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Abstract Piano as a popular keyboard instrument is not only a solo instrument but also an important accompaniment
instrument. This study explores a multi-level accompaniment effect generation method based on temporal data
modeling in piano art instruction. The time-frequency transformation of piano audio by constant Q-transform and
short-time Fourier transform realizes the timing data modeling, and builds the accompaniment generation model
based on the codec structure to solve the problem of generating the accompaniment tracks based on the main
melody and maintaining the melodic harmony among the accompaniment tracks. The study adopts the Lookback
mechanism to encode the main melody information, and at the same time utilizes the attention mechanism to realize
the coordinated representation of inter-track information. The experimental results show that compared with the
MuseGAN and MMM models, the model in this paper achieves a coverage of 0.917 on the note length distribution,
which is about 20.0% higher than that of MuseGAN, and a coverage of 0.945 on the pitch distribution, which is
about 127.2% higher than that of MMM; In the inter-track distance index, the TD value of piano and guitar is reduced
to 0.632, which is much lower than that of MMM's 1.387. The study proves that the model can effectively improve
the inter-track harmony while maintaining the quality within the tracks, which is of great significance for the
theoretical research and practical application of piano accompaniment.

Index Terms piano accompaniment, temporal data modeling, constant Q transform, multilevel accompaniment,
codec structure, attention mechanism

. Introduction

As a widely popular modern keyboard instrument, the piano is loved and accepted by more and more people, not
only as a solo instrument, but also as an important accompaniment instrument [1]. Since the piano's accompaniment
function has been explored, many musicians have begun to devote themselves to piano melody creation, and
consequently, the status of piano writing accompaniment has been elevated, and the term “piano accompaniment”
has gradually come into the public's field of vision [2]. As the name suggests, piano accompaniment refers to the
art of expressing the melodic mood and emotion on the keyboard in a short period of time without preparation by
the piano user [3], [4]. Although piano accompaniment is a musical art, it contains a variety of factors such as piano
playing techniques, accompaniment patterns, harmonic layout, and chord structure [5]. Thus, for learners, the
cultivation of piano accompaniment ability is a long-term project that requires professional theoretical guidance and
practical training [6], [7]. At present, more and more music enthusiasts are devoted to the research of piano
accompaniment principle and practice, attempting to find a more scientific and effective way to cultivate piano
accompaniment ability.

At present, domestic and foreign scholars' research on piano accompaniment is mostly focused on the theoretical
level, and there are relatively few studies on the practical aspects of piano accompaniment, and the guiding theory
of the practical aspects is not rich enough [8]. Therefore, the study of piano accompaniment practice will be the
development trend of the discipline for quite a long time in the future [9]. The publication of this book follows this
trend and has the effect of targeting the basic guidance of learning methodology, which both broadens the research
horizon of piano accompaniment and provides methodological support [10], [11]. In the research on the art and
teaching of piano accompaniment, the book can help other piano art enthusiasts and learners to overcome the
misunderstanding and action bias, and continue to play a theoretical and practical guiding role, contributing to the
further deepening and promotion of the research on the art and teaching of piano accompaniment [12]-[14].

As a widely popular modern keyboard instrument, the piano is loved and accepted by more and more people, not
only as a solo instrument, but also as an important accompaniment instrument. Since the piano's accompaniment
function has been explored, many musicians have started to devote themselves to piano melody creation, and
consequently, the status of piano writing accompaniment has been elevated, and the term “piano accompaniment”
has gradually entered the public's field of vision. Piano accompaniment refers to the art of expressing melodic
moods and emotions on the keyboard in a short period of time without preparation by the piano user. Although piano
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accompaniment is a musical art, it contains a variety of factors such as piano playing techniques, accompaniment
patterns, harmonic layouts and chord structures. Therefore, for learners, the cultivation of piano accompaniment
ability is a long-term project, which requires professional theoretical guidance and practical training. At present,
more and more music lovers are devoted to the research of piano accompaniment principle and practice, trying to
find a more scientific and effective way to cultivate piano accompaniment ability. At present, scholars at home and
abroad focus on the research of piano accompaniment at the theoretical level, and there are relatively few
researches on the practical aspects of piano accompaniment, and the guiding theory of the practical aspects is not
rich enough. Therefore, in the future for quite a long time, the study of piano accompaniment practice will be the
development trend of this discipline. In the research aimed at the art and teaching of piano accompaniment, the
relevant research can help piano art enthusiasts and learners to overcome the misunderstanding and action bias,
continuously play a guiding role in theory and practice, and contribute to the further deepening and promotion of the
research on the art and teaching of piano accompaniment. With the development of artificial intelligence technology,
it has become possible to utilize computer-assisted piano accompaniment generation, which not only provides
diversified accompaniment choices, but also provides piano learners with more intuitive learning materials, thus
promoting the cultivation of piano accompaniment practice ability.

