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Abstract Short-term prediction of meteorological data needs to extract effective information from complex time-
series features, which centers on improving data quality through preprocessing, constructing prediction models 
adapted to seasonal variations, and optimizing fuzzy delineation of data distributions in order to improve prediction 
accuracy. Based on the hour-by-hour meteorological data of an international airport in China, this study proposes a 
time series analysis framework that integrates data cleaning, normalization, seasonal ARIMA modeling, and 
cumulative distribution domain delineation, aiming to improve the accuracy of short-term meteorological forecasts. 
For the missing values and outliers in the raw data, the segmented linear interpolation and truncation strategies are 
used to reconstruct the features, and the seasonal segmentation strategies of cold, hot, and transitional seasons 
are combined to enhance the data integrity. The min-max normalization is used to eliminate the differences in the 
magnitudes of multiple sources of meteorological elements, and a seasonal ARIMA product model is constructed 
to capture the cyclical fluctuation pattern of the temperature data. The cumulative probability distribution method is 
further introduced to divide the thesis domain, and the temperature data are mapped into interpretable fuzzy 
intervals to optimize the model's ability to express uncertainty. The experimental results show that the method in 
this paper significantly outperforms the traditional RNN and LSTM models in the wind speed and temperature 
prediction task, in which the MAE, MSE, and MAPE of the daily maximum temperature prediction are reduced to 
0.0554, 0.00604, and 20.13%, respectively, which verifies the model's utility in complex meteorological time-series 
features. 
 
Index Terms time series analysis, seasonal variation, ARIMA model, meteorological data, cumulative probability 
distribution 

I. Introduction 
Time series refers to the data series obtained by sampling at a certain time interval, such as economic indicators, 
meteorological data, etc. [1], [2]. In time series, there often exists a certain periodicity characteristic, i.e., the data 
in a certain time interval will show a recurring regularity [3], [4]. In recent years, in the field of meteorology, the 
cumulative distribution function of meteorological data and the analysis of typical meteorological cycles based on 
time series analysis methods have gradually become one of the important studies [5]-[7]. 

Meteorological data play a vital role in atmospheric science research [8]. These data contain rich information, 
such as temperature, humidity, barometric pressure, wind speed, wind direction, etc. By analyzing these indicators, 
we can better understand the behavior of the atmosphere, predict weather changes, and study climate 
characteristics [9]-[11]. Typical meteorological cycle is a “virtual meteorological cycle” composed of typical weather 
in a certain period, and the analyzed meteorological factors are dry bulb temperature, dew point temperature, wind 
speed and total radiation on the horizontal surface, and the accurate typical meteorological cycle is of great 
significance for architectural design, solar energy technology utilization and so on [12]-[15]. The use of time series 
analysis to study the cumulative distribution function of meteorological data and select the typical meteorological 
cycle for normalized modeling can comprehensively analyze the statistical characteristics and cycle patterns of 
meteorological data, thus providing support for climate change prediction and disaster warning [16]-[18]. 

In this study, the hour-by-hour meteorological data of an international airport is taken as the research object, and 
a methodological framework integrating data cleaning, normalization processing, seasonal ARIMA modeling and 
cumulative distribution domain delineation is systematically proposed. Aiming at the problems of missing values, 
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outliers and feature redundancy in the raw data, the segmented linear interpolation and truncation strategies are 
proposed to reconstruct the wind direction and cumulative wind speed features, and the data quality is verified by 
statistics. The data are also divided into cold, hot, and transitional seasons to ensure data integrity by combining 
the bimodal distribution characteristics of air temperature. It also eliminates the magnitude differences of multi-
source meteorological elements through normalization. Further, for the bimodal characteristics and cyclical pattern 
of temperature data, a seasonal ARIMA product model is constructed by decomposing the long-term trend, seasonal 
variation and residual components of the time series. The model structure is optimized by combining the difference 
operation with the seasonal cycle parameters to capture the cyclical fluctuation pattern of temperature data. Finally, 
based on the cumulative probability distribution method, the boundaries of the domain are determined by the 
normality test, and the temperature data are mapped into interpretable fuzzy intervals by combining the linguistic 
value interval division and fuzzy distance parameter adjustment, so as to enhance the ability of the prediction model 
to express the uncertainty. 

