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Abstract This paper focuses on the data analysis method of bridge quality monitoring system under the framework 
of edge computing, and proposes an intelligent algorithm to support the quality assessment system. Based on the 
EDA method to assess data integrity, a double similarity metric scheme is designed to quantify data accuracy. A 
lightweight deployment scheme based on RKNN model is constructed to optimize the reasoning efficiency at the 
edge end by combining the model quantization technique. The validation of engineering examples shows that the 
change rule of the 2 metrics, histogram cosine and box-and-line diagram normal value percentage, has high 
consistency, and in the case of a sample capacity of 2000 and significance levels of α=0.05 and 0.01, the change 
rule of the cosine similarity metrics is in line with the a priori data quality judgment, and the detection result of the 
box-and-line diagram is roughly in line with the a priori fact. In 1000 calculations, the prediction accuracy of the 
RKNN model ranges from 78% to 95%, and the average calculation accuracy is higher than that of the AD and ND 
models. Under 10% random number share, the average accuracy of RKNN model is as high as 82.3%, exceeding 
6.75% and 7.22% of AD and ND models. The research results provide technical support for bridge quality control 
in the whole life cycle. 
 
Index Terms bridge quality monitoring, edge computing, EDA method, similarity metric, RKNN model 

I. Introduction 
Bridges are the key nodes of highway projects. In recent years, with the continuous progress of design concepts 
and construction technology, China's highway bridge construction has made remarkable achievements, and a large 
number of large-span bridges with novel structures and high technical difficulties have been built one after another. 
And in the process of bridge construction, quality control and monitoring are the key steps to ensure the safety and 
reliability of the structure [1]. Compared with traditional construction, bridge is a special engineering structure, which 
has a longer life and higher loading requirements, through the construction quality control monitoring can ensure 
that the structural material of the bridge meets the design requirements, the construction process complies with the 
specifications, so as to ensure the structural safety of the bridge [2]-[4]. Therefore, effective quality control and 
monitoring methods are crucial for bridge construction projects. 

Bridge construction quality monitoring refers to the process of real-time monitoring and assessment of 
construction quality by collecting, recording and analyzing relevant data during the bridge construction process [5]. 
In addition to the traditional measurement and inspection techniques, new technical means such as nondestructive 
testing, remote sensing monitoring, and sensor monitoring have also been gradually developed in recent years [6]-
[8]. Therefore, with the support of a large number of sensors, acquisition equipment and other electromechanical 
facilities, bridge setting parameters can be continuously monitored, automatically recorded, data displayed, and 
alarmed and evaluated to assist bridge management and maintenance decisions [9]-[11]. Along with the 
construction of power supply system and network transmission system, the processing and management of the 
collected data are also necessary [12]. Among them, the data analysis method based on edge computing can 
discover and solve problems in the construction process in time, reduce the construction risk, avoid the occurrence 
of engineering quality problems, reduce the cost of repair and rework, and contribute to the improvement of 
construction efficiency and engineering quality [13]-[15]. 

This paper firstly combs the application of intelligent monitoring technology in bridge quality supervision, covering 
the construction implementation and completion acceptance stages. The histogram cosine similarity and box-and-
line plot normal value percentage are used to improve the EDA method, realizing the automated assessment of 
bridge health monitoring data quality. The RKNN model is selected as the deep learning inference model for edge 
computing to improve the computational efficiency and anti-interference ability of edge devices. Taking a bridge 
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project as the research object, bias and kurtosis are introduced for quality assessment to verify the effectiveness of 
the method in this paper. The performance level of the RKNN model is explored from the dimensions of accuracy 
and anti-interference. 

II. Data analysis of bridge quality monitoring system based on edge computing 
Bridge engineering quality monitoring is the core link to ensure structural safety and durability. Traditional monitoring 
methods rely on manual collection and static analysis, and there are problems such as poor data timeliness and 
lagging anomaly detection. With the development of edge computing and intelligent sensing technology, it becomes 
possible to build a real-time and multi-dimensional monitoring system. 
 