This study focuses on the field of piano art instruction, and optimizes the generation of multi-level piano
accompaniment effects through time-series data modeling techniques. The study first applies the constant Q
transform and the short-time Fourier transform to the time-frequency transformation of the piano audio to achieve
more accurate time-sequence data modeling. On this basis, a codec-based accompaniment generation model is
designed, which solves two core problems: how to generate each accompaniment track based on the main melody,
and how to maintain the melodic harmony among the accompaniment tracks. For the information representation of
the main melody, the Lookback mechanism is used, and the key features of the main melody are extracted by the
attention mechanism; for the information representation of the multi-tracks, the parallel fully-connected layer is used
to generate the backing tracks synchronously, to ensure that the information is shared among the tracks. The model
structure adopts a combination of an encoder with added attention mechanism and a multi-track decoder, which
realizes multi-level and high-quality piano accompaniment generation through the synergy of attention vectors,
implicit layer states and multiple parallel fully-connected layers. This study will explore the theory and practice in
depth, with a view to providing new methods and ideas for piano accompaniment teaching and practice.

Il. Timing data modeling of piano audio

In order to improve the multilevel effect of the generated piano accompaniment, before using the model to generate
the accompaniment, this paper applies the constant Q-transform and the short-time Fourier transform to perform
the time-frequency transform on the acquired piano audio, so as to realize the temporal data modeling.

Il. A.Constant Q Transform (CQT)
The constant Q transform (CQT) [15] is a time-frequency analysis technique widely used in music signal

processing and acoustic research. It decomposes the frequency of a signal by a set of filters, which are
characterized by an exponentially regular distribution of the center frequency and different filter bandwidths, but the
ratio of the center frequency to the bandwidth is a constant Q. This means that in CQT, the ratio of the center

frequency of each filter to its bandwidth is fixed, so that the bandwidth of the filters increases as the center frequency
increases in different frequency ranges to keep the value of O constant.

The CQT's spectral cross-axis frequency uses a logarithmic scale based on a base of 2 instead of a linear scale,
which matches the distribution of musical scales and allows the CQT to better capture subtle frequency variations
in the audio signal. Since the frequency distribution of music is usually nonlinear, CQT has significant advantages
in music signal processing.

For a constant Q filter, the ratio of the center frequency to the bandwidth is a fixed value and can be expressed

by the following equation:

= (1)

where @ is the value of the constant O, f. is the center frequency of the filter, and Af is the bandwidth of the

filter.

The bandwidth of the filter and the spacing between neighboring frequencies are adjusted to ensure that the
frequency resolution in different frequency ranges can adapt to changes in signal characteristics. For low-frequency
waveforms, CQT will use a narrower filter bandwidth to enhance the resolution of notes with small frequency
intervals. For high frequency waveforms, on the other hand, the CQT will use a wider filter bandwidth to enhance

the temporal resolution for rapidly changing overtones.
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By definition, the frequency bandwidth &, atfrequency f , also known as frequency resolution, indicates the filter

bandwidth at that frequency. In CQT, the bandwidth of the filter varies with frequency to ensure that the frequency
resolution adapts to changes in signal characteristics over different frequency ranges.