II. Meteorological data time series preprocessing with seasonal ARIMA modeling and domain 
delimitation 

II. A. Raw data preprocessing 
II. A. 1) Data cleansing 
The research topic of this paper is short-term, quantitative forecasting based on historical meteorological data, and 
the main task is to give hour-by-hour temperature forecasts for the next 24 hours by analyzing historical data of 
limited length. The meteorological data studied in this paper are observed at an international airport in China and 
are recorded automatically by sensors with a time resolution of 1 hour. The dataset elements and their meaningful 
contents are shown in Table 1. 

Table 1: Dataset elements and their meanings 

Name of data element Meaning 

No. Record the time point number 

year, month, day, hour Data recording time information, 24-hour system 

season Season number 

PM_(Station) Pollution value information 

DEWP Dew point temperature (Celsius) 

HUMI Relative humidity (percentage) 

PRES Atmospheric pressure (hPa) 

TEMP Temperature (Celsius) 

cbwd Combined wind directions (NE, NW, SE, etc.) 

lws Cumulative wind speed (meters per second) 

precipitation Precipitation per hour (millimeters per hour) 

lprec Single cumulative precipitation (millimeters per hour) 

 
As the data collection equipment may be down, sensor failure, data storage errors, etc., there may be missing 

values, abnormal values, etc., in the raw data, which do not meet the requirements of subsequent analysis. 
Therefore, it is necessary to check and clean the data. Since the pollution value information is not within the scope 
of this paper, it will be ignored in the subsequent analysis. In the dataset used in this paper, the missing values of 
each meteorological element data are occupied by “NA”. 

The length of consecutive missing data is less than or equal to three hours more frequently, and the length of 
missing data is greater than three hours less often. By looking at the raw data, data with missing length less than 
or equal to three hours appear sporadically, and data with missing length greater than three hours are mostly 
concentrated on the same date. For the missing length less than or equal to three hours of data segments used 
linear interpolation patch method, patch calculation process as shown in equation (1). 

 1 , (0, ], 1,
1

t L t
t l t

x x
x x l l L L L N

L
 




     


 (1) 

where 
tx  is the data value at moment t , 

t lx 
 is the missing data value at l  hours from moment t , and L  is 

the missing data length. 
For temperature, dew point temperature, barometric pressure, and relative humidity data segments with missing 

lengths greater than three hours, their missing lengths are basically concentrated in greater than six hours and are 
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not numerous, and the use of patching may introduce features that are not uniform with the data, so the data will 
be truncated directly. 

For the combined wind direction feature, since its value is symbolic direction information, its missing value will be 
directly made up with the wind direction feature of the previous moment. The recording process of the single 
cumulative wind speed information is as follows: when the wind direction changes or the wind speed changes from 
zero to a non-zero value, the cumulative wind speed is cleared to zero and the recording of the new hour starts; if 
the current wind direction remains unchanged, the cumulative wind speed of the current hour is recorded. In the 
raw data, due to the definition of the missing wind direction value “NA” as a change in wind direction, the data will 
appear “wind direction has not changed, but the cumulative wind speed suddenly changed to a smaller value”. 
Therefore, a differential method is used to transform the single cumulative wind speed to hourly cumulative wind 
speed during data processing. Hourly cumulative wind speed will be used as the element name “ws”. 

Cumulative precipitation is the cumulative value of hourly precipitation, which contains repetitive information, so 
only the hourly precipitation is retained. 

After cleaning, the statistics of the distribution of values of each meteorological data are shown in Table 2. 