II. A. Application of intelligent monitoring technology in bridge quality supervision 
II. A. 1) Application during the construction implementation phase 
(1) Intelligent monitoring of foundation settlement 

As the foundation of highway and bridge, its settlement plays a vital role in the stability of the whole structure. In 
the process of foundation construction, intelligent monitoring technology is adopted to monitor the foundation 
settlement in real time, and high-precision level measurement sensors and displacement sensors are reasonably 
arranged around the foundation, and the level measurement sensors can accurately calculate the amount of 
foundation settlement through the measurement of the height difference between different measurement points. 
The displacement sensor can monitor the displacement of the foundation in the horizontal direction. When the 
foundation settlement or displacement exceeds the preset threshold, the monitoring system immediately issues an 
early warning, for example, in the bridge pile foundation construction, with the continuous sinking of the pile body, 
the sensor continues to collect data, once found that the rate of settlement is too fast or the amount of settlement 
is too large, the construction personnel can adjust the construction process in a timely manner, such as increasing 
the length of piles, optimizing the pile concrete ratio, etc., in order to ensure that the stability of the foundation, to 
avoid the foundation settlement problems triggered by the subsequent Structural safety risks. 

(2) Stress and deformation monitoring of bridge structure 
During the construction of the main structure of the bridge, real-time structural stress distribution and deformation 

characteristics is the core link to achieve a controllable construction process, the use of fiber optic grating sensors 
and resistance strain gauges to build a multi-dimensional monitoring system, which can realize the all-weather 
accurate monitoring of the key components of the bridge. Among them, the fiber grating sensor with its unique 
wavelength modulation characteristics, with anti-electromagnetic interference, long-term stability and other 
advantages, especially for the main girder, piers and other large volume concrete structure of long-term monitoring, 
through the sensor array embedded in the pre-stressing beam anchorage area, cantilever joints and other stress-
sensitive areas, can be captured in real time the dynamic evolution of the internal stress field of the structure. During 
the cantilever casting construction stage, through the establishment of a real-time data interaction system between 
the sensor network and the BIM model, the structural strain increment corresponding to each cubic meter of 
concrete casting is quantitatively recorded, and the monitoring system continuously tracks the deformation 
parameters, such as vertical displacement of the cantilever end and the angle of twist of the cross-section, with a 
sampling cycle of 20 minutes. When the monitoring data show that the cumulative displacement of the cantilever 
end exceeds the design threshold value of 1.5 mm, the system automatically triggers a three-level warning 
mechanism, which synchronously pushes and pushes the warning system to the end. When the monitoring data 
shows that the cumulative displacement of the cantilever end exceeds the design threshold by 1.5mm, the system 
automatically triggers the three-level warning mechanism and synchronously pushes it to the construction command 
platform, at which time the structural deformation can be strictly controlled within the permissible range by adjusting 
the sequence of concrete pouring, optimizing the counterweight loading scheme or installing additional temporary 
prestressing bundles. For steel structure bridges such as steel box girder, the dynamic deformation monitoring 
technology based on laser displacement meter, together with the real-time correction of finite element model, can 
accurately identify the structural welding residual stress concentration area, the monitoring data show that when the 
ambient temperature varies by 15℃, the longitudinal displacement of steel box girder can reach up to 10mm, and 
the interference of the monitoring data by the temperature effect can be effectively eliminated by establishing 
temperature-stress coupling analysis model. 

