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Abstract The spatial distribution characteristics of immune cells in the lung cancer microenvironment profoundly
affect tumor progression and immunotherapy efficacy. In this paper, we integrate physical simulation and statistical
modeling to systematically investigate the dynamic interactions and spatial distribution of immune cells in the tumor
microenvironment of non-small cell lung cancer (NSCLC). A system of partial differential equations (PDEs) was
constructed based on statistical methods to simulate the formation mechanism of the immunosuppressive
microenvironment during tumor growth. The cell kinetic behavior in non-equilibrium state was portrayed by ODE
kinetic model to reveal the characteristics of spatial distribution of immune cells. Flow cytometry and spatial
parameter analysis of clinical samples were combined to quantify the spatial distribution pattern of M2 macrophages
and IL-10"NK cells. It was found that the mean density, mean minimum proximity distance, and effective percentage
of CD68* TAMS were significantly higher than those of CD163* TAMS and IRF8* TAMs in the subpopulations of
patient TAMs (CD68*, CD163*, and IRF8"), and that M2 macrophages and IL-10*NK cells differed in their
proportions and functional inhibitory status in different tissues.

Index Terms non-small cell lung cancer, lung cancer microenvironment, partial differential equations, ODE kinetic
model, spatial distribution of immune cells

. Introduction

Lung cancer is one of the most common malignant lung cancers and one of the leading causes of cancer death
worldwide [1], [2]. When the body encounters lung cancer, the body's immune system works to enhance its defense
mechanisms [3]. Immune cells play an indispensable role in this regard, providing support and guidance to the body
in fighting cancer cells [4], [5]. However, modern medicine has discovered that lung cancer is not only a problem
posed by cancer cells, but that immune cells and their spatial distribution in the lung cancer microenvironment also
play a critical role [6], [7].

The lung cancer microenvironment is composed of cancer cells, immune cells, vascular endothelial cells,
fibroblasts and stromal cells, etc. The formation of the microenvironment can be realized by the infiltration of immune
cells induced by cancer cells [8]-[10]. Several types of immune cells, including T cells, B cells, macrophages, and
dendritic cells, are present in the lung cancer microenvironment [11], [12]. These immune cells, play an important
role in immune surveillance and anti-lung cancer immune response in lung cancer [13]. Immune cell infiltration is
the key to anti-lung cancer immunotherapy, and immune cell infiltration in the microenvironment of lung cancer is
closely related to the prognosis of lung cancer, with a relatively high number of immune cell infiltration in patients
with benign lung cancer, and a significant decrease in the number of immune cell infiliration in patients with
malignant lung cancer [14]-[17]. As a result, immune cells in the microenvironment of lung cancer became a hot
area of cancer research [18]. Researchers have begun to study these immune cells to explore their role in the lung
cancer microenvironment and to hypothesize about their interactions with the human immune system in order to
seek a new approach to cancer therapy [19]-[21].

In this paper, we first construct a partial differential equation model to simulate the dynamic process of cells in
TME based on the law of mass action and the assumption of spherical symmetry. The formation of tumor necrotic
core is characterized by boundary conditions and initial parameter settings. Separate the deterministic dynamics
from stochasticity to resolve the potential function characteristics of the spatial distribution of immune cells and the
mechanism of steady state transition. Taking 50 NSCLC patients from a hospital as study samples, double-ended
PE100 sequencing was used to detect the quality of the samples. The cells were labeled into different subjects by
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cell markers to realize the cell grouping of clinical samples. The distribution patterns of the three subpopulations
were analyzed by combining the clinicopathological characteristics of the patients and the density and spatial
distribution parameters of the TAMs of the three subpopulations. Flow cytometry was used to analyze single-cell
suspensions from each tissue to explore the spatial distribution heterogeneity of M2 macrophages and IL-10*NK
cells.