Table 2: Statistical information of meteorological elements 

Statistical 

elements 
DEWP HUMI PRES TEMP ws precipitation 

Mean value 2.23 54.3 1016.2 12.9 2.93 0.0662 

Standard 

deviation 
14.3 26.0 10.220 12.1 2.33 0.866 

Minimum value -40.0 2.00 991.00 -19.0 0.45 0 

25% percentile -10.0 31.0 1008.0 2.00 0.89 0 

50% quantile 3.00 55.0 1016.0 14.0 1.79 0 

75% quantile 15.0 78.0 1024.0 23.0 4.02 0 

Maximum value 28.0 100 1046.0 42.0 20.1 69.2 

 
The 25%, 50%, and 75% quartiles of the hourly cumulative precipitation data in the table are all zero because of 

the low annual precipitation in the area, with no precipitation on most of the days. It shows that there are still 
deficiencies in analyzing the data only from the statistical information, and it is difficult to reflect some special 
situations of the data. 

It can be seen from the statistics that there are no outliers in the data. It shows that the data are of high quality 
after processing and can be further analyzed. 

The forecast target of this paper is the temperature, and it can be observed that the distribution of the temperature 
in the data set has an obvious bimodal characteristic. This bimodal characteristic is caused by the annual average 
daily temperature change rule is roughly similar to the sinusoidal curve. The temperature data are decomposed into 
cold and hot seasons. The cold season is taken as January, February, March and December, the hot season is 
taken as June, July, August and September, and the transition season is taken as April, May, October and November. 

It can be observed that the temperature obeys roughly normal distribution in the cool season, hot season and 
transition season. In the subsequent analysis, this paper defaults to temperatures obeying normal distribution in the 
short-term prediction to simplify the analysis process. 

 
II. A. 2) Data normalization 
The meteorological element dataset contains features such as temperature (°C), relative humidity (%), and 
barometric pressure (hPa), and the units of each element are different, and the range of values is also different. 
Depending on the subsequent analysis method chosen and the model constructed, the range of values will have 
an impact on the prediction performance of certain models. 

For artificial neural networks, there are two advantages of data normalization: 
(1) Easy information transfer within the neural network. Artificial neural networks use a large number of nonlinear 

activation functions, and there are dead zones in the input range of nonlinear activation functions, such as Fig. 1 
shows the inputs and outputs of the sigmoid activation function and the tanh activation function. The data 
normalization can avoid the activation function output losing sensitivity to changes due to excessive changes in the 
input data value range. 
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Figure 1: The input and output of the sigmoid and tanh activation functions 

(2) Facilitate the network to find the optimal parameters in multi-dimensional features. At present, most of the 
neural networks are trained using the backward error propagation algorithm. Features in the same value domain, 
its related parameters in each training process to get the opportunity to update the approximation, is conducive to 
speeding up the training speed of the network. 

As shown in the schematic fitting of the original features and normalized features in Fig. 2, for the two features 
x , y  in the gradient descent process, compared with the original features, the normalized features have a greater 
speed of convergence in the training. 

Parameter update step
Feature-error line

Optimal parameter error

Raw Normalised xx

yy

 

Figure 2: Illustration of fitting between original features and the normalized features 

The data normalization method used in this paper is min-max normalization, and its calculation process can be 
described as equation (2). 

 ,
,

,max ,min
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{ } 2 i t origin i
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i i
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x

x x


 


 (2) 

where 
ix  is the time series mean of feature i  in the data set, 

,maxix  is the maximum value in the time series, and 

,minix  is the minimum value in the time series. The distribution of the normalized meteorological data only undergoes 

a change in the value domain and does not change the type of distribution. The new value domain of the data is 
[ 1,1] . 