(3) Road surface compaction and leveling monitoring 
As the core quality index of road engineering, road compaction and flatness directly affects traffic safety and 

structural durability. Relying on intelligent monitoring technology and building a closed-loop management system of 
“process control-real-time feedback-dynamic correction”, the quality control level of road construction can be 
significantly improved. In terms of compaction monitoring, it adopts the intelligent roller with integrated GNSS 
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positioning system, and through the double calibration mechanism of vibration acceleration sensor and microwave 
dielectric sensor, it collects real-time grinding trajectory, vibration frequency and dielectric constant value in real 
time. The compaction prediction model built in the monitoring system can automatically convert K30 foundation 
coefficient and compaction percentage based on the material type, pavement thickness and other parameters, and 
dynamically display the quality distribution of the milling area in the form of heat map. When the compaction 
fluctuation of a certain area exceeds the standardized value of ±1.5%, the vehicle-mounted terminal instantly sends 
out acoustic and optical warnings, and instructs the operator to adjust the amplitude (2.0-2.5mm) and milling speed 
(1.5-2km). The operator is instructed to adjust the amplitude (2.0-2.5mm) and rolling speed (1.5-2km/h) to make up 
the pressure accurately. For the construction of asphalt concrete pavement, the innovative application of multi-beam 
laser array and infrared thermal imaging fusion technology, the laser radar carried by the paver scans the newly 
paved pavement at a frequency of 100Hz. It constructs a three-dimensional point cloud model with millimeter-level 
precision, calculates the flatness index IRI value through the point cloud density algorithm, and the infrared thermal 
imaging camera working synchronously monitors the temperature field distribution of the asphalt mixture, and 
combines with the material temperature-compaction coupling curve to intelligently recommend the optimal milling 
timing. A highway project practice shows that the technology makes the standard deviation of pavement smoothness 
from the traditional detection of 1.0mm down to 0.40mm, effectively avoiding temperature segregation caused by 
local compaction deficiency. Relying on the digital construction management system established by the Internet of 
Things platform, the compaction and flatness data can be compared with the design threshold in real time, and the 
quality assessment report is automatically generated. The machine learning model built into the system can 
dynamically optimize the combination of milling process parameters by analyzing the historical construction data. 
The three-dimensional quality traceability model constructed by digital twin technology can completely record the 
quality evolution process of each construction unit, provide visual data support for project acceptance, and realize 
the whole life cycle control of pavement construction quality. 
 
II. A. 2) Application at the completion and acceptance stage 
In the acceptance stage of road and bridge project completion, intelligent monitoring technology plays an important 
role, at this time, all kinds of monitoring data collected in the whole process of construction are integrated and 
analyzed in depth. Utilizing big data analysis technology, the data on foundation settlement, bridge structural stress 
and deformation, road surface compaction and flatness, etc. are comprehensively evaluated. Through the 
establishment of engineering quality assessment model, the actual monitoring data and design standards for a 
comprehensive comparison, resulting in objective and accurate engineering quality evaluation results, such as 
according to the long-term trend of the foundation settlement data, to determine whether the foundation has tended 
to be stable: based on the bridge structural stress data, to assess the structural load-bearing capacity of the structure 
to meet the design requirements, through this comprehensive and systematic data analysis, to provide a reliable 
basis for project completion and acceptance, to ensure that the delivery of the road surface compactness and 
smoothness of data. Through this kind of comprehensive and systematic data analysis, it can provide a reliable 
basis for project completion and acceptance, and ensure that the quality of the delivered road and bridge projects 
is excellent. 
 
II. B. Methods for assessing the quality of bridge monitoring data 
Data quality assessment is to assess the quality of the data in general and to judge whether it meets the 
requirements for subsequent data analysis. Bridge monitoring data quality assessment can be carried out in terms 
of data accuracy and completeness. The current development of hardware and software makes the timeliness of 
bridge monitoring data meet the basic needs, and the quality of the data itself is mainly related to data completeness 
and accuracy. 

In this paper, exploratory (EDA) statistical mapping and similarity metrics are used to assess the quality of bridge 
health monitoring static and dynamic data, respectively. The specific technical route is shown in Figure 1. 
II. B. 1) Data integrity assessment 
Data loss manifested itself in the form of vacant values or NaN non-numeric data. The ratio of the number of missing 
data to the overall data set is counted, and the ratio of both missing data and long-term unchanged data is combined 
to assess the integrity of the monitoring data in terms of both dynamic and static data. 