. Non-small cell kinetic simulation of lung cancer microenvironment based on
statistical modeling

Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer-related deaths worldwide. Despite
significant advances in diagnosis and treatment, the overall prognosis of NSCLC patients remains poor. The
immunosuppressive environment in the tumor microenvironment is an important reason for the failure of
immunotherapy, and an in-depth study of the distribution mechanism of immune cells in the NSCLC tumor
microenvironment can provide a theoretical basis for the development of new immunotherapy strategies.

In this paper, we combine physical simulation and statistical modeling to establish a multi-scale model to explore
the law of immune cell spatial distribution.

Il. A.Mathematical modeling of the tumor microenvironment

Il. A.1) Assumptions for model application

During tumor growth, biological processes between different classes of cells ensure continuous changes in the
tumor microenvironment, which subsequently lead to different processes such as tumor growth, metastasis,
adhesion, invasion and angiogenesis. The model in this paper focuses on simulating the interactions of four types
of cells in the microenvironment, namely tumor cells, immune cells, cancer-associated fibroblasts (CAFs), and
angiogenic cells. Experiments have confirmed that these four types of cells are the main components of the TME
and are direct participants in the functions of immune function, tumor promotion, and material transport, respectively,
during tumor development.

Generally, the proliferation of tumor cells causes the inner cells of the tumor to exert an outward force on the outer
cells, at which time the outer layer of cells will move relatively outward with the expansion of their size, and this is
the reason why the tumor volume keeps getting larger. In other works, the shape of the tumor growth is usually
approximated as a sphere, which is to facilitate the calculation and analysis, so this is also set in this paper. The
modeling in this paper follows the following assumptions:

(1) The shape of a solid tumor is a radially symmetric sphere containing free boundaries and has a uniform density.

(2) During tumor growth, the number of angiogenic cells and cancer-associated fibroblasts varies with the number
of tumor cells.

(3) The spreading effect of cancer-associated fibroblasts and angiogenic cells is ignored in the model.

(4) Immune cells can be recruited by tumor cells and spread from the outside to the inside of solid tumors.

Il. A.2) Mathematical form of the model
In this paper, we mainly consider the biological interactions processes in the tumor microenvironment to establish
a mathematical model. Based on the Mass action theorem in biochemical reactions, this paper uses a system of
partial differential equations to portray the dynamics of four types of cells in the tumor microenvironment, where the
four cellular variables are: tumor cells ([C]), immune cells ([E]), cancer-associated fibroblasts ([F]) and
angiogenic cells ([A]). The change in the number of tumor cells over time is the change in the number of tumor
cells by free diffusion minus the change in the number of tumor cells by convection, the killing of tumor cells by
immune cells, and the necrotic nuclear portion of tumor cells, plus the proliferation of tumor cells. The amount of
change in the number of immune cells over time was the amount of change in the number of immune cells with free
diffusion plus the activation of immune cells and the recruitment of immune cells by tumor cells, minus the amount
of change in the number of immune cells with convection. The amount of change in the number of cancer-associated
fibroblasts over time is the amount of change in the generation of CAFs by tumor cells encroaching on tissue plus
the generation of CAFs by tumor cells encroaching on tissue, minus the amount of change in CAFs with convection.
The amount of change in the number of angiogenic cells over time is equal to the proliferation of angiogenic cells
minus the amount of change in angiogenic cells with convection.

After clarifying the various components in the model, it was further translated into the mathematical language of
formulas as follows:
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Based on the assumption that tumor growth is approximated as a sphere, the PDEs model described above can

be further transformed into a form in spherical coordinates:
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The convective velocity u=u(r,t) in the model represents the cell movement velocity at ¢ and position r,
which is generated mainly because of cell proliferation and apoptosis; cell proliferation velocity greater than the
death velocity indicates the expansion of the tumor volume, which corresponds to a cell movement velocity greater
than 0, and cell death velocity greater than the proliferation velocity corresponds to a cell movement velocity less
than 0.

