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Abstract The explosive growth of digital media data makes the traditional centralized processing architecture face 
serious challenges in computational efficiency and storage cost. This paper responds to the demand for efficient 
processing of large-scale digital media data and launches a research and analysis based on distributed computing 
architecture. Combing the feature clustering process of distribution sets and features of association rule data, as 
well as the distributed data frequent item clustering collection process. At the same time, the CDMDP protocol with 
advanced encryption technology, distributed storage mechanism and smart contract features is designed to 
effectively realize the distribution and protection of digital data content. Combining logical search tree and parallel 
algorithm SFUPM-SP, Spark-based parallel mining algorithm for distributed computing of big data is proposed as a 
processing and optimization method for large-scale digital media data. In the system platform built by this paper's 
method, the average execution time of K-Means algorithm on data is only 17.9 seconds, which demonstrates the 
effectiveness and feasibility of this paper's method. 
 
Index Terms distributed computing architecture, CDMDP protocol, data processing, parallel mining algorithm, 
K-Means algorithm 

I. Introduction 
In recent years, with the wide application and development of information technology, the role of digital media has 
become increasingly significant in contemporary society. Digital media not only includes traditional text, image and 
audio content, but also covers a variety of forms such as video, interactive content, virtual reality (VR) and 
augmented reality (AR) [1]. However, digital media are often characterized by high security requirements, high 
processing complexity and huge data volume when processing and distributing [2]. Cloud computing technology, 
as an emerging information technology, provides new ideas for solving these problems by virtue of its high 
scalability and flexibility as well as powerful computing power [3], [4]. 

Cloud computing technology is essentially a hybrid technology formed during the development of the information 
age, involving content based on distributed computing, parallel computing, data storage, etc., and can be 
decomposed into multiple small programs using the Internet platform to successfully complete the processing of 
data [5]-[8]. In the computer data processing work, cloud computing technology can synchronize the screening of 
different data information and classify it according to the corresponding requirements, so that the query work also 
becomes more efficient [9]-[11]. Also, because in the cloud computing processing, user information does not 
require continuous maintenance of technology and related software, the processing cost of digital media 
information is significantly reduced [12], [13]. At the same time, with the help of cloud computing technology, 
customers can store data and information on the cloud, and the introduction of firewalls, antivirus software and 
other security means to carry out security prevention and control work, which significantly improves the integrity 
and security of the amount of data in the processing [14]-[17]. Therefore, cloud computing technology is introduced 
into digital media processing and distribution to analyze its positive role in practical application, such as optimizing 
resource allocation, enhancing data security, etc., so as to provide theoretical support and practical guidance for 
the application and promotion of cloud computing technology in the field of digital media [18]-[20]. 

This paper firstly discusses in detail the distribution set of association rule distributed data and the feature 
clustering process, and further analyzes the clustering collection process of distributed data in frequent projects. 
Secondly, it describes the operation process of improving CDMDP protocol as a secure distribution and protection 
method for digital content data. Propose again the parallel mining algorithm for distributed computing of big data 
based on Spark, describe the content of logical search tree and the mathematical principle of parallel algorithm to 
make up for the defects of existing big data mining algorithms with poor computational model. Finally, the 
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effectiveness of the proposed digital media data processing method is examined through system platform 
performance tests, different scenario tests and program performance comparison experiments, respectively. 

II. Digital Media Data Processing Based on Distributed Computing 
II. A. Association rule distribution set and feature clustering process 
The association rule distribution set and feature clustering process mainly includes: 

(1) Association rule distribution set process, the task is to establish the association rule distribution set of 
distributed data by mining and analyzing the semantic features of distributed data by using the technical method of 
fuzzy data feature detection, combined with the investigator's preference selection for data intelligence 
investigation. The association rule distribution set of distributed data can be expressed by functional equation (1): 
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where, 
iW  denotes different distributed data that have been processed by the technology, k

id  denotes the 

investigator's preference choice for data intelligence investigation, s  denotes the frequent item association 
clustering set of distributed data, and k  denotes the similarity coefficient of data nodes between different 

distributed data. 
(2) Association rule feature clustering process, the task is to extract the amount of multiple data association 

features of different distributed data by mining, take the semantic data features between different distributed data 
as the association articulation point, and perform association clustering on their association rule features. 