For the assessment of data completeness, this paper quantitatively analyzes it by counting the ratio of the total 
number of vacant values or non-numerical data and unchanged data 

dN  to the original dataset N . The formula 
for calculating the completeness rate is shown in equation (1): 

 1 d
ration

N
C

N
   (1) 
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This method is applicable to static and dynamic data. When the value is higher, the data integrity is higher, and 
vice versa, the data integrity is lower. 
 
II. B. 2) Data accuracy assessment 
Exploratory Data Analysis (EDA) abandons the assumptions and a priori knowledge of traditional statistical analysis, 
explores and describes the data characteristics from the data itself, and relies on visualization tools to display the 
data characteristics, making data quality assessment more intuitive. Commonly used statistical charts include box 
plots, QQ charts, histograms and process control charts. However, these traditional statistical charts need to be 
reviewed manually. In order to realize the automated assessment of bridge health monitoring data quality, the EDA 
method has been quantitatively improved accordingly. 

Monitoring data quality assessment

Examples of Engineering Applications

Quality assessment of measured data of a cable-stayed bridge
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Figure 1: Technical route for quality assessment of bridge health monitoring 
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Figure 2: Box plot structure 

(1) Quantitative improvement of box plot 
Box plots are often used in various fields to show dispersion of sample data and to quickly identify outliers. The 

box plot contains six main key points of the data: the upper margin, upper quartile  0.25q , median  0.5q , lower 

quartile  0.75q , lower margin, and outliers. Its extreme deviation is:    0.75 0.25R q q  , and the upper and 
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lower edge points of the data are  0.75 1.5q R  and  0.25 1.5q R , respectively. When the data is greater than 

the upper edge point or less than the lower edge point, it is an outlier, and the box plot structure is shown in Figure 
2. 

The biggest advantage of box plots is that they are not affected by outliers and can accurately and consistently 
depict the discrete distribution of data, so the results of box plot identification of outliers are more objective. The 
better the data quality, the fewer the outliers, i.e., the more normal data. Therefore, this paper takes the ratio of the 
number of normal data to the total number of data as the quantitative index of the box plot, and the calculation 
formula is shown in equation (2): 

 nor
ration

N
B

N
  (2) 

where, 
norN  indicates the number of normal data; N  indicates the total number of data. When the value is larger, 

it means the data quality is better, and vice versa, the data quality is worse. 
(2) Quantitative improvement of histograms  
Histograms, which use lines or rectangular shapes to show the distribution of data, graphically summarize or 

describe the data set. Histograms are easy to construct and compute and are suitable for large data sets to 
characterize the distribution of data. Let 

rm  denote the actual frequency distribution of the histogram, n  denote 
the total number of data, and b  denote the group spacing, then the actual probability distribution of the histogram 
can be computed by equation (3): 

 r
r

m
Z

n b



 (3) 

Based on the actual distribution of the histogram, its theoretical probability density distribution 
tZ   can be 

calculated, and then its theoretical frequency distribution 
tm  can be calculated based on equation (4). 

 
t tm Z n b    (4) 

In this paper, in order to quantify the histograms, the cosine similarity measure, as one of the commonly used 
similarity measures, is used to measure the similarity between the vectors based on the cosine of the angle of 
entropy in geometry. The cosine of the angle between them is defined as follows: 

 
2 2

cos( )

n

i ii

n n

i ii i
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A B x y
   

 
 (5) 

A  and B  in Equation (5) denote the actual and theoretical distributions, respectively. The range of the angle 

cosine is  1,1 , the larger the angle cosine is, the closer the actual distribution is to the theoretical distribution, that 

is, the better the quality of the monitoring data; the smaller the value is, the larger the difference between the actual 
distribution and the theoretical distribution is, and the worse the quality of the monitoring data is, and the closer the 
actual distribution is to the theoretical distribution, the better the quality of the monitoring data is, and the closer the 
actual distribution is to the theoretical distribution, the better the quality of the monitoring data is, and the better the 
monitoring data quality is, and the worse the monitoring data quality is, and the worse the monitoring data quality 
is, and the worse the monitoring data quality is. The actual distribution is considered to be close to or consistent 
with the theoretical distribution when the absolute value of cosine similarity is greater than 0.8. 