Assuming that the lowest tone to be processed is f..., the frequency of the &k th frequency component, f,, can
be expressed by the following equation:

fo= fam 2" (2)

where b denotes the number of spectral lines contained within each octave.
In CQT, the frequency resolution &, can be expressed in terms of the bandwidth of the filter. For the frequency

bandwidth that is at frequency f, , it is usually defined as:

% = @

where Q isaconstant O value that represents the ratio of the center frequency f, of the filter to the bandwidth
0, . Then it is known from the above equation:

f 1
O=-"—=-p—
5./‘ 27 -1 (4)

Therefore, the value of O isrelatedto 5.
According to the given conditions, the window length N, with frequency can be calculated as follows:

f
N, =02
Ly

k

l,k=0,1,~-,K—1
(®)

where M denotes the upward rounding function, f, is the frequency of the kth semitone, f, is the sampling

frequency, and K is the total number of semitones.
To summarize, so in CQT, the kth semitone frequency component of the 7 th frame can be expressed as:

.27{Qn

X9 (k) = NLZ:[:_l x(n)wN, (n)e_jNT

0

¢ (6)

where X" (k) denotes the frequency component of the & th semitone, x(n) is the sampled value of the input
signal in the time domain, and wN,(n) is a window function of length N, .

Il. B.Short-Time Fourier Transform (STFT)
The Fourier transform is an important tool for signal processing, mainly used to convert signals from the time domain
to the frequency domain, but it fails to provide the localized characteristics of the signal in the time domain. In order
to solve this problem, Short Time Fourier Transform (STFT) is proposed [16].STFT divides the signal into multiple
time segments and applies a window function weighting in each time segment and then performs a Fourier
Transform to locally analyze the signal in the time-frequency domain.

The process of STFT is to multiply the signal by a time-limited window function %(z) before the signal is Fourier

transformed. This window function serves to limit the time horizon of the signal in the time domain and assumes
that the signal is smooth within the analysis window. The signal is then analyzed segment by segment by shifting

the position of the window function %(f) on the time axis to obtain a set of localized spectral information.
The mathematical expression for the STFT is:

X(t,0)= [ x(z)-h(z-1)-e""dr
- (7)
where X(f,w) denotes the spectral componentattime ¢ andfrequency @ and x(r) denotes the original signal.

The A(r—t) is a window function, which is usually 1 at the moment ¢ and decays to zero at other moments, used
to limit the range of the signal in time. This step helps to minimize spectral leakage and ensures a smooth transition
of the signal to zero at the window boundary. The window function is generally chosen as a Hanning window, a
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Hamming window, etc. In particular, when the window function is taken as 4(t)=1, the STFT is equivalent to a
conventional Fourier transform.

A Study on Multi-Level Accompaniment Effect Generation Based on Timing Data Modeling in Piano Art Instruction

Il. C.MIDI to CQT spectrograms

For the input of piano notated music in MIDI format, at this stage of the paper an encoder decoder architecture
(Midiff) is designed as shown in Figure ﬁ The first encoder consists of a self-Attend layer and an MLP layer, which
is responsible for receiving a series of symbolic note events, which can be note events containing any number of
instruments. The second encoder, on the other hand, also consists of a self-Attend layer and an MLP layer, which
can optionally use the early part of the Meier spectrogram as contextual information. This information is passed to
the decoder, whose task is responsible for generating a CQT spectrogram corresponding to the input note sequence.
In this paper, the diffusion model is trained as a decoder.

Diffusion model is a probabilistic generative model that iteratively generates data from noise by reversing the
Gaussian diffusion process. The model consists of two main parts, the forward noise addition process and the

reverse denoising process. In the forward process, the input signal X is converted to noise &~ N(O’]), which

t€[0,1]

occurs at diffusion time step . The resulting noise figure X, is thus given by the following equation:

Xt :OttX-i-Gt(‘) (8)

Where «a, €[0,1] and o, €[0,1] are the parameters in the noise table used to mix the original signal and the noise
in diffusion time. In this work, the decoder ¢, is trained to predict the additive noise given noisy data. To achieve
this, this paper by minimizing an objective loss function of the form:

L E w0, (X,.c.t)-0

Midiff ™ o

9)

where w, is a set of loss weights to weight the losses for different diffusion time steps. The ¢ is additional

condition information for the decoder. These weights w, , the parameter «, , and the time step ¢ are
hyperparameters used to selectively emphasize particular steps in the backward diffusion process.