According to the model assumption, the cell density inside the solid tumor is fixed, so the sum of the number of
the four types of cells per unit volume is a constant value, i.e.:

[CI+[E]+[F]+[4]=0 (11)

In the numerical solution process of this paper the model is calculated in spherical coordinates, however, the unit
of the four variables is the number of cells, so in order to satisfy the assumption of density invariance, this paper
sets the cell density constant in Equation (11) tobe 8=6(h,R),inwhich 2 and R denote the spatial intervals of
numerical calculations as well as the radius of the tumor, respectively.

Early tumor growth is in the stage of avascular growth, when the growth of tumor cells mainly relies on the
nutrients in the surrounding environment, and the tumor grows more slowly. When the solid tumor grows to a certain
size, because there is no other source to provide nutrients to the tumor cells, the cells inside the tumor body will
stop growing or even die, forming a necrotic core, so that the tumor at this stage usually has a diameter of no more
than 2mm.

The model in this paper portrays the tumor growth of a sphere containing a free boundary, whose internal

boundary T,,...(r = R,,.. (1) isthe boundary of the necrotic core and the proliferating cell layer, and the external
boundary T,,..(r=R(t)) is the outer surface of the tumor volume, and the structure of the sphere tumor is shown

in Figure m The variation of the external boundary, in turn, can be represented by the convection velocity:

dR
E—M(R(f)J) (12)
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Figure 1: Structure of the spheroid tumor

Combining the exchange and movement of the four types of cells in the microenvironment, the boundary
conditions of the model in this paper have the following settings:
[C]=00nT, . and %ﬂ

inner
7

On T ey (13)
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[E] =0on Finner and [E] = ES on Fauter (14)

[F] =0on Finner and a[aF] =0on router (15)
r

[A]=00nT,,,, and adl_ OonT,,, (16)

I

where E; denotes the number of immune cells recruited or activated at the outer boundary of the tumor. In addition,
the initial value of the model is set to:

[C1(r,0) = Co,[E](r, 0) = Eg,[F](r,0) = £, [4](7,0)
= A07Rinner (0) <r< R(O)

Il. B.ODE kinetic modeling of non-small cell lung cancer

ODE kinetic modeling, a set of coupled nonlinear ordinary differential equations describes the regulatory
relationships between endogenous factors in a network. From a physical point of view, the onset and progression
of complex diseases such as cancer are typically non-equilibrium processes. In this paper, we develop a general
framework for the study of non-equilibrium processes in non-equilibrium processes using nonlinear stochastic
differential equations (Lang's van equations in their generalized form in physics). By combining the original
stochastic dynamical equations:

(17)

%: fl-(X,a)+;’l-(X,t)(Which X :(xl,xz,'--,xn)T) (18)
The decomposition into three components - the friction matrix S(x), the antisymmetric transverse matrix A(x),
and the potential function ¢(x,«) - is obtained:
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where ¢ is 0 indicating that the white noise satisfies the approximate relation (¢, (X, D& (X, 1) =2e S;(X)o(t—t).
Morphing from Eq. (ﬂ) to Eq. (@), the deterministic and stochastic parts correspond individually to produce two
relations, with the stochastic part leading to the generalized Einstein relation:

D[S, (X)+ 4, (OID, (O] S, (X)+ 4,(X) | = 5, () (20)
Provides n(n+1) equations when i> j; deterministic partially induced:
D185 (X0 + 4;(X) Dy (D[ S,(X) + 4, (X) | = -0,6(X @) 21)
j

A potential function with zero spin can be obtained:

O[S (X + 4, () ] £,(X, )]

(22)
=0, >[5, (0 + 4,(X0)] £,(X.e)} =0

2

When i>; gives n(n—1)/2 equations. These n° equations determine the n® unknowns in S(X)+ A(X)

under appropriate boundary conditions, and then the potential function S(X)+ A(X)f(X,a).
The corresponding Fokker-Planck equation of Eq. (ﬂ) is:

0,p(X,0) =8, Dy(X)+0,(X) |[8,4(X,) + &0, | p(X, 1) (23)
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where Q(X) is the antisymmetric matrix determined by [D(X)+Q(X)]=[S(X)+A(X)]_l. Thus, relating the

smooth probability density function p(X) in phase space to the potential function ¢(x,a), p(X) exp[—M} .
&

The matrices S, 4, D and Q may also depend on « . When ¢—0, dx;/dt=f;, and thus the potential
function ¢ is also deterministically corresponding to the Lyapunov function of the dynamics.

d@(x ) _ Z 0D (nc )_
= —Z[ 5 0+ 4,0 (X, ) f;(X,a) (24)
-
= S, (N fi(X,a)f;(X,a) <0
ij

The kinetic equivalence of the potential function to the Lyapunov function is further demonstrated, and the
correspondence between the deterministic steady state and the stochastic localized most probable state is
obtained.The decomposition has its applications in engineering and physics.Mathematically, our method can be
thought of as a stochastic integral of the A type using stochastic differential equations. The 4 -type integral
solution can be derived physically by taking the zero-mass limit of the noise-containing 2n-dimensional Newtonian
equation and the corresponding Klein-Kramers equation. On the other hand, applying the traditional Ito or
Stratonovich interpretation, we observe that even for additive noise (constant diffusion matrix D ) there may be an
inconsistency between stochastic and deterministic dynamics. The bridge between stochastic and deterministic
dynamics is built within our framework: stable states obtained from deterministic partial differential equations can
be directly interpreted as local maxima of the distribution of stable states, and stochastic transfers between locally
most probable states can be viewed as transfers between corresponding stable states. Thus, the potential
landscape under A4 -type integral solutions is robust with respect to noise. Note that in many previous studies using
conventional Ito or Stratonovich integrals, the existence of such robustness is also assumed, e.g., the computation
of the potential difference between a given steady state and a transition state by path integrals obtained from
deterministic equations without taking into account the positional bias can give rise to complications and erroneous
results when the noise intensity is not sufficiently small.

In the following exposition, we omit the explicit dependence of the noise and perform a A4 -type stochastic
integration of f, in Eq. (18) to obtain Eq. (25):

dx _ :E: ait.x;m y 1
dt _1+z X 1+Z:ValV x

At this point, we obtain a set of ordinary differential equations (ODEs) with the above form to approximate the
activation-inhibition-regulation relationship of the factors in the network. On the right-hand side of the equations, the
first term describes the generation rate of the factor in the form of the product of Hill functions; the second term
represents the degradation rate of the factor, and the last term is the original content of the factor at the moment ¢,
with the coefficients » and « in the equations representing the Hill coefficients and dissociation constants,
respectively.

(25)

lll. Spatial distribution of immune cells in the microenvironment of lung cancer in clinical
samples

NSCLC is one of the leading causes of cancer-related deaths worldwide, accounting for approximately 85% of all
lung cancer cases. Although targeted therapies and immunotherapies have shown good efficacy in some NSCLC
patients, the overall prognosis of NSCLC patients remains poor. The immunosuppressive environment in the tumor
microenvironment is one of the major reasons for the failure of immunotherapy. Tumor cells evade the surveillance
of the immune system by expressing immune checkpoint molecules and inducing immunosuppressive cell
aggregation, etc. The complexity of these immune escape mechanisms increases the difficulty of immunotherapy
and is a therapeutic dilemma that needs to be overcome at present. Therefore, an in-depth study of immune cell
functions in the NSCLC tumor microenvironment is important for improving therapeutic strategies.

M2 macrophages and IL-10*NK cells, as key immune components in the tumor microenvironment, play a role in
promoting tumorigenesis and progression.M2 macrophages have immunosuppressive functions and can promote
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tumor growth, angiogenesis, and tumor metastasis. TAMs usually exhibit M2 macrophage phenotypic and functional
characteristics.