In this paper, the percentage of global anomalous data provided by 1-10d data box plots is used to evaluate the 
accuracy of static data. For dynamic data, bridge dynamic response signals such as vibration acceleration, dynamic 
strain, etc. are essentially random time series, and their linear smoothness can be judged by the statistical 
characteristics of the stochastic process, and the dynamic data within a short time period generally satisfy the 
Gaussian distribution, and under this assumption, the 0-20min dynamic monitoring data of the bridge health 
monitoring system are plotted as histograms and box plots, and histograms are used for data Gaussian distribution 
test, which is quantitatively analyzed by taking the cosine similarity measure to measure the degree of Gaussian 
distribution of the data. The box plots were used to provide the percentage of outliers to make an auxiliary judgment 
on the accuracy of the data. In turn, to determine the bridge health monitoring system static and dynamic monitoring 
data accuracy assessment standards, to achieve automated assessment of data accuracy. 
 
II. C. Methodology for deployment of bridge quality monitoring systems 
II. C. 1) RKNN model based deployment 
RKNN model is such as RK3588, RV1106 and other RKNPU chip platform to provide a dedicated deep learning 
inference model, the end of the “*.rkmn” suffix model file, which calls the NPU unit can be realized in parallel 
computation of deep learning models. 
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This paper uses the PyTorch deep learning framework in the rapid construction and training will generate “*.pt” 
model, the initial model needs to be converted to call the NPU chip computing power. The RKNN-Toolkit2, an RKNN 
model conversion tool provided by the vendor, converts the improved “*.pt” model into the NPU-specific “*.rknn” 
model, and the conversion process is shown in Figure 3. 

Edge Device Deployment

Model Training and Conversion

PC-based
Model 

Training
Model 

Optimisation
rhnm model 

transformation

Product Edge Devices

Python API

C++ API

 

Figure 3: RKNN model transformation process 

II. C. 2) Model quantification 
Model quantization can significantly reduce the size and computation of the model, thus accelerating the inference 
process of the model and reducing the memory footprint, which is commonly used on mobile and edge devices. In 
model transformation, the RKNN-Toolkit2 tool quantization rules are utilized to perform INT8 quantization and model 
accuracy evaluation of RKNN models, which facilitates better model deployment. 

The current model quantization methods mainly include quantization-aware training (QAT) and quantization-after-
training (PTO) quantization methods. Compared with QAT, PTO can complete the model quantization without re-
training the model and with only a few hyper-parameter adjustments, so the operation is simple and fast, which is 
suitable for the rapid deployment of this scenario. 

III. Example analysis of bridge engineering 
III. A. Summary of works 
A large-span cable-stayed bridge with a main bridge span of (55+98+316+90+50) m is a double-tower-turned steel 
box girder semi-floating system. About 9×106 data can be collected every day, including 10 tension cable vibration 
sensors collecting data with a sampling frequency of 50 Hz, and 20 main girder vibration sensors collecting data 
with a sampling frequency of 50 Hz. 
 
III. B. Analysis of the validity of the assessment methodology 
III. B. 1) Determination of assessment methodology 
The main girder vibration data of the bridge on a certain day for 20 min are taken, and the data quality is judged 
and determined as excellent, good and poor through engineering experience and visual analysis of EDA statistical 
diagrams. The quantitative indexes are calculated according to the commonly used statistical graph method, 
including the normal data percentage of histogram KL scatter, histogram cosine, Q-Q graph cosine and box-and-
line diagram, and the corresponding relationship between each quantitative index and the data quality is shown in 
Fig. 4 (a~d), respectively. Due to the poor quality of data from sensors 29 and 30, the corresponding histogram KL 
dispersion is not in the same order of magnitude as the other data and is not represented in Figure 4. 