Note Encoder

MIDI Input

PUINYJOS

PUIPV-J[oS

Latent

CQT = Noise Denoise o CQT
UV UNet Spectrogram

A 4

Spectrogram

Figure 1: Midiff Architecture

During the sampling process, this paper follows the reverse diffusion process. Starting with independent Gaussian
noise for each frame and frequency bin, the noise estimation is used iteratively to gradually reduce the noise content
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and generate a new CQT spectrogram. During the inference process, this paper scales the model output to the
expected range of CQT spectrograms.
In this work, this paper uses a one-dimensional U-Net architecture at the decoder stage as shown in Fig. Q Where
(R) represents the residual 1D convolution unit, which is used to learn the features efficiently. (M) represents the
modulation unit, which is used to change the channel for a given feature at different diffuse noise levels. ()
represents the injection item, which connects the external channel to the current depth in order to deliver the impact.
(A) represents attention items, used to share contextual information. (C) represents cross attention items for learning

text embedding conditions. In this paper, each frequency is treated as a different channel, allowing U-Net to be
successfully applied to CQT spectrograms.

A Study on Multi-Level Accompaniment Effect Generation Based on Timing Data Modeling in Piano Art Instruction
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Figure 2: One-dimensional U-Net architecture

Il. D.Time-frequency analysis of piano audio data
Il. D. 1) Audio Acquisition

The core idea of this research is to convert the audio into a spectrogram to obtain the timing data of the piano audio,
so as to improve the multilevel accompaniment generation effect of the piano accompaniment generation model.
Therefore, when selecting data for the training set, the audio timings should preferably be of the same size and not
too long. Because the online data set that meets the requirements is too small, the sample is not enough, so the
first step of this experiment is to segment the audio. Take Beethoven's Moonlight Sonata as an example, each audio
clip obtained from segmentation is 6 seconds long.

After obtaining enough small segments of audio, time domain and frequency domain analysis is performed. One
small fragment is selected as an example, and the time domain plot based on the first 6-second fragment of
Beethoven's Moonlight Sonata is shown in Figure @ Its horizontal coordinate is time and vertical coordinate is
amplitude.

0.8

0.4

o
o

Amplitude

S
i

-0.8

-1.2

Time /s

Figure 3: Time-domain graph of piano audio clips
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Il. D.2) Spectrograms of short-time Fourier transforms

According to the conjecture before the experiment, the short-time Fourier transform should not be as effective as
the constant Q transform in processing the piano music signal. Considering that the short-time Fourier transform is
one of the most commonly used algorithms, it is used as a control experiment. Compared to the Fourier transform,
the short-time Fourier transform adds a window function. The window function consists of many different types, the
common ones are Hanning window, Kaiser window, rectangular window and so on.
(1) Selection of window function
1) Rectangular window
Rectangular window is the most frequently used window function, but also the default use of the window function.
Rectangular window is suitable for the scenario that only needs the main flap frequency, and the amplitude accuracy
has little effect. After a waveform is added with a rectangular window, the time domain and frequency domain
diagrams obtained are shown in Fig. W where (a) and (b) are the time domain and frequency domain diagrams,
respectively, and the same afterward.
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Figure 4: Time-domain and frequency-domain graphs processed by rectangular Windows

2) Hanning Window

The Hanning window is applicable to non-periodic continuous functions and is generally considered to be a special
case of the ascending cosine window. The time-domain and frequency-domain plots obtained after adding a
Hanning window to a certain waveform are shown in Figure H
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Figure 5: The time domain and frequency domain processed by the Hanning window
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3) Kaiser Window

The Kaiser window is strictly a group of functions containing an adjustable parameter, « , which adjusts the width
of the main and side flaps by adjusting the size of the « . The Kaiser window is a group of functions that contains
an adjustable the number, the parameter that adjusts the window. After adding the Kaiser window to a certain
waveTform and setting the parameter «=0.8, the time domain and frequency domain plots obtained are shown in
Fig. 6.
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Figure 6: The time domain and frequency domain processed by the Kaiser window

After comparing several kinds of window functions, considering that the piano music has many frequency
components and the spectrum is complex, this experiment adopts the Hanning window, and sets the length size of
the window to 512.