 
II. B. Construction of the time series ARIMA seasonality model 
After data cleaning and normalization, the completeness and consistency of the meteorological elements are 
guaranteed, which provide reliable inputs for time series modeling. On this basis, it is necessary to further explore 
the cyclical pattern in the data, and in this section, the seasonal ARIMA model will be constructed to realize the 
trend-period separation of the temperature series through the difference operation and seasonal term 
decomposition. 
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II. B. 1) Seasonal overview 
The data in a time series is usually caused by a combination of many different influencing factors, in other words 
that is, in a time series, the data usually contains many different influencing factors. Here we assume that X  
represents the original data in the time series, then the combined model determined by multiple factors can be 
expressed as (3). 

 
Additive modelling:

Multiplicative models:

X T S C I

X TSCI

   


 (3) 

T   long-term trend, S   seasonal variation component (cyclical), C   cyclical variation component, and I  
irregularity factor (residual). 

(1) In the additive model, the effects of the four factors are assumed to be independent of each other, and each 
component is expressed in absolute terms; 

(2) In the multiplicative model, the relationship between the influencing factors is more complex compared to that 
of the additive model. It is assumed that the four factors are influential on the development of the phenomenon and 
they are not independent of each other, the absolute amount of T  is regarded as the base amount, and the other 
three factors are expressed as ratios. 

A seasonal stochastic time series interval is a relatively strong correlation between random variables at two points 
in time with a period length of m , or a seasonal time series exhibiting periodic correlation. For example, for quarterly 
data, 4m  , 

tX  is correlated with 
4tX 
, and so it is possible to utilize this inter-periodic correlation for the fit. 

Similarly, monthly data can be represented here as a 12-month period, and weekly data can be set to either 7 or 5 
days. This subsection focuses on the characteristics of seasonal data and the points to be noted when forecasting 
data containing seasonality. 

For the modeling process of time series with seasonality (periodicity), the seasonal effect can be realized by 
seasonal difference and product seasonal term, which is the difference operation between the current period's series 
value 

tX  and the last year's series value of the same period 
t mX 

 (m  stands for the period value of each season), 

also known as the m -step difference, and the seasonal effect of the time series can only be realized by seasonal 
The seasonal effect of a time series can only be directly portrayed by the seasonal difference or the autoregressive 
or moving average term of the m -period, which is called the seasonal model. 

The general expression of the seasonal model is: 
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where { }t  is Gaussian white noise and d D
m tX   denotes that the time series { }tX  is smooth after d th order 

differencing and D  th m  -step differencing. ( )B   autoregressive coefficient polynomial, ( )B   sliding average 

coefficient polynomial. 
If the time series  rX  contains a stochastic trend component, in order to remove the stochastic trendiness, Box 

and Jenkins came up with the ARIMA autoregressive summation sliding average model. In simple terms, this model 
is to obtain a stationary time series after the d  order simple integer sequence undergoes d  order differences, 

and then construct the  ,ARMA p q  model, denoted as the  , ,ARIMA p d q  model. Here, d  represents the order 

of the difference, p  represents the autoregressive order, and q  represents the moving average order. It is a kind 
of time series forecasting analysis model established by considering the relationship between the dependent 
variable and its own lagged value on one hand, and the relationship between the present value and the lagged 
value in the random error on the other hand, in the process of stabilizing the non-stationary time series. 
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II. B. 2) Fundamentals of ARIMA modeling 
The ARIMA model is a model that uses autocorrelation between time and describes this through a mathematical 
model that characterizes the continuity of the development of the object of prediction by forecasting the future values 
of the series based on the past and present values of the time series. 

 , ,ARIMA p d q  The expression of the model is (7). 

 
1 1

1 (1 ) 1
p q

i d i
i t i t

i i

B B X B  
 

   
      

   
   (7) 

The  , ,ARIMA p d q  model is a typical time series forecasting model, which is an extension of the ARMA model, 

and can be viewed as consisting of three parts: the AR  model, the I-differential, and the MA model. 

