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Abstract This study proposes an optimization model that integrates adaptive genetic algorithm and probabilistic 
matrix decomposition. The category features are quantified by WOE coding, and the global search capability of the 
genetic algorithm is improved by combining adaptive cross-mutation strategy, simulated annealing algorithm and 
orthogonal table initialization to filter out a subset of highly discriminative features. Further, the student-course 
nearest neighbor similarity is embedded into the probability matrix decomposition model, and the feature 
distribution is constrained by the logistic Steele function to optimize the personalized recommendation accuracy. 
Experiments based on the real MOOC dataset of Academy Online show that the model in this paper achieves 
optimal performance when the crossover probability Pc is 0.9, with HR and NDCG of 60.58% and 32.99%, 
respectively. When the variation probability Pm is 0.001, HR is 59.67% and NDCG is 32.78%, which performs 
close to the optimal value. In the Top-K recommendation, the Precision@5 and mAP@15 increased to 60.44% and 
96.32%, respectively, which was significantly better than the XGBoost of the traditional model (34.15% and 
59.48%). The results show that the multi-strategy fusion of genetic algorithm and probabilistic matrix 
decomposition model can effectively solve the course recommendation problem in highly sparse scenarios. 
 
Index Terms genetic algorithm, course optimization design, simulated annealing algorithm, probabilistic matrix 
decomposition 

I. Introduction 
Since the “13th Five-Year Plan”, the process of modern education informatization has been continuously promoted. 
Various universities and colleges of higher education mostly adopt network teaching platform to support students' 
online course learning, and the use of modern information technology to assist classroom teaching has become 
one of the important means to improve teaching quality [1], [2]. The construction of network teaching platform is an 
important part of course construction and reform. Through the application of network teaching platform, teaching 
resources can be balanced, teaching space can be expanded, teaching methods can be enriched, and it becomes 
an effective supplement to traditional teaching methods and approaches [3]-[5]. With the support of network 
teaching platform, teachers can on conveniently provide teaching materials, and communicate and interact with 
teachers and students through teaching mailboxes and course forums [6], [7]. 

Meanwhile, students, on the other hand, can view course information, submit assignments, ask and answer 
questions, participate in course surveys and online tests [8], [9]. It is easy to see that the online teaching platform 
provides a new teaching and learning environment for teachers and students, actively promotes the reform of 
education and teaching, and improves the teaching quality of the “Optimal Design” course [10], [11]. However, the 
course content design of most online teaching platforms still stays in the use of digital media, repeating traditional 
course content and simply expanding online teaching resources, which cannot effectively reflect the characteristics 
of information classroom interactivity, diversity, personalization and resource integration [12]-[15]. College 
mathematics, as an important basic course in colleges and universities, plays an important role in cultivating 
students' innovative consciousness and innovative ability [16]. For this reason, the effective use of online teaching 
platforms to design the content of mathematics courses in line with the characteristics of higher education and thus 
optimize the effect of online classroom teaching is an important issue that colleges and universities must pay 
attention to [17], [18]. 

This study proposes an optimization model integrating adaptive genetic algorithm and probabilistic matrix 
decomposition, aiming to improve the performance of online course recommendation through multi-strategy 
improvement. For the feature coding problem, WOE coding is used to effectively quantize the key features in the 
course selection data and enhance the model's ability to interpret non-numerical features. To address the defects 
of genetic algorithm in global search and convergence efficiency, adaptive cross-variance probability is introduced, 
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the mutation characteristics of simulated annealing algorithm are fused, and the orthogonal table is used to 
optimize the initial population generation strategy. Adaptive cross-variance probability adjustment mechanism is 
proposed, the global search ability of simulated annealing algorithm is fused, and the Lévy flight strategy is 
introduced to solve the problem of low efficiency of traditional genetic algorithm's late search. On this basis, the 
orthogonal table is used to generate the initial population, the fitness function that takes into account the number of 
features and model loss is designed, and the data dictionary is combined to optimize the problem of repeated 
computation and screen the optimal feature subset. Further combined with the probabilistic matrix decomposition 
model, the near-neighbor similarity between students and courses is embedded in the matrix decomposition 
process, the feature vector distribution is constrained by the logistic Steele function, and the model parameters are 
optimized by combining with the gradient descent method, so as to realize Top-K personalized recommendation. 