(2) Drawing short-time Fourier transform spectrograms

Take Beethoven's “Moonlight Sonata” as an example again, take its first 6 seconds of the clip, respectively, to get
the time-frequency spectrum of the spectrogram shown in Figure [7. The horizontal coordinate in the graph is time,
the vertical coordinate is frequency, and different colors represent different energies, which can be regarded as
different amplitudes. From the speech spectrogram, it is not possible to directly analyze the meaning of the two
graphs, and it is not possible to see what connection there is between the speech spectrogram and the timbre, let
alone manually extracting timbre-related features from the speech spectrogram. However, it can be clearly seen
that the amplitude of the spectrogram varies with time, which indicates that the purpose of time series data modeling
can be achieved by transforming the spectrogram.
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Figure 7: Spectrogram of the time-spectrum
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Il. D. 3) Spectrograms of constant Q-transforms

The constant Q transform has better resolution for frequency components with lower pitches and performs better
when dealing with some bass instruments. The pitch and frequency comparison is shown in Table [1, C2 and C#2
differ by a semitone, and their frequencies differ by about 5 Hz, when the pitch is raised by 3 octaves, the same
difference is a semitone, and the frequency difference between C5 and C#5 is about 32 Hz. The resolution of low-
frequency pitch is very unsatisfactory when the scale of the coordinate axis is linear. The constant Q-transform scale
is not linear, but rather a non-linear scale with a logarithmic base, and it will perform better in processing piano audio
data.

Table 1: Comparison of pitch and frequency

C2 C#2 C5 C#5
66.5Hz 71.3Hz 535.6Hz 567.5Hz

In plotting the constant Q-transformed speech spectrogram, the opening 6 seconds of Beethoven's Moonlight
Sonata were continued to be used in order to control the variables. The results show that the spectrogram obtained
by the constant Q-transform method has an exponentially increasing vertical coordinate and is not linear.

lll. Multi-level accompaniment generation model for piano based on codec structure
Aiming at the application scenario of piano art instruction, this paper proposes an accompaniment generation model
based on the codec structure on the basis of the piano audio timing data modeling, which mainly solves two
problems, namely, how to let each accompaniment track be generated based on the main melody, and how to
maintain the melodic harmony between each accompaniment track.

. A. Information representation of the main theme
For the generated main theme music, this section uses the Lookback mechanism to encode a total of 140 MIDI
events. In addition, since the encoder and decoder need to use additional symbols <bos> and <eos> to denote the
start and end of the sequence, the dictionary size of the whole model is 142. The application of the Attention
mechanism requires the encoder to record the hidden layer states at each time step when encoding the main melody,
so that the decoder can compute the attention at different moments by using these hidden layer states to derive the
attention vector at different moments. Therefore, after adding the <eos> symbol to the end of the main theme, a
sequence of length 7 can be encoded by the encoder to produce 1 hidden layer vectors. The main melody vector

encoding process is shown in Fig. 8.

Hidden layer vector at moment 0

Hidden layer vector at moment 1

The main

theme |::> Encoder |::> Hidden layer vector at moment 2

vector N

Hidden layer vector at moment n-1

Figure 8: The encoding process of the main melody vector

Ill. B. Inter-track information representation for multi-tracks

In order to make music more appealing and expressive without being monotonous, it is necessary to have multiple

instruments accompanying the performance. Since the information between multiple tracks is interconnected, if

each track is modeled and generated independently, the tracks may only collaborate with the main melody, but lack

the connection between them, giving the accompaniment a disorganized feel as a whole.

Therefore, it is important to create models that allow each track to capture the information of the main melody while

also having the ability to access the information of the other backing tracks. The backing tracks do not prioritize

each other, so they are generated synchronously in the decoder. This requires that for a single accompaniment
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track, in addition to the necessary information about the main theme and the generated events of its own track, it
must also contain information about the generated events of other accompaniment tracks when generating the note
events of the current time step.
The model designed in this paper takes as input all the note events of the previous time step of each accompaniment
track in the decoder part. After the decoder implicit layer obtains the current implicit layer state from the main melody
information vector, the previous implicit layer state, and the input vector, it connects multiple fully-connected layers
in order to generate the note events for the instruments of each track at the current moment. Since the information
obtained by each fully connected layer contains all the information of the main melody and other accompaniment
tracks, the model models the accompaniment tracks as a whole, so that the generation of note events for each track
can take into account the requirements of the main melody and the accompaniment parts to work harmonically
together. The inputs and outputs of the decoder in a single step are shown in Figure @

A Study on Multi-Level Accompaniment Effect Generation Based on Timing Data Modeling in Piano Art Instruction