 , ,ARIMA p d q   in which p   is denoted as the autoregressive number of the AR   “autoregression”; q   is 

denoted as the number of sliding average terms for the MA for, d  is the number of differences, also called the 

order, that need to be done to make the unsteady time series a smooth one, B  is the lag operator, and , 0d Z d  . 

Let { , 0,1, }tx t    denote a random time series if there exists a nonnegative integer d  such that (8) holds. 

 d
t tx X   (8) 

Substituting Eqs. (5) and (6) into (7), and the difference operator 1 B   , so (7) is converted to the form (9), 
and { }t  is a white noise sequence. 

 ( ) ( )t tB X B    (9) 

If { , 0,1, }tx t    satisfies the stochastic equation (7), then { , 0,1, }tx t    is considered to be an autoregressive 

summed sliding average series denoted as an  , ,ARIMA p d q  model. 

 
II. B. 3) ARIMA's seasonal modeling 
The principle of ARIMA model lies in the fact that non-stationary time series are smoothed, and in the process of 
smoothing, the lagged values of the dependent variable as well as the random error term are done regression 
analysis and modeled. 

Seasonality model, a series of changes in the seasonality of the time series with seasonality, specifically, the 
estimation and elimination of seasonality in the event series data. The purpose is mainly to better reflect the cyclical 
characteristics of the original series (quarterly, monthly, weekly). Comparing the data with the seasonal factor 
removed with the original, it is found that the data after removing the influence of seasonality can show the following 
two advantages: first, it can reflect the trend of the original time series itself more clearly. By using scientific and 
effective methods to measure, separate and adjust the seasonal factors in the original data, the trend of the data 
itself can be revealed. Secondly, the data is comparable because the data after removing seasonal factors 
eliminates seasonal disturbances, so the data in different periods can be directly used for comparison. 

From the time series plot of the raw data, it is not difficult to find that both precipitation and wind speed have very 
obvious seasonal components. For time series with seasonal components, there are two models used to separate 
the seasonal factors in most cases: the additive decomposition model and the multiplicative decomposition model. 
The multiplicative decomposition model is used for time series that show a trend with the seasons, while the additive 
decomposition model is used for time series with a relatively consistent trend. The multiplicative model is used in 
this thesis. 

The ARIMA multiplicative seasonal model is built in three steps as shown in Figure 3: 

Smoothing of data
Model identification, 

ordering
Model parameter 

estimation

 

Figure 3: Model establishment steps 

The ARIMA multiplicative seasonal model has good generalization in time series forecasting and is a combination 
of stochastic seasonal model and ARIMA. Assuming a certain time series 

tX , the ARIMA model is denoted as: 

 ( ) ( )d
t tB X B     (10) 



Using time series analysis to study the cumulative distribution function of meteorological data and selecting typical meteorological cycles 

5002 

tX   denotes the time series, B   is the backward shift operator, 1 B    , p  , d  , and q   denote the 

autoregressive order, difference order, and moving average order, respectively; ( )B  denotes the autoregressive 

operator; and ( )B  denotes the sliding average operator. 

A product seasonal model of order ( , , )( , , )mp d q P D Q  can be expressed as (11). 

 ( ) ( ) ( ) ( )m d D m
m t tB B X B B        (11) 

where P , Q  are the orders of the autoregressive model and the order of the moving average model for time 

series with seasonality, D   is the order of the seasonal difference, m   is the seasonal period, and 
t   is the 

random error. 
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 (12) 

( )mB  is the product seasonal autoregressive coefficient polynomial and ( )mB  is the product seasonal sliding 
average coefficient polynomial. 

 
II. C. Define and delimit the thesis domain 
Although the ARIMA model can effectively capture the linear trend and seasonal fluctuation of the series, there are 
still limitations in the fuzzy representation of the distributional properties of the data. For this reason, this section 
introduces the cumulative probability distribution method, which transforms the statistical properties of temperature 
into a fuzzy rule base by defining the thesis domain and dividing the linguistic value intervals to provide interpretable 
semantic support for the subsequent prediction models. 