 
II. B. Distributed Data Frequent Project Clustering Aggregation Process 
The task of distributed data frequent project clustering collection process is to realize effective fusion of various 
distributed algorithms with the preset value requirements of different data intelligence investigations, mainly based 
on the original data association feature quantity between different distributed data, and construct different 
clustering collections of distributed data with the same or similar neighboring coefficients, so as to improve the high 
efficiency of distributed algorithmic data intelligence investigations. The investigators can utilize the data clustering 
recursive function formula (2)-(3): 

   ( ) ( 1) 1 ,t
i i i ntW t W t D W t X      (2) 

  arg min ( 1),i nti d W t X   (3) 

Operational mining of distributed data frequent item clustering sets, where ( 1)iW t   denotes the clustering 

center of distributed data, 
nlX  denotes the test sample set of distributed data,  ( 1),i ntD W t X  denotes the 

clustering distance between the clustering center of the pre-determined data and the tested distributed data 
sample set, and l  denotes the convergence speed of different distributed data being clustered. Obviously, the 

essence of the distributed data frequent project clustering collection process construction is to mine to obtain the 
potential correlation structure or mathematical relationship between different distributed data, and then the data 
adjacent to the similarity coefficients of the same or similar to the clustering division, thus preventing the data 
turbulence or data fitting and other phenomena in the process of distributed computing. 

 
II. C. CDMDP protocol improvements 
Cloud computing technology has greatly enhanced the capability of digital media processing and distribution, 
however, ensuring the copyright security of digital media content in cloud platforms has been a key challenge in 
this area. The existing Digital Media Distribution Protocol (DMDP) aims to ensure the integrity and security of digital 
content in the distribution process, but its efficiency and security need to be further improved in the cloud 
computing environment. For this reason, this paper optimizes DMDP, proposes CDMDP protocol adapted to cloud 
computing architecture, and introduces the SPPetri model to verify its security, aiming to break the restriction of 
copyright protection issues on digital media network distribution. 

The CDMDP protocol, i.e., the DMDP protocol in cloud computing environment, is improved in several aspects 
relative to the DMDP protocol. First, the CDMDP protocol pays more attention to the characteristics of the cloud 
computing environment, such as multi-tenancy characteristics and dynamics of resources, to ensure the efficient 
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distribution of digital content in the cloud computing environment. Secondly, the CDMDP protocol increases the 
strength of copyright protection for digital media, by introducing more advanced encryption and authentication 
means to ensure the security of digital content in the process of distribution. The details of the CDMDP protocol 
flow are shown in Fig. 1. 

Cloud Content 
Delivery Service

Cloud Content 
Providers

Cloud Clients
Cloud Gateway 

Services

3

2

4 5 6 1
7

8

9

 

Figure 1: CDMDP protocol process 

Steps 1, 2, and 3 are for the cloud computing client to submit the required content information and related claim 
information, and the content provider integrates this information into a composite digital object and sends it to the 
content distributor. Next, steps 4 and 5 are for the content distributor to encrypt this composite digital object and 
return the encrypted object to the cloud computing client. Steps 6 and 7 are for the client to submit the account 
information of the content provider and the user to the cloud computing charging gateway after receiving the 
encrypted composite digital object. Steps 8 and 9 are for the cloud computing platform to carry out the 
corresponding charging process according to the submitted account information, thus complete the whole 
transaction process. 

In terms of security, the CDMDP protocol employs a variety of encryption and authentication means, such as 
public and private key encryption, hash function integrity checking, and digital signature technology, to ensure the 
security of the protocol. These improvements make the distribution of digital media in the cloud computing 
environment more secure and efficient, and the CDMDP protocol not only effectively protects the copyright of 
digital media, but also significantly improves the distribution efficiency and reduces the distribution cost. In addition, 
the protocol has good scalability and compatibility, and can be well adapted to different sizes of cloud computing 
environments and different digital media distribution needs. 