Previous Moment Previous Moment Previous Moment Previous Moment
Vector for Vector for Vector for Vector for
Accompaniment Accompaniment Accompaniment Accompaniment
Track A Track B Track C Track D

. . .. Vector of th i
Attention vector for the Decoder implicit layer ector O Hie previous

. > moment of the decoder
main theme current moment vector . ..
implicit layer

; 3 ]

Fully connected Fully connected Fully connected Fully connected
layer A layer B layer C layer D
A Y Y y
Accompaniment Accompaniment Accompaniment Accompaniment
track A track B track C track D

Figure 9: lllustration of input and output of the decoder

. C. Overall model structure

The accompaniment generation model proposed in this paper contains two main parts, the main melody encoder
part with added attention mechanism and the multi-track decoder part. The encoder is mainly responsible for
encoding the main melody and representing the information of the main melody in the form of multiple vectors. The
decoder part is mainly responsible for generating each accompaniment track.

The single-step process of model generation consists of three main stages. Firstly, based on the implicit layer state
of the decoder at the previous moment and the implicit layer state at each moment of the encoder stage, the
attention vector of the main melody in the current state is computed by the Attention mechanism. After that, the
attention vector is used to calculate the implied layer state of the decoder at the current moment by combining the
implied layer state of the decoder at the previous moment and the merged vectors of the outputs of the
accompaniment tracks at the previous moment. Finally, this implied layer vector is used to calculate the current
moment's output value of each accompaniment track through multiple parallel fully connected vectors. The whole
process can be represented as:

a, = Soft max (v- tanh (W,,s/ +W,,h,_, )

r
¢ :zatlstl
7'=0 (11)
Iy =O-(VV/1ikhz+bik) (12)
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hz :g(lz—lﬂcﬂhz—l) (14)

where Egs. (W) to (W) represent the computation of the attention mechanism. Vv, W , Wia are the model

’

trainable parameters, 5 denotes the state of each implicit layer generated by the encoder, and hy denotes the
state of the implicit layer of the decoder at the moment t=1 % denotes the attention mask assigned to the

encoder's implicit layer state S forthe ! moment of the encoding phase, which, since it is a Softmax result, is a

value between [0.1] and the sum of all % sums to 1. Multiplying and summing the corresponding “

¢ with %
yields ©  which is the attention vector for the main melody computed at moment . Let the accompaniment have
a total of K+1 different channels and the total number of instrumental note events is £+1. Eq. (@) represents

the computation of the note events generated by the k th instrument at the ’th moment, where Wi and by are

l

the trainable parameters of the model, and “* , computed by the Sigmoid function, represents the output of the k

th instrument at the ’th moment. The i in Eq. (13) is the merger of the output results of all accompanying
instruments at the moment ?, which is obtained by splicing K +1 vectors of output results obtained in Eq. (12).

The implicit layer state h of the decoder part is shown in Eq. (14) and receives inputs from three parts, namely

the output of the previous moment, the attention vector and the decoder implicit layer vector of the previous moment.

The & function is computed in such a way that it is determined by the cell structure of the decoder itself.
The model uses a gated recurrent unit (GRU) as the unit of the recurrent neural network, and its computation of

updating the state of the implicit layer, i.e., the & function, can be expressed as:

r=c(W,I_ +W,h_ +W,c +b)

il € (15)
z, =0 (Wl +W.h_ +W_c +b,) (16)

Ez = tanh(VVIh]z—l +Vth (hlfl 0 I”’)+VVMC, +bh) (17)
ho=z0h,+(1-2)0 h (18)

where the U symbols in Egs. (W)~(ﬂ) denote the operation of multiplying two homogeneous matrices by their

elements. The GRU unit contains the concepts of reset and update gates.In Eq. (ﬁ) Wfr, Whr, W and b, are

the model trainable parameters, and the computation result " is the output parameter of the reset gate. In Eq. (@)