As can be seen from Fig. 4, for the data with good quality, the histogram cosine values are all within [0.95,1], 
except for sensor No. 14, and the percentage of normal values of boxplot is greater than 0.95. For the data with 
good quality, the majority of the histogram cosine values are within [0.90,0.95], and the majority of the percentage 
of normal values of boxplot is less than 0.95. In summary, for the vibration data of this bridge, the histogram cosine 
and The change rule of the two indexes of the normal value of the box and line plot has a high consistency, which 
can distinguish the data quality well. Although there are individual misclassifications, overall, the correct rate of 
quality assessment for both indicators is high. However, the change rule of histogram KL scatter and Q-Q cosine 
value is less consistent with the previous 2 indicators, which has a high rate of misjudgment of data quality and is 
not distinguishable. Therefore, the histogram cosine value and the percentage of normal value of box-and-line plot 
were chosen as the indicators of data quality assessment effectively. 
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(a)Histogram KL divergence      (b)Cosine similarity of histogram 

 

(c)Cosine similarity of Q-Q graph     (d)Bration 

Figure 4: Correspondence between each quantitative index and data quality 

III. B. 2) Method Validation and Comparison 
Test whether the data obey normal distribution, in addition to the EDA statistical graph, but also through the 
skewness, kurtosis and other statistical indicators. The main beam vibration acceleration of the four sensors (No. 1, 
14, 29, 30) of the bridge is selected to be 2000 data each, and the method of this paper is taken to quantitatively 
analyze and calculate the kurtosis and skewness of the data, and the results of the calculation of the statistical 
indexes of the validation data are shown in Table 1. 

In the case of the sample capacity of 2000, the significance level of α = 0.05 and 0.01, respectively, the kurtosis 
should take the value range of [2.83,3.18] and [2.77,3.28], and the skewness should take the value range of [-
0.09,0.09] and [-0.13,0.13], respectively. As can be seen from Table 1, for the sensor 1 acceleration data of good 
quality, there is a 99% probability that this data does not obey a normal distribution based on the skewness and 
kurtosis estimates. For the sensor 3 acceleration data with poor quality, the skewness and kurtosis test concluded 
that it is closer to normal distribution compared to the sensor 1 acceleration data. The reason that the above test 
results are clearly inconsistent with the a priori facts is that skewness and kurtosis are only applicable to the test of 
a single-peak standard normal distribution, and the use of kurtosis and skewness may lead to misclassification. 

In contrast, with the deterioration of data quality, the value of cosine similarity decreases steadily, and the change 
rule of the indicator is consistent with the a priori data quality judgment, which can effectively quantify the difference 
between the actual distribution of the data and the theoretical normal distribution, and it can be a good way to 
assess the quality of the dynamic monitoring data. The detection results of the box line diagram are generally 
consistent with the a priori facts, and only individual misjudgment exists. The quality of sensor 2 acceleration data 
is good, but the box plot results consider its normal data percentage to be higher than 0.95, resulting in a 
misjudgment. The reason is that the box plot can only detect overall abnormal values (i.e., outliers far away from 
the normal distribution range of the data), but not local abnormal values, while the overall abnormal values of the 
acceleration data of Sensor 2 accounted for a small percentage, and the local abnormal values were masked within 
the normal range of the data and not detected by the box plot. The experiments further verified that the quality 
assessment method in this paper is effective, using the histogram cosine value as the primary judgment of data 
quality and the box-and-line plot detection results as the secondary judgment of data quality. 
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Table 1: Calculation results of statistical indicators for validation data 