 
II. D. Spark-based Parallel Mining Algorithm for Big Data Distributed Computing 
The Spark-based parallel mining (SFUPM-SP) algorithm is proposed to address the problems such as poor 
Ma-pReduce distributed computation model that exists in big data analysis mining algorithms for databases. The 
algorithm efficiently traverses all itemsets by constructing a logical search tree structure to avoid duplicating or 
omitting the computed itemsets in order to implement the pruning strategy. 
 
II. D. 1) Logical search tree 
In general, traditional stand-alone algorithms mostly rely on data structures such as lists and projections to traverse 
the itemsets during the mining process. However, these traditional data structures show their inherent limitations in 
some cases, as follows. 

(1) Memory limitation: traditional list and projection structures require complete loading of data into memory, 
which may lead to memory overflow and affect the system performance of list and projection structures. 

(2) Performance efficiency limitations: the efficiency of the list may be affected when performing frequent 
element insertion or deletion operations, mainly due to the need to adjust the order of the internal elements to 
maintain the consistency of the data structure, resulting in an increase in the time complexity of the operation. 

(3) Limitations of Distributed Processing: distributed systems become critical in large-scale data processing. 
Distributed systems allow data sets to be partitioned into small chunks and processed in parallel on multiple 
computing nodes. 
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II. D. 2) Parallel algorithm SFUPM-SP design 
The SFUPM-SP algorithm is a distributed running algorithm implemented using the Spark framework. In the initial 
phase of the algorithm, the original dataset is divided into data blocks and stored in HDFS. Subsequently, these 
data chunks are transformed into initial RDDs through the Application Programming Interface (API) provided by 
SparkCore.The algorithm then processes the data using two operators, transformation and action, and 
simultaneously performs the transformation operations of the RDDs to meet specific computational requirements. 

(1) Input part: the SFUPM-SP algorithm requires as input a public transactional database D stored in a 
distributed file system, HDFS, and a corresponding income statement. 

(2) Preprocessing phase: in this phase, the dataset is first read from the HDFS path using the textFile method 
provided by the SparkContext object and stored in a partitioned manner to create an initial HDFS-RDD. next, each 
row is operated on by the flatMap operator provided by Spark, extracting the name of each item, the transactional 
utility and the utility that constructs a ListBuffer containing the ternary. Subsequently, elements with the same key 
are generalized using the reduceByKey operator, and the sum, quantity, and total number of the same key are 
obtained through the accumulation operation. Then, the result of the generalization is mapped into a new RDD 
using the map operator, containing three items: itemset, frequency and transaction weighted utility. 

(3) Mining phase: in this phase, the algorithm has to compute the utility, frequency, subtree utility and local utility 
of each itemset and output the result into HDFS. This phase covers the use of two pruning strategies. The whole 
process is performed selectively until no more candidate sets are generated and the iteration is terminated. In each 
iteration, the itemsets are extracted from the iteration file and judged using arrays, and the eligible itemsets are 
placed into a pool of potential Skyline frequent-utility patterns. Eventually, frequent-utility patterns are generated 
from the pool. 

III. Application and testing of digital media data processing methods 
III. A. System performance testing 
The performance test of the system is mainly by comparing with Mahout of Hadoop cluster, using the same training 
dataset for the same algorithm model training and comparing the execution time. The test selects K-means 
algorithm, based on different number of computing nodes and different computing platforms to perform clustering 
operation on the same data set. After statistics, the experimental test results are shown in Figure 2. 

