and 3 to silo 1 to equalize the generation resources of each silo. At the same time, in the time domain, it presents 
fixed energy storage characteristics, in island 1, charging when the generation resources are rich, discharging when 
the generation resources are lacking, playing the role of “peak shaving and valley filling”. 

 

Figure 5: Power generation dispatching and load recovery situation 
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III. C. Fault Repair Time Uncertainty Analysis 
In this section, we focus on the sensitivity of discrete robustness, and use the enumeration method to analyze the 
impact of robust parameters of line maintenance time uncertainty on the total system cost. All the robust parameter 
combinations are listed and simulated, and the simulation results are shown in Table 2 (the base for the calculation 
of the “percentage increase” in the table is the simulation results of the three typical failure scenarios in which the 
repair time is determined). 

Table 2 shows that the total system cost in the simulation results of No. 1 and No. 4 are the same, both are 92.86 
million yuan, which indicates that the uncertainty of the repair time of the Fault3 fault has a negligible effect on the 
total system cost. In addition, from the simulation results of No. 2 and No. 3, it can be seen that the degree of impact 
of Fault1 is higher than that of Fault2, with an increase percentage of 1.13% and 1.07%, respectively. This is of 
guiding significance for the development of maintenance plans for post-disaster distribution networks, which can 
focus on fault location and identification of the faulted lines of Fault1 and Fault2 in order to reduce the uncertainty 
of their maintenance time, and then develop a more reasonable maintenance plan to reduce the economic losses 
of post-disaster distribution networks. 

Table 2: Robust analysis simulation results 

Number 
Line robust parameters 

Total cost/ten thousand yuan Growth percentage/% 
Fault1 Fault2 Fault3 

1 0 0 0 9.286 0.00 

2 1 0 0 9.391 1.13 

3 0 1 0 9.385 1.07 

4 0 0 1 9.286 0.00 

5 1 1 0 9.462 1.90 

6 1 0 1 9.391 1.13 

7 0 1 1 9.385 1.07 

8 1 1 1 9.462 1.90 

 

IV. Conclusion 
In this paper, a two-stage robust optimization model for distribution networks based on mixed integer linear 
programming is constructed, and three simulation scenarios are set up to explore the effectiveness of the proposed 
RO model. 

For the load resilience indexes SRL and RRL enhancement, Case3 does not have obvious advantages over 
Case1 and Case2, and the largest SRL enhancement of Case3 over Case2 is for the Fault1 fault case, with an 
enhancement of 1.392%, and the largest RRL enhancement is for the Fault2 fault case, with an enhancement of 
8.569%. However, in terms of SRCL and RRCL enhancement of critical load resilience metrics of the distribution 
network, the enhancement of Case3 has a great advantage. Under the three fault scenarios, the SRCL metrics of 
Case3 are improved by 31.108%, 39.321%, and 27.42%, and the RRCL is improved by 4.355%, 19.853%, and 
6.703%, respectively, compared with Case2, and the RRCL metrics of Case3 are over 90% under all three fault 
scenarios. 

Under Case3 scenario, the voltage situation of flexibility resource nodes is significantly improved after 
optimization by RO model. The RO model transfers the power from silos 2 and 3 to silo 1 in order to balance the 
generation resources of each silo. At the same time, in the time domain, it shows the fixed energy storage 
characteristics, in island 1, charging when the generation resources are rich, and discharging when the generation 
resources are deficient, which plays the role of “peak shaving and valley filling”. 

Robust analysis simulation results show that the maintenance time uncertainty of Fault3 has a negligible impact 
on the total system cost, and the impact of Fault1 is higher than that of Fault2, with an increase of 1.13% and 1.07%, 
respectively. It is further verified that the robust optimization method can effectively assess the impact of the repair 
time uncertainty of each type of faults on the total cost of distribution network restoration, which is a guidance for 
the development of the maintenance plan of the distribution network after the disaster. 
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