II. Optimization model construction of online courses based on genetic algorithm and 
probability matrix decomposition 

II. A. Data pre-processing 
Since most machine learning algorithms cannot handle category-based features, they need to be converted to 
numerical features before model training, a process known as feature encoding. Two common feature coding 
schemes are One-Hot coding and WOE coding. Where One-Hot uses binary coding, each bit corresponds to a 
level of the feature's value, and the bit is 1 indicating that the feature's value is WOE coding, which is the weight of 
evidence, is also called a kind of coding of the independent variable, and is defined as in equation (1) 

 ln lni i
i

T T

Bad Good
WOE

Bad Good

   
    

   
 (1) 

where is the value of i  a feature, 
iBad  is the number of Bad tags when the feature takes the value of i , and 

TBad  is the total number of tags for the feature. 
For example, in the course selection dataset, the category feature of "grade" includes four values: "freshman", 

"sophomore", "junior", and "senior", how to quantify them into numbers? The following describes the WOE 
encoding for the "grade" feature. First, the number of courses selected by students in each grade level was 
counted from the data set. 

According to equation (1), the corresponding WOE coding value of each grade is calculated. The WOE encoding 
value for the "freshman" is -1.21, the encoding value for the "sophomore" is -0.80, the encoding value for the 
"junior" is 1.14, and the encoding value for the "senior" is 3.36. Then, the value of "grade" is rewritten into the 
corresponding WOE code value in the course selection dataset to complete the WOE coding of "grade" 
characteristics. 

 
II. B. Genetic Algorithm Improvement Strategy 
After completing the feature encoding and preprocessing of course selection data, for the problem of poor local 
search ability and low search efficiency in the later stage of the genetic algorithm, this chapter further improves the 
genetic algorithm in multiple dimensions, and enhances its global search and local optimization ability through the 
integration of adaptive strategy and simulated annealing algorithm. 
 
II. B. 1) Introducing Adaptive Strategies 
The crossover probability 

cP  and the mutation probability 
mP  in genetic algorithms have a great influence on the 

diversity of the algorithm in the early stage and the convergence in the later stage, generally speaking, in traditional 
genetic algorithms, it is more reasonable to set the value of 

cP  at 0.4-0.99 and the value of 
mP  at 0.0001-0.1. 

However, no matter what the 
cP  and 

mP  values are set to, they will not change from the beginning, which is 
obviously unreasonable, for example, in the iterative process to produce more adapted individuals should be 
retained to the next generation as much as possible, which needs to reduce the crossover probability of variation, 
and less adapted individuals should be increased to make the crossover probability of variation so that they change 
their inferiority status. Another example is that a high crossover and mutation probability should be needed in the 
early stage of the algorithm to enrich the diversity of the population, while a low crossover and mutation probability 
should be needed in the later stage of the algorithm to facilitate the convergence of the algorithm. Therefore, a 
constant crossover and mutation probability will affect the efficiency of the algorithm. 

To address the above problems, adaptive genetic algorithm (AGA) is invoked in this paper for adaptively 
adjusting 

cP  values and 
mP  values according to the fitness of individuals: 
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where,
maxf : maximum fitness value in each generation of the population; 

avgf : average fitness value in each 
generation of the population, f  : the larger fitness value of the two individuals to be crossed; f : the fitness value 
of the individual to be mutated, 

1 2 1 2, , ,c c m mP P P P  are constant parameters, in this paper, after many experiments, we 
set 

1 0.9cP  , 
2 0.5cP  , 

1 0.1mP  , 
2 0.001mP  . 

 
II. B. 2) Incorporating and improving the simulated annealing algorithm 
Simulated annealing algorithm is a common global optimization algorithm that solves complex optimization 
problems by simulating the formation of crystal structures during the cooling process of a solid object. The main 
idea is to avoid the search falling into local optimal solutions through randomness, in the expectation of finding 
better global optimal solutions. The specific steps are as follows: 

Initialization: set the initial state s , the initial temperature To , and the cooling rate k  and the termination 
temperature 

endT . 
Generate neighborhood solution: perform a random tour in the neighborhood of the current state s  to obtain a 

new state s . 
Calculate the energy difference: calculate the energy difference   ( )E E s E s     for the transfer from the 

current state s  to the neighborhood solution s , where ( )E s  is the value of the objective function taken in state 
s . 