WIZ W W

ko Te and b, are model trainable parameters, and the computed result

¢ is the update gate output

parameter. Since both are obtained after computation via Sigmoid function, they are all values between [O’l] . The

h in Eq. (17) denotes the candidate hidden layer state, which is obtained from the inputs at the current moment,

the attention vector at the current moment, and the hidden layer state at the previous moment with the reset gate

parameter operation, and the W/h, Whh, W<'h, and b, are all model trainable parameters. Finally, the new hidden

layer state h in EqQ. (@) is obtained from the hidden layer state at the previous moment and the candidate hidden

layer state at the current moment jointly computed with the update gate parameters.

lll. D. Analysis of the effect of multilevel accompaniment generation in piano
In order to verify the effect of the proposed model piano accompaniment generation, this paper conducts a
comparison experiment between this model and other multi-track music accompaniment models MuseGAN [17]
and MMM.

lll. D. 1) Evaluation indicators
In this paper, the following quantifiable features are chosen as evaluation metrics for the effectiveness of piano
accompaniment generation. The metrics for measuring the quality of melody generation within a track are as follows:
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Number of pitches (PC): calculates the number of pitches per bar of the music fragment.
Average pitch interval (PS): calculates the pitch transition between two neighboring notes, one semitone as a unit.
Average Intonation Interval (10l): average of the time interval between two consecutive tones per measure.
Polyphony Rate (PR): the ratio of the number of time steps in which multiple pitches are located to the total number
of time steps, ignored for drum tracks, calculated as follows:

PR = Number of polyphony time steps

Total time steps (19)

The above metrics only measure the quality of note generation within a single track. To measure inter-track
harmonization, in this paper, tracks are combined two-by-two as a pair and measured using the inter-track distance
metric (TD), which is as small as possible.

Intra-track metrics and inter-track harmonization are measured by examining the distribution of pitches and note
lengths in the generated accompaniment dataset. The pitch histogram and note length histogram metrics are first
calculated for all generated accompaniments, then the distance of each music clip from the rest of the collection is
calculated, a probability distribution function is fitted, and finally the area of coverage is calculated with respect to
the distribution of the real dataset, with a larger value being better. * represents any one feature of the scale

histogram or note length histogram, B represents the * metrics on the real dataset, and £ is the generated
data metrics, which are calculated as follows:

D=ty ou(p )
N!mck\' ’ Nbam = - N N (20)
Pitch Histogram (PCH): an octave-independent representation of pitch with a dimension of 12. It represents the
octave-independent chromatic quantization of the frequency continuum.

Note Length Histogram (NLH): calculates the distribution of the length of each note.

lll. D. 2) Experimental results and analysis
In order to measure the model effect, this paper in LPD, Freemidi and GPMD three datasets randomly selected
1000 clips as a test case, respectively, using MuseGAN, MMM and this paper's model, according to the main melody
of the piano, to generate the accompaniment of the drums, guitars, basses, and strings, to generate the music in
the same format as the input to generate the same 4/4 beat.
In this paper, the Lookback mechanism is used to encode in the data processing process, in order to verify its
effectiveness, the experimental process is set up in the model itself to compare the experiments, using Textual to
indicate the training effect of this paper's model without the use of Lookback, and Textual + Lookback to indicate
the effect of the use of the model.
The results of generating quality measurements of music clips within the tracks are shown in Table @ and the
experimental results are calculated in units of 1 bar, taking the mean values of the four accompaniment tracks of
drums, guitar, bass and strings.Ground-Truth represents the indicator results of the original dataset, which is used
for reference and comparison. In order to visualize the difference with real music data, the last four rows represent
the difference between the experimental data generated by different models and the Ground-Truth data,
theoretically the smaller the absolute value means the smaller the gap, and the bolded data is the best result.
Comparing the MuseGAN and MMM models, the model in this paper has a smaller gap with the real dataset Ground-
Truth on the metrics of pitch usage, pitch shift, note spacing and polyphony rate within the track, which is closer to
the real accompaniment situation. Compared to itself, Textual+Lookback, which uses a new encoding method, can
further improve the quality of the generation, which is analyzed because the marking of note onsets preserves the
musical material in its most pristine condition and avoids the confusion between continuous notes and long notes.
Harmony between tracks is also an important indicator of the effectiveness of accompaniment generation. The track
relationships between the piano and the four tracks were evaluated in the comparison experiments, and the results
of the harmony metrics are shown in Table 3, where each instrument is represented by its initial letter, i.e., P, D, G,
B, and S for piano, drums, guitars, basses, and strings, respectively. The harmony of the accompaniment generated
by the three models is compared by calculating the distance TD between each pair of tracks, and the optimal results
are indicated by bolding.
During the experiment, it was found that the Lookback mechanism encoding method has almost no effect on the
inter-track distance, so the own comparison results of this paper's model were not set. Among the three models,
the results of this paper's model are relatively the best, especially in the performance on piano and guitar and bass,
and the difference between the tracks is obviously smaller than the other two models, but there are still different
degrees of gaps between the performance of different datasets and real music data.
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Table 2: The quality of music segments within the orbit