NK cells are an important component of the innate immune system and have the ability to directly kill tumor cells.
Tumor cells can limit the function of NK cells in the tumor microenvironment by upregulating inhibitory ligands or
secreting immunosuppressive factors.

Both CD206"IL-10*M2 macrophages and IL-10"NK cells in the tumor microenvironment secrete IL-10 and inhibit
the function of antigen-presenting cells.IL-10 not only promotes the polarization of TAMs toward the M2-type and
inhibits their antitumor response, but also inhibits NK cell activation, weakening their anti-tumor activity. However,
the interrelationship between M2 macrophages and IL-10*NK cells in the NSCLC tumor microenvironment is unclear.

Combining physical simulation and statistical modeling methods to study the spatial distribution of immune cells in lung cancer microenvironment

lll. A. Selection and processing of sample data
lll. A.1) Sample Sources

In this study, 50 patients with NSCLC, including 28 cases of squamous cell carcinoma and 22 cases of
adenocarcinoma of the lung, who were first diagnosed with lung cancer, did not receive any other therapeutic
interventions, and excluded from other diseases in a hospital, were recruited. All patients were staged by TNM
staging system based on pathological diagnosis and clinical characterization. Flow-through specimens were rapidly
transferred to 50 ml sterile centrifuge tubes containing F12 medium in an isolated sterile environment to make
single-cell suspensions, stained, and mounted. Each specimen was uniquely coded and the coding did not divulge
any donor information to ensure privacy, and this study was approved by the hospital ethical review board.

lll. A.2) Quality testing

Quality testing of the samples is required before formal sequencing on the machine, and this sequencing was
performed by double-ended PE100 sequencing, and the standard size of WTA-Index should be around 450 bp, and
the standard size of ST-Index should be around 290 bp. The test results showed that the WTA-Index and ST-Index
of all samples met the quality testing requirements. The detection results of three of the samples are shown in
Figure 2(a~b), and the sequencing peaks of each WTA-Index sample are around 450bp, and the sequencing peaks
of ST-Index samples are around 290bp.

i 278.36
4 / .3

277.43 27743

0 T T T T T T T T T T T T
100 200 300 400 500 600 700 100 200 300 400 500
Fragment length/bp Fragment length/bp

(a)WTA-Index (b)ST-Index
Figure 2: Test results of WTA-Index and ST-Index (Part)

lll. A. 3) Cellular compartmentalization

Cells were labeled into different subjects by cell markers, and oligodendrocytes were obtained according to the
marker genes OLIG2, PLP1, MBP, TUBB4A, TF, APLP1, CNPMAG, CRYAB, PTGDS, and CNDP1. Glioblastoma
cells were obtained according to marker genes PTPRZ1, GFAP, FABP7. Endothelial cells were obtained according
to marker genes CD34, CD31, CDH5, CLDN5, FLT1. Immune cells were obtained according to the marker genes
PTPRC, CD3, CD74, HLA-DRA, CCL3, IL1B. Pericytes were obtained according to marker genes RGS5, MCAM,
CSPG4. The results of cell fractionation were shown in Figure 3, the tumor microenvironment contained cells divided
into five categories of subject cells, as normal nervous system cells, tumor cells, endothelial cells, immune cells,
and peripheral skin cells, with a total of 127,450 cells.
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Figure 3: Cell clustering results

The 5 classes of subject cell markers are shown in Figure ﬂ and correspond to the actual marker genes, further
confirming the accuracy of the subject cell compartmentalization.
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Figure 4: Cell markers of the five classes of subjects