 

Figure 2: Performance comparison under hadoop and spark 

As can be seen from Fig. 2, the performance of the distributed computing based digital media data processing 
method designed in this paper is superior to Hadoop.In this experiment, the average execution time of K-means 
algorithm is 17.9 seconds on this system, while the average execution time on the native Hadoop cluster is 37.9 
seconds, which shows that the memory-based iterative computation is very fast and saves a lot of disk operations, 
the performance improvement is extremely obvious. At the same time, the user can configure the workflow and set 
the algorithm parameters through the web interface, which reduces the difficulty of machine learning applications 
and development time. Test results show that the method in this paper meets the performance requirements. 

 
III. B. Complex multi-type modification scenario testing 
III. B. 1) Test analysis of incremental processing 
Before conducting experiments, this paper will first analyze the various aspects of incremental processing. An 
incremental computing task mainly has five phases such as submit, Map, Shuffle, Reduce, and output, etc. 
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Currently, the core of most incremental computing frameworks are in the Map phase, which improves the execution 
efficiency of the job by adding some auxiliary operations in the phase, while more time-consuming time is needed 
in the submit and output phases to perform preprocessing and post-processing to support the work of incremental 
processing. In this paper, we define the total efficiency improvement as 

tE  as in equation (4): 

 2 1 3
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where 
mrT  denotes the elapsed time of a normal MapReduce execution of a job. 

1T  refers to the additional 

elapsed time for Spark preprocessing. 
2T  refers to the time reduction by Spark in the Map phase. 

3T  refers to the 

additional elapsed time of Spark post-processing, which mainly removes useless sliced results in preparation for 
the next computation. 

To summarize, the size of the input dataset is linearly and positively correlated with 
1T  in Fig. 3, which depicts 

how 
1T  varies as the input dataset progressively grows. As can be seen from the figure, the trend depicted by the 

rest of the points is very clean, except for the few points towards the front which are more unstable. It is obvious 
that the slope posed by 

1T  and the size of the dataset is very flat compared to the size of the growth of the dataset. 

This means that the time-consumption of the preprocessing phase does not put a huge burden on the system 
time-consumption due to the growing dataset. This elapsed time generated by preprocessing is predictable in that 
it steadily maintains a low level of growth as the dataset grows. 

 

Figure 3: The time-consuming preprocessing under different datasets 

Figure 4 depicts the trend of 
3T  as the dataset grows. In post-processing, Spark will clean up useless data in 

the final stage of the job run. For example, in the result cache, if a record is not accessed in this run of the device, it 
means that the record has been modified and will not be accessed in the future, so Spark should delete this record 
and delete the Task result that this record points to as well. When the randomness of data modification does not 
vary much, 

3T  is linearly and positively correlated with the number of modification operations. This is because the 

more modification operations there are, the more slices will be modified and the system will not be able to retrieve 
their records in the result cache, so that the computation result files pointed to by these records will have to be 
deleted altogether. 

 

Figure 4: The time consumption of post-processing under different datasets 
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III. B. 2) Performance testing in different scenarios 
In order to verify that the method (Spark) in this paper has high computational efficiency and excellent stability, this 
section will go deeper into the Task level and select ChkReuse and PlainMR as the comparison methods to 
observe the time consumption of each method. First, the dataset is randomly modified so that the update rate of 
the dataset grows from 0.5% to 7%. Then the elapsed time of the task is recorded and the variation curve of 
elapsed time is plotted in Fig. 5 for different update rates. 

At any update rate, PlainMR needs to be recomputed, so the elapsed time is essentially constant. As the update 
rate grows, the elapsed time of ChkReuse becomes very unstable, this is because ChkReuse is based on 
fixed-length division, the larger the update rate is, the larger the difference between the old division and the new 
division is, and the more chunks of data blocks need to be recalculated, and when the update rate grows to a 
certain height, the efficiency of fine-grained reuse is even worse than that of coarse-grained reuse. Since Spark is 
based on content division, its division is more stable even if the update rate grows. When the update rate is less 
than 4%, Spark significantly outperforms ChkReuse and PlainMR in terms of task time (<1.5s) and stability. 