Metropolis criterion determines whether to accept the neighborhood solution: if 0E  , the neighborhood 
solution is accepted; otherwise, the neighborhood solution is accepted or not according to the probability 

/E TP e  . 
Cooling: The effect of slow “cooling” is achieved by lowering the temperature T , with the rate of cooling k  

controlling the rate of cooling. 
Determining the end condition: When the temperature T  is reduced below the termination temperature 

endT , 
the iterative process of the algorithm is stopped and the current state s  is output as the solution of the 
optimization problem. 

In the simulated annealing algorithm, there are three parameters that are closely related to the effect of the 
algorithm, i.e., the initial temperature 

0T , the cooling rate k  and the termination temperature 
endT . These 

parameters need to be set and adjusted reasonably according to the specific problem. The flow of the simulated 
annealing algorithm is shown in Fig. 1. 

The algorithm has the ability to get rid of local optimums because of its own glitching property, which has a 
certain probability of accepting worse solutions even if they are temporarily obtained, and therefore has a strong 
local search capability. However, the simulated annealing algorithm's limited ability to search each time and its 
dependence on the quality of the randomly generated initial solution makes the algorithm run inefficiently and 
evolve slowly. In this paper, the higher quality solution obtained after the genetic algorithm has finished running is 
used as the initial solution of the simulated annealing algorithm in order to improve the line evolution efficiency of 
the simulated annealing algorithm. 

 
II. C. Feature selection based on genetic algorithm 
The improvement of genetic algorithm lays an efficient search foundation for feature selection. On this basis, this 
chapter combines orthogonal table initialization with dynamic fitness function to construct a feature selection model, 
aiming to extract key information from redundant features and reduce the complexity of subsequent model training. 

Feature selection can filter redundant features, improve model accuracy, and facilitate model construction and 
optimization. In the process of feature selection, the three commonly adopted feature search strategies include 
global search, random search and heuristic search. The update frequency of the course selection dataset in higher 
education is slow and usually occurs at a fixed time (e.g., at the beginning of each semester). When there are more 
features but still expect to obtain the optimal feature subset, the random search strategy is usually used. In this 
paper, we use a genetic algorithm as the feature selection method and use orthogonal tables to generate the initial 
population for the genetic algorithm. 
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Figure 1: Flow diagram of the simulated annealing algorithm 

Since before feature selection, we do not know which features are good quality features that are beneficial for 
recommendation model training. Therefore it is necessary to use orthogonal tables to distribute the initial 
population uniformly and discretely throughout the feature subset space. In this way, not only the size of the initial 
population is reduced making the model easy to converge, but also the initial population is more representative. 

The key to using genetic algorithms for feature selection is to design a fitness function that balances the number 
of features against the model loss. We want the feature selection algorithm to search for a subset of features that 
have good classification ability and a small number of features. Therefore define the fitness function (4) 

 
(1 )

( )
1 ( ) 1 n

f x
L x F

 
 

 
 (4) 

where ( )L x  is the log loss obtained by the model for a classification model trained on the feature vector x . 
nF  

denotes the number of feature dimensions. [0,1]   is a given equilibrium factor, where the fitness function 
depends on the number of feature dimensions when 0  , and the fitness function depends on the log loss of the 
classification model when 1  . Thus the balancing factor   regulates the weighting between model loss and 
the number of features. Since the log-loss value of the classification model is used in the fitness function, this can 
lead to the computation of fitness during the population iteration to take a long time, thus affecting the convergence 
time of the genetic algorithm. For this problem this paper proposes the following two optimization measures from 
the perspective of avoiding repeated calculation of fitness: 

(1) In the core process of genetic algorithm, for the new population generated by iteration, we need to calculate 
the fitness of each genotype in the new population, however, the new population may contain genotypes that have 
appeared before, and the repeated calculation of the fitness of these genotypes affects the convergence speed of 
the genetic algorithm. To address this problem, this paper utilizes a data dictionary to record the fitness of each 
newly appeared genotype, and when calculating the fitness, if the genotype exists in the data dictionary, the fitness 
value recorded in the data dictionary is returned. 