Table 1: Clinicopathological characteristics

Characteristic Number of patients(%)
Male 48
Gender
Female 52
) ) ) No 32
Preoperative neurological dysfunction
Yes 68
) Axial 36
Tumor location -
Extra-axial 64
. No 32
Recurrence during follow-up
Yes 68
I 12
Campanacci stage I 36
52
Characteristic Density(cells/mm?)
CD68* 362.5+288.1
CD163" 97.8+118.9
IRF8* 109.5+126.4
Characteristic Average minimum proximity distance(um)
CD68* 197.9+144.7
CD163" 38.2424.5
IRF8* 50.9423.7
Characteristic Effective percentage(%)
CD68* 28.66+20.1
CD163" 17.2+9.4%
IRF8* 8.1+6.5

lll. B. TAMs density and spatial distribution parameters
In this paper, the demographic information, clinicopathological characteristics, and density and spatial distribution
parameters of TAMs in three subgroups of 50 patients were counted, and the statistical results are shown in Table

1. The results of the visualization of the density and spatial distribution parameters of TAMs of the three subgroups
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are shown in Figure @ The average densities of CD68* TAMS, CD163* TAMS, and IRF8* TAMs in patients were
362.5+288.1/mm?, 97.8+118.9/mm?, and 109.5+126.4/mm?, respectively. The average minimum proximity distances
were 197.9+144.7 um, 38.2+24.5 ym, and 50.9+ 23.7 um. The effective percentages were 28.66+£20.1%, 17.219.4%,

and 8.1+6.5%, respectively. It can be seen that the mean density, mean minimum neighbor distance, and effective
percentage of CD68* TAMS were significantly higher than those of CD163* TAMS and IRF8* TAMs in patients.
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Figure 5: Density and spatial distribution parameters of TAMs in the three subgroups

lll. C. Spatial distribution patterns of M2 macrophages and IL-10NK+ cells

To further investigate whether there were differences in the spatial distribution characteristics between M2
macrophages and IL-10NK+ cells, the analysis was carried out using flow cytometry. The proportions and numbers
of M2 macrophages and IL-10NK+ cells in each tissue are shown in Figure @ (a~b), respectively. The analysis of
flow cytometry results showed that the proportions of M2 macrophages and IL-10NK+ cells were significantly
different in each tissue. The epithelial and lamina propria of duodenum, jejunum, and ileum had more than 60% of
M2 macrophages, while the proportions of M2 macrophages, IL-10NK+ cells were similar in blood-related tissues
and lymph node tissues. In addition, there were some differences in the number of M2 macrophages and IL-10NK+
cells isolated and purified from different tissues by flow cytometry counting, and the highest numbers of M2
macrophages and IL-10NK+ cells were found in spleen tissues.
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Figure 6: Proportion and number of M2 macrophages and IL-10NK+ cells

IV. Conclusion

In this paper, a mathematical model of the tumor microenvironment was constructed, and a physical simulation
method was combined to explore the distribution mechanism of immune cells in the NSCLC tumor
microenvironment.

The average densities of TAMs in the three subpopulations of CD68+ TAMS, CD163* TAMS, and IRF8* TAMs in
the samples in this paper were 362.5+288.1/mm?, 97.8+118.9/mm?, and 109.5+126.4/mm?, respectively. The mean
minimum proximity distances were 197.9£144.7 ym, 38.2+24.5 ym, and 50.9+23.7 um, respectively. The effective
percentages were 28.66+£20.15%, 17.2+9.4%, and 8.1+6.5%, respectively. It can be seen that the mean density,
mean minimum neighbor distance, and effective percentage of CD68* TAMS in patients were significantly higher
than those of CD163* TAMS and IRF8* TAMs.
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Analysis of the flow cytometry results showed that the percentage of M2 macrophages, IL-10NK* cells differed
significantly in each tissue. The epithelial and lamina propria of duodenum, jejunum, and ileum had more than 50%
of M2 macrophages, while the proportions of M2 macrophages, IL-10NK* cells were similar in blood-related tissues
and lymph node tissues. There were some differences in the number of M2 macrophages and IL-10NK* cells
isolated and purified from different tissues, and the highest number of both M2 macrophages and IL-10NK* cells
was found in spleen tissues.
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