Sensor number Quality Cosine similarity Bration Skewness Kurtosis 

1 Optimal 0.997 0.995 -0.836 14.278 

14 Good 0.903 0.975 0.055 6.037 

29 Poor 0.532 0.861 0.047 1.973 

30 Poor 0.498 0.843 -0.025 1.776 

 
III. C. Model validity analysis 
In order to assess the accuracy and stability of different deployment models, comparative experiments were 
conducted using three models, AN, ND, and RKNN. 
III. C. 1) Accuracy 
The experimental results of the computational accuracy of the three models are shown in Fig. 5. In 1000 calculations, 
the accuracy of the AD and ND models ranges from 65% to 80%, and the prediction accuracy of the RKNN model 
ranges from 78% to 95%.The average calculation accuracy of the RKNN model is higher than that of the AD and 
ND models. 

 

Figure 5: Experimental results of the computational accuracy of the three models 

III. C. 2) Immunity 
In order to verify the interference resistance of the RKNN model, 2 types of random data training trials are taken, 
the proportion of random data is 10% and 30% respectively, and the random numbers are generated according to 
the normal distribution and randomly selected for training trials. 

The computational accuracies of different models under different random data sets are shown in Fig. 6(a~b), 
respectively. It can be concluded that the increase of the percentage of random numbers has a significant negative 
impact on the model performance, under 10% random number percentage, the average accuracy of RKNN model 
is as high as 82.3%, which exceeds the 6.75% and 7.22% of the AD and ND models. 40% random number 
percentage, the model accuracy is generally in the region of 60%-70%, but the accuracy of RKNN model is still 
higher than that of AD and ND models, which proves that the accuracy of RKNN model is higher than that of the AD 
and ND models. It proves that the RKNN model has a higher level of anti-interference. 

 

(a)10% random number  (b)40% random number 
Figure 6: Computational accuracy of different models under different random datasets 
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IV. Conclusion 
In this paper, the EDA method is quantitatively improved accordingly, and the RKNN model is adopted as the deep 
learning inference model for edge computing to realize the data analysis of the bridge quality monitoring system. 

For the data with good quality, the histogram cosine values are all within [0.95,1], except for sensor No. 20, and 
the proportion of normal values in the box plot is greater than 0.95. For the data with good quality, the majority of 
the histogram cosine values are within [0.95,1], and the proportion of normal values in the box plot is less than 0.95. 
The change patterns of the two indicators, histogram cosine and proportion of normal values in the box plot, are in 
high consistency, and can distinguish the data quality well. The change pattern of histogram cosine and box plot 
normal value ratio has a high consistency, which can distinguish the data quality very well. In the case of sample 
capacity of 2000, significance level of α=0.05 and 0.01 respectively, the detection results of kurtosis and skewness 
are not consistent with the a priori fact, while with the deterioration of data quality, the value of cosine similarity 
decreases steadily, and the law of change of the indexes is consistent with the judgment of the a priori data quality. 
The detection results of box-and-line diagrams are roughly consistent with the a priori facts, and only individual 
misjudgment exists. It is verified that the improved quality assessment method in this paper is effective, and the 
histogram cosine value is used as the main judgment of data quality, and the box-and-line plot detection results are 
used as the auxiliary judgment of data quality. 

In 1000 calculations, the accuracy of the AD and ND models ranged from 65% to 80%, and the prediction accuracy 
of the RKNN model ranged from 78% to 95%.The average computational accuracy of the RKNN model was higher 
than that of the AD and ND models. The increase in the random number percentage has a significant negative 
impact on the model performance, and the average accuracy of the RKNN model is as high as 82.3% at 10% 
random number percentage, which exceeds the 6.75% and 7.22% of the AD and ND models. With 40% random 
number share, the model accuracy is generally within the region of 60% to 70%, but the accuracy of the RKNN 
model is still higher than that of the AD and ND models, which proves that the RKNN model has a higher level of 
anti-interference. 
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