(2) Crossover and mutation operations improve the nonlinear search ability of the genetic algorithm, but 
crossover and mutation operations may also produce inferior genotypes with very low fitness, and these inferior 
genotypes will reduce the overall fitness of the population, thus affecting the convergence speed of the genetic 
algorithm. Therefore, in this paper, the individuals in the data dictionary whose fitness is lower than the minimum 
fitness of the current population are regarded as the set of eliminated samples, and when the samples produced by 
crossover and mutation are in the set of eliminated samples, the two samples are re-selected to generate new 
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offspring. 
 

II. D. Probability matrix decomposition model 
The quality subset of features screened by genetic algorithm provides high-quality input to the probabilistic matrix 
decomposition model. This section further incorporates the student-course nearest-neighbor similarity into the 
feature vector learning, which is optimized by Bayesian framework with gradient descent to finally achieve accurate 
course recommendation. 

The obtained set of nearest neighbors is fused into the probabilistic matrix decomposition based model, at which 
time the feature vectors of student-course selection are affected by their nearest neighbors, and the similarity 
feature vectors of a specific student-course selection are: 

 

j

j sj s
s N

U P U


   (5) 

 

j

j tj t
t N

V Q V

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where 
iU , 

jV  are the proximate feature vectors of student 
iu  and course-selection 

jv , respectively; 
iN  and 

jN  are the sets of neighbors of student 
iu  and course-selection 

jv , respectively. 

In this paper, the algorithm not only considers the feature vectors of student-course selection itself in the process 
of feature vector learning, but also considers the influence of the set of neighbors of student-course selection on 
the feature vectors of student-course selection, i.e., the feature vector of each student-course selection not only 
obeys the Gaussian distribution with zero mean, but also has to be similar to that of the nearest neighboring 
student-course selection. 
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where P  is the student similarity matrix and Q  is the course selection similarity matrix; 2U
, 2

V  are the 

variances of the U , V  distributions, respectively, 2
P , 2

Q  are the variances of the P , Q  distributions 

respectively, and I  is the unit matrix. 
From Bayes' theorem, the posterior distribution function of the feature matrices U , V  are 
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where  2( ),T
ij i j RN r g U V ∣  denotes a Gaussian distribution with a mean of ( )T

i jg U V  and a variance of 2
R  with a 

Gaussian distribution; R
ijI  is a variable that represents the relationship between students and course selection, 

with a value of 1 when a student chooses a course and 0 otherwise. 
On this basis, the values of T

i jU V  are further normalized by the logistic Steele function ( ) 1/ (1 exp( ))g x x   , 

which restricts the values of T
i jU V  to the interval [0,1] . 
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Logarithmic processing of equation (9) yields 
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Then maximizing this posterior probability is equivalent to minimizing the following objective function, i.e., there 
are 
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where 2 2
U R U   , 2 2

V R V   , 2 2
r R r   , 2 2

Q R Q   . By gradient descent method, the partial derivatives 

of Eq. (11) are found with 
iU  and 

jV  as parameters, respectively 
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In equation C, 2( ) exp( ) (1 exp( ))g x x x    is the derivative of the logistic Stee function. At each iteration, 
iU , 

jV  

are adjusted as follows 
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where   is the predefined step size. Repeat the above training process, after each iteration, calculate and verify 
the average absolute error, and terminate the iterative process after 10 iterations. Based on the obtained 

iU , 
jV  

can predict the unknown rating value of the students on the selected courses, and then get an alternative course 
sorting, and then personalized recommendation through the Top-K recommendation list. 

The algorithm first reads in the student's rating information of the alternative courses, that is, constructs the 
student-course selection scoring matrix, and then uses the cosine similarity measurement method to calculate the 
nearest neighbor sets u  and v  of each student (course selection) in turn, and applies the nearest neighbor set 
to the probability matrix factorization model, and obtains the student's feature vector U  and the feature vector v  
of course selection through the probability matrix factorization model. Finally, the scoring matrix R  is 
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reconstructed according to the feature vector prediction, and the calculated prediction score values are sorted, and 
then the Top-K recommendation results are given according to the constraints. 

III. Experimental validation and comparative analysis of course recommendation based 
on genetic algorithm 

Chapter 2 constructs an optimized recommendation framework for online courses by improving the genetic 
algorithm and probability matrix decomposition model. To further validate the actual efficacy of the model, this 
chapter conducts experiments based on real MOOC datasets in two dimensions, namely, parameter sensitivity 
analysis and multi-model comparison, to comprehensively evaluate the performance of the recommender system. 
 