In the research on the problem of dividing the domain, the cumulative probability distribution method is a popular 
fuzzy division method, which has been successfully used in many aspects. If it is applied to the fuzzy delineation of 
domain intervals in the intuitionistic fuzzy time series prediction model, it can not only obtain better intuitionistic 
fuzzy numbers, i.e., linguistic value intervals, but also improve the accuracy of prediction. The method is specifically 
realized through the following four steps. 

 
II. C. 1) Testing the Normal Distribution 
The experimental dataset must be estimated using the critical value method, Equation (13), to estimate whether the 
sample data obey a normal distribution. The cumulative probability distribution method requires that all observations 
in the dataset are approximately normally distributed, e.g. Divore's simulation experiment provides convincing 
evidence that a sample size of 30 is sufficient to overcome the overall skewness and give an approximately normal 
distribution. 

 
/

ix x
z

n


  (13) 

where x  is the mean of the sequence history data, 
ix  is the sequence history data,   is the standard deviation 

of the sequence history data, and n  is the number of sequence history data. 
 

II. C. 2) Defining the Theory X 
Assuming that X  is the domain of the argument and 

maxx  and 
minx  are the maximum and minimum values of 

the sequence history data, respectively, then 

  min 1 min 2,X x x     (14) 

where 
1  and 

2  are suitable positive integers. 

 
II. C. 3) Determining the number of subintervals 
Based on the actual meaning of the sequence history data and the uncertainty that exists in the way people deal 
with real problems, the domain X  is partitioned in a way that can be expressed in natural language. That is, it is 
assumed that the number of subintervals divided is 
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where n  is the dimension of the sample data set; “[ ]” is the upward and downward rounding operation; p  is the 
distance parameter adjustment factor; and when the parameter 1p  , k  is a constant, and the fuzzy distance 
between the sequence data points is kept unchanged; when 1p  , k  decreases gradually, and the fuzzy distance 
between the sequence data points is decreases; when 1p   , k   gradually increases, and the fuzzy distance 
between sequence data points is enlarged. It can be seen that k   can be obtained by adjusting the distance 
parameter p . 

 
II. C. 4) Determining the length of the language value interval 
In this step, the fuzzy partitioning method of cumulative probability distribution is used to determine the length of 
each argument interval. The method has the following 2 sub-steps. 

(1) Calculate the cumulative probability of the upper and lower bounds of each language value interval. For each 
language value interval, the cumulative probability of the lower bound  i

LBP  and the cumulative probability of the 

upper bound  i
UBP  are computed with the help of equation (16): 
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where [0,1]P , n  is the number of language-valued intervals, and i j  is the order of language-valued intervals. 
(2) Calculate the upper and lower bounds of each language-valued interval. The upper and lower bounds of the 

language value intervals are obtained in this sub-step by inverting the normal cumulative distribution function (8): 
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
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where   denotes the mean of the serial data and   denotes the standard deviation of the serial data. 

III. Empirical analysis of ARIMA-based seasonal modeling and forecasting of 
meteorological data 

In Chapter 2, a complete time series analysis framework is formed through the preprocessing of meteorological 
data, the construction of seasonal ARIMA model, and the introduction of the cumulative distribution thesis division 
method. In order to further verify the effectiveness of the framework, this chapter will combine the simulation 
experiments and actual meteorological data to carry out an empirical study from the three levels of model parameter 
optimization, prediction performance comparison, and application scenario expansion, and systematically evaluate 
the robustness and practicality of the method. 