 

Figure 5: The map task takes time under different updates 

The number of chunks that need to be recalculated under different update rates is shown in Figure 6. The 
number of chunks that need to be recalculated under different update rates for ChkResue is significantly more than 
that for Spark. From the stability point of view, as the update rate grows, ChkResue oscillates drastically and rises, 
while Spark rises steadily and slowly and the maximum number of chunks does not exceed 100, which is 
undoubtedly better than the stability of Spark. Spark is undoubtedly more stable. 

 

Figure 6: The number of chunks to be recalculated under different update rates 

Also, it should be noted that the test data is randomly modified on the basis of metadata, and Figures 5 and 6 
are violently oscillated at an update rate of 5%, which is due to the scattered distribution of the updates, resulting in 
more chunks changing, which leads to a sudden increase in the amount of computation. 

 
III. C. Program performance comparison experiment 
III. C. 1) Comparison of Recognition Classification Performance between Mapper and Reducer Side 
Test dataset X1 on the application cluster. The data size of dataset X1 is 50G, and the Block Size is 128M in HDFS 
storage, the appropriate SplitSize can be configured by setting the appropriate min/maxsplitSzie in 
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MapperReducer as in Equation (5), so as to complete the comparison of the performance of the recognition and 
classification on the Mapper/Reducer side. SplitSize customization settings. 

   max min , min max ,SplitSize split Size split Size Block Size  (5) 

Table 1 shows the results of comparing the performance of Mapper and Reducer side recognition and 
classification. 

Table 1: Comparison of recognition and classification performance at different ends 

 SplitSize: Block size Execution time 

Mapper 64M (default) 33m07s 

Mapper 128M 24m28s 

Mapper 256M 21m07s 

Mapper 512M 21m24s 

Reducer 64M (default) 39m32s 

 
As can be seen from Table 1, after optimizing the parameter SplitSize, the execution time of Mapper-side 

recognition and classification is 21m07s compared with that of Reducer-side recognition and classification, which 
is 39m32s, and the time is shortened by 46%, and the performance of the former is almost twice that of the latter. 
Therefore, the efficiency of library recognition can be optimized by optimizing the SplitSize in Mapper-side 
recognition classification. 

 
III. C. 2) Application platform system performance testing 
In order to test the performance of the classification system based on the method of this paper, tests are conducted 
on the application cluster with 32 nodes and the test cluster with 8 nodes to compare the performance of the 
system in the distributed platform system. Statistics of program execution time for running 50G, 100G, 200G, and 
500G mobile Internet traffic data classification on application cluster (E1) and test cluster (E2) are shown in Fig. 7. 

 

Figure 7: Performance test comparison of website classification systems 

As can be seen from Fig. 7, the horizontal coordinate represents the experimental dataset size and the vertical 
coordinate represents the execution time of the classification task of the classification system. The two lines 
represent the execution time of the application cluster (E1) and the execution time of the test cluster (E2), 
respectively. The number of nodes in the application cluster (E1) is four times the number of nodes in the test 
cluster, and when processing the same task with the same amount of data, the system running time decreases with 
the increase of computing nodes, and the execution time of the application cluster (E1) is about 30% of the 
execution time of the test system. As the amount of data increases linearly, the execution time of the application 
cluster (E1) also increases linearly, e.g., when the data is 50G, the program execution time is 49m26s, and when 
the data increases to 100G, the execution time is 95m19s. When the data increases to 500G, the program 
execution time is 417m44s, which indicates that the classification system based on the method of this paper is 
more suitable for dealing with massive big data. 
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IV. Conclusion 
This paper proposes a processing optimization method for large-scale digital media data by designing the 
distribution set of large-scale digital media data as well as data features, the clustering process of the items, 
adopting the CMMDP protocol to maintain data security, and combining the Spark-based parallel mining algorithm 
for big data distributed computing. In the processing platform and classification system built based on this method, 
not only the average execution time of the K-Means algorithm on the data is only 17.9 seconds, but also the time 
consumed for the data division is always less than 1.5s and the number of chunks that need to be recalculated for 
the task module is always less than 100 blocks under different update rates. 
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