III. A. Sensitivity analysis of genetic algorithm parameter optimization on recommendation performance 
In order to verify the model performance of the genetic algorithm under different crossover probabilities 

cP  and 
variance probabilities 

mP , this section compares the performance under different parameter settings using a 
common evaluation metric on the real MOOC dataset of Academy Online. 
 
III. A. 1) Experimental data set 
In order to quantify the recommendation effect of the model under the data-driven model, this paper selects a real 
MOOC dataset from Xueyuan Online for validation. This MOOC dataset records 517,243 <learner ID, course ID> 
valid course enrollment learning behaviors generated by 102,534 learners for 1,288 courses on the Xue Tang 
Online platform from 2020-2024. The data selected therein ensures that each learner registers for at least 3 
courses, but the longest historical registration behavior record of extremely active learners is as high as 351 
courses, and the specific distribution of learning behavior data is shown in Figure 2. 

 

Figure 2: Learning behavior data distribution 

As can be seen from Figure 2, the number of learners registering for learning behaviors is the largest number of 
3 courses, 36,465 people, with the increase in the number of elective courses the number of people gradually 
decreases, and basically maintains the registration within 10 courses belongs to the normal range. According to the 
data distribution shown in Figure 2, through the data sparsity formula 

 nt
1

I eractions
Sparsity

Users Courses
 


 (16) 

The sparsity of the MOOC data is derived to be as high as 99.61%. Considering the above and combining with 
the problem of learning time period, the experiment adopts the time node division method, which divides the data 
between 2020 and 2023 as the training set, and the data in 2024 as the test set to ensure better training model. 

 
III. A. 2) Experimental parameterization 
The experiments use Python3 and TensorFlow framework to realize the model construction and run the 
experiments under Linux system. The setting of parameters is very important in deep learning, in which the 
learning rate is set to take values from 0.5-0.0001 for experiments; the embedding dimension is set to take values 
from [64,32,16,8] for experiments in order; the number of Epcho is set to 15; the discard rate is set to 0.75; the 
Batch_size is equal to 128; and γ is equal to 0.2, and other appropriate and relevant parameters are used to train 
the model to make the model to obtain the relative best performance. 
 
III. A. 3) Analysis of experimental results 
In the model evaluation method, the widely used evaluation methods in Top-K recommendation are used. One is 
the hit rate HR based on recall and the other is the normalized discount gain NDCG based on location prediction. 
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Figures 3 and 4 show the effects of different crossover probabilities 
cP  and variance probabilities 

mP  on HR 
and NDCG, respectively 

 

Figure 3: The influence of different crossover probabilities on HR and NDCG 

The experimental results show that the model recommendation performance shows nonlinear changes with the 
adjustment of crossover probability. When the crossover probability is raised from 0.4 to 0.9, the hit rate HR 
gradually rises from 55.34% to 60.58%, and the normalized discount gain NDCG rises from 28.95% to 32.99%, 
indicating that higher crossover probability helps to improve the global search capability. However, when the 
crossover probability reaches 0.99, HR and NDCG decrease to 56.82% and 32.78%, respectively, indicating that 
too high crossover probability may lead to uncontrolled population diversity and affect convergence efficiency. 
Overall, the model performance was optimal when the crossover probability was 0.9, which verified the necessity 
of the adaptive strategy. 

 

Figure 4: The influence of different mutation probabilities on HR and NDCG 

The adjustment of the variance probability has a significant impact on the model performance. When the 
variance probability was raised from 0.0001 to 0.1, both HR and NDCG showed a fluctuating upward trend, with 
NDCG reaching the highest value of 33.17% when the variance probability was 0.1. It is worth noting that when the 
mutation probability is 0.001, HR of 59.67% and NDCG of 32.78% perform close to the optimal value, but too high 
mutation probability (0.1) may lead to some high-quality individuals being destroyed, resulting in a slight decrease 
of HR to 58.06%. Experiments showed that the model performance was optimal when the variance probability was 
0.001. 