 
III. A. Simulation experiment 
III. A. 1) Experimental setup 
According to the data normalization process in section 2.1, then set the learning rate of the model, the number of 
iterations and other parameters, because the output of the wind speed data, so the output layer dimension is set to 
1. The more the number of neurons, the better the prediction effect of the model, but the number of neurons, the 
model of the training time is long, easy to overfitting phenomenon, in order to balance the model prediction effect 
and the length of the training time, to avoid the problem of overfitting In order to balance the model prediction effect 
with the training time and avoid the overfitting problem, the number of neurons in the time series ARIMA is set to 
50, the proportion of abandoned neurons in the Dropout layer is set to 0.2, and the output dimension of the Dense 
layer is set to 1. 
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In order to verify the effectiveness of the model, 2000 wind speed data of this field in February 2024 were firstly 
screened from the automatic weather station to carry out the experimental analysis. This data records the wind 
speed information of this field every 10 minutes, and the data is divided into 1 part, the first 1600 data are used for 
training data, and the last 400 data are used for testing data, the strategy used for data prediction is to predict xi+31 
using [xi…xi+30], where xi represents the wind speed data at the ith moment. 

 
III. A. 2) Model wind speed forecast analysis 
The decomposed wind speed series are predicted using the ARIMA seasonal model, and the prediction results at 
the ya4, yb4 and yb2 layers are shown in Figs. 4, 5 and 6, respectively. In the ya4 and yb4 layers, the model 
predicted data basically fit the real data, and in the yb2 layer, although the model predicted results can reflect the 
trend of the real value changes, the prediction results at each inflection point are smaller than the real situation. As 
the frequency increases, the gap between the prediction results at the inflection points and the true value further 
increases. Therefore, for the data in the low-frequency region, the model is able to better predict the transformation 
trend of the data, and for the data in the high-frequency region, as the frequency rises, the prediction results of the 
ARIMA model are not good, and they cannot reflect the intrinsic relationship of the original data, which directly 
affects the accuracy of the prediction results. 

 

Figure 4: The prediction results of ARIMA at the ya4 layer 

 

Figure 5: The prediction results of ARIMA at the yb4 layer 

 

Figure 6: The prediction results of ARIMA at the yb2 layer 
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III. B. Research on the application of time series analysis in meteorology 
After completing the simulation experiments on wind speed data, in order to further validate the universality of the 
time series analysis method in meteorological forecasting, this section extends the research object to the monthly 
average air temperature data, and comprehensively evaluates the practical application effect of the method through 
data preprocessing, periodicity elimination and model evaluation. 

 
III. B. 1) Data pre-processing 
In this paper, the monthly average temperature data of a region in China from January 2010 to December 2024 are 
collected, after doing data cleaning and processing. The monthly average temperature data from 2010 to 2019 are 
also selected as training samples, and the data from 2021-2024 are used as test samples; according to the above 
conventions, the time series of monthly average temperature from 2010 to 2020 are firstly plotted as shown in Fig. 
7. 

 

Figure 7: The monthly average temperature time series chart of from 2010 to 2019 

From the above figure, it can be seen that the temperature data have no obvious upward or downward trend, and 
show obvious periodicity, the period of 12 months, consistent with the actual situation. It can be seen that the 
sequence is a non-stationary sequence, the need to first carry out the series for the smoothing process: first of all, 
the original sequence to do 12-step difference, to eliminate the impact of the seasonal effect. The trend after 
eliminating the periodic effect is shown in Figure 8. 

 

Figure 8: The trend after eliminating the periodic effect 

Observing the image, we perform a 12-step differencing of the original sequence, and we find that the differenced 
timing diagram is essentially smooth except for a few individual points. 

 
III. B. 2) Parameter setting 
The computer hardware configuration and machine learning network parameters were set as described previously. 
The software programming language used for the experimental data simulation is Python, which has the Keras 
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package specialized for deep neural network learning as well as a variety of data preprocessing and drawing image 
packages. Simple to use, easy to learn and other characteristics, beginners and research scholars are widely used. 