 
III. B. Comparison of Multiple Recommendation Models and Comprehensive Assessment of Top-K 

Evaluation Indicators 
In the previous section, the optimization effect of genetic algorithm on recommendation performance was verified 
by adjusting the crossover probability and variance parameters. On this basis, in order to further highlight the 
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comprehensive advantages of this paper's model, this section will continue to conduct relevant experiments on the 
MOOC dataset, and will compare the traditional machine learning model with the fusion model proposed in this 
paper, and systematically analyze the applicability of the different methods in course recommendation scenarios by 
combining the Top-K evaluation indexes (Precision@K, mAP@K). 
 
III. B. 1) Methods of comparison 
Logistic Regression (LR), Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Boosting (XGB) 
and Plain Bayes (NB) models are used for course recommendation in the course recommendation module 
respectively. 
 
III. B. 2) Evaluation indicators 
This study uses two evaluation metrics commonly used in the course recommendation domain to assess the 
recommendation effectiveness of each method. The first one is Precision@K, i.e., the precision of the first K 
courses recommended, which measures the proportion of recommended courses that the user has actually taken, 
and the larger its value means the better the recommendation effect. The second one is mAP@K, i.e., the average 
of the mean accuracy of the first K courses recommended, which takes into account both the accuracy and the 
sorting position of the recommended courses in the list, and the larger its value means the better the 
recommendation effect.The formula of Precision@K is shown in Equation (17) and Equation (18). 
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where U  is the number of all users, Precisionu@K represents the precision of recommending the first K courses 
to user u, TP@K is the number of samples of the first K courses recommended to user u that have both actual and 
predicted positive cases, and FP@K is the number of samples that have actual negative cases but predicted 
positive cases. 

The definition of mAP@K is shown in equations (19) and (20). 
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where APu @K is the average precision of each user u, nu denotes the total number of courses that user u has 
actually taken in the test set, and K is the size of the recommendation sequence. Hitu,p∈{0,1} is a binary variable 
indicating whether the true label of the recommended course at position 1 in the user's recommendation list is 1. If 
the true label is 1, Hitu,p1=1, and vice versa. Precisionu@p while denotes the precision of the recommended 
course before the position (contains) in the user's recommendation list. 

 
III. B. 3) Comparison of the effectiveness of different recommendation models 
This study further compares the effects of different recommendation models on the recommendation effect of 
online courses, and the recommendation results of each model are shown in Figures 5 and 6. 

 

Figure 5: Precision@K metric performance of different recommendation models 
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In the Precision@K metrics comparison, the model proposed in this paper achieves 60.44%, 34.95%, and 22.67% 
on Precision@5, @10, and @15, respectively, which is significantly better than the traditional models, such as 
34.15%, 22.21%, and 18.62% for XGB. Although Random Forest RF and XGBoost perform better, the accuracy 
decreases significantly in high K-value scenarios. Plain Bayes NB performs the worst, indicating its lack of 
adaptability to high-dimensional sparse data. The model in this paper effectively improves the recommendation 
accuracy by fusing genetic algorithm and probability matrix decomposition. 

 

Figure 6: mAP@K metric performance of different recommendation models 

In the comparison of mAP@K metrics, this paper's model leads with an absolute advantage of 89.58%, 93.44%, 
and 96.32% of average accuracy mAP at recommended courses of 5, 10, and 15, respectively. Although XGBoost 
reaches 59.48% in mAP@15, it is still far lower than the model in this paper, indicating that the traditional method 
has limitations when considering the sorting position. Logistic regression LR and SVM perform weakly due to the 
lack of nonlinear modeling capability. The experiments verify the superiority of the model in this paper in terms of 
integrated sorting accuracy. 

IV. Conclusion 
In this study, an online course recommendation framework for highly sparse data is constructed by improving the 
genetic algorithm with a probabilistic matrix decomposition model. The experimental validation shows that: 

(1) When the adaptive crossover probability is 0.9 and the variation probability is 0.001, the global search and 
local convergence efficiency can be balanced, and the HR and NDCG can be increased to 60.58% and 33.17%, 
respectively. 

(2) The probabilistic matrix factorization model with near-neighbor similarity performs well in Top-K 
recommendation, with Precision@5 and mAP@15 improving by 26.29% and 36.84% respectively compared with 
XGBoost, which verifies the robustness of the model under sparse data. 
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