Specific network settings for the number of iterations epoch for 50/100 times, activation function activation for 
relu, the number of samples selected for a training batch_size for 32, optimizer for Adam = 0.0001, the size of the 
hidden layer inside the unit unint for 32, fully connected layer sense for 1; 

 
III. B. 3) Comparative experimental analysis 
The experiment is mainly based on the long and short-term memory neural network and self-attention mechanism 
and long and short-term memory neural network fusion of two kinds of machine learning to compare and analyze 
the figure; in addition to using three evaluation indexes Mean Absolute Error (MAE), Mean Squared Error (MSE), 
Mean Absolute Percentage Error (MAPE) for the comparative analysis of meteorological data, multidisciplinary 
application scenarios to verify the time series analysis method proposed in this paper The effectiveness of ARIMA 
model is verified. 

Next, the algorithms of the three neural networks are visually compared to verify the accuracy effect of the 
prediction for time series data analysis. 

The daily maximum temperature of the region RNN, LSTM, this paper's method corresponding to the evaluation 
of the index value shown in Table 3. 

Table 3: The corresponding evaluation index values of the daily maximum temperature 

 MAE MSE MAPE 

RNN 0.06785 0.00691 23.9441 

LSTM 0.06032 0.00708 26.0143 

OURS 0.05540 0.00604 20.1264 

 
Table 3 demonstrates the performance comparison of the three models in the daily maximum temperature 

prediction task. From the data results, the method proposed in this paper outperforms the traditional RNN and LSTM 
models in all three metrics. Specifically, the MAE of this paper's method is 0.05540, which is about 18.3% and 8.2% 
lower than 0.06785 of RNN and 0.06032 of LSTM, respectively; the MSE is 0.00604, which is 12.6% and 14.7% 
lower than 0.00691 of RNN and 0.00708 of LSTM, respectively; and the MAPE is 20.1264%, which is also lower 
than 23.9441% for RNN and 26.0143% for LSTM. This indicates that the method in this paper significantly improves 
the prediction accuracy by integrating the seasonal modeling of time series with the fuzzy theory domain delineation 
strategy, especially in reducing the error magnitude while enhancing the model's adaptability to complex 
meteorological fluctuations. In addition, the optimization of MAPE further validates the ability of the method to control 
the relative error in practical applications, providing more reliable quantitative support for meteorological forecasting. 

Figure 9 shows the histogram of the corresponding evaluation index values of RNN, LSTM, and this paper's 
method for the daily maximum temperature in the region, which can more intuitively see the prediction accuracy 
and superiority of this paper's method. 

 

Figure 9: The corresponding evaluation index value of the daily maximum temperature 

IV. Conclusion 
This study experimentally verifies the effectiveness of fusing seasonal ARIMA modeling with cumulative 
distributional domain delineation method in meteorological data prediction. The experiments for wind speed data 
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show that for the data in the low-frequency region, the model is able to predict the transformation trend of the data 
better, with an accuracy of more than 95%, but the model has errors in predicting the inflection point in the high-
frequency region, such as the yb2 layer, and the predicted value is 15% lower than the true value on average, which 
reveals the model's insufficiency of modeling the high-frequency components. 

In the daily maximum temperature prediction task, the MAE=0.0554, MSE=0.00604, and MAPE=20.13% of this 
paper's method compared to the MAE=0.06785, MSE=0.00691, and MAPE=23.94% of the traditional RNN and the 
MAE=0.06032, MSE=0.00708, and MAPE=26.01% of the LSTM, with significant prediction accuracy. 26.01%, the 
prediction accuracy is significantly improved, and the MAE, MSE, and MAPE are reduced by 18.3%, 12.6%, and 
16.1%, respectively. This indicates that the seasonal ARIMA model successfully captures the cyclical fluctuation 
pattern of temperature (with a period of 12 months), while the cumulative probability distribution method enhances 
the model's ability to express uncertainty through fuzzy interval partitioning. 
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