Data set Model PC PS 101 PR
LDP Ground-Truth 3.652 4.058 2.416 0.445
MuseGAN +4.694 +11.859 -0.857 +0.564
MMM +0.767 +1.288 +0.285 -0.173
Textual -0.482 -1.073 +0.212 -0.156
Textual+Lookback -0.465 -0.998 +0.105 -0.158
FreeMidi Ground-Truth 3.715 4.796 2.562 0.463
MuseGAN +4.415 +7.058 -1.008 +0.547
MMM +0.989 +1.152 -0.391 +0.205
Textual -0.432 -1.143 +0.168 -0.151
Textual+Lookback -0.409 -1.094 -0.112 -0.149
GPMD Ground-Truth 3.715 4.796 2.562 0.463
MuseGAN +4.386 +6.632 -0.933 +0.615
MMM +0.718 +3.494 -0.158 -0.189
Textual -0.656 -1.807 -0.051 -0.157
Textual+Lookback -0.445 -1.598 -0.039 -0.090

Table 3: Inter-orbital generation mass

Data set Model P-D P-G P-B P-S B-G B-S
LDP Ground-Truth 1.657 0.965 1.624 0.741 1.145 1.001
MuseGAN 0.928 1.174 1.245 1.178 0.826 1.029
MMM 1.496 1.387 1.603 1.165 1.739 1.707
Textual 0.923 0.632 1.052 0.784 0.611 0.679
FreeMidi Ground-Truth 1.629 1.038 1.535 0.431 1.208 0.516
MuseGAN 0.747 1.205 1.326 1.294 0.852 1.051
MMM 1.591 1.292 1.769 1.503 1.567 1.846
Textual 0.637 0.728 0.965 0.997 0.779 0.768
GPMD Ground-Truth 1.527 0.786 1.679 0.783 1.022 0.993
MuseGAN 0.781 1.185 1.321 1.294 0.854 1.039
MMM 1.465 1.281 1.394 1.117 1.458 1.575
Textual 0.751 0.729 0.907 0.809 0.625 0.673

Overall, the MuseGAN model track dependency is better than MMM, but the generated single-track effect is
somewhat distant from the real dataset, especially on the pitch-to-pitch transitions.The MMM model, although it can
generate music clips with higher quality within the tracks, has weaker inter-track connections. The model in this
paper, on the other hand, outperforms both in terms of piano accompaniment generation quality and track harmony.
The pitch and note length distributions reflect the melodic direction of a piece of music. In order to further quantify
the differences between the musical pieces and the real dataset, this paper calculates the distributions of the scale
histograms and note length histogram features of all the piano accompaniments generated by the three models,
which are converted to probability distribution functions using kernel density estimation and plotted as Figs. The
probability distribution functions of the pitch lengths and the probability distribution functions of the pitch lengths of
the three models and the real data are shown in Fig. % and Fig. W respectively.

It can be seen that the model generation effect of MMM has a larger variance in pitch and duration, and the mean
value slightly deviates from the real data, while MuseGAN is close to the real music, but the variance is smaller.The
use of Lookback mechanism coding method has a certain positive impact on the model generation effect in this
paper, and the difference between the two data distributions is not large.
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Figure 10: Probability distribution map of note length
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Figure 11: Pitch probability distribution map

In order to observe the gap more intuitively, this paper calculates the overlap area between the data generated by
each model and the distribution function of the real dataset. The results of the overlap area calculation for the three
models are shown in Table 4, the larger the value the higher the coverage and the closer it is to the real music
accompaniment. Same as the observation results of the distribution map, MuseGAN is better than MMM, but inferior
to this paper's model, this paper's model obtains the highest values, NLH and PCH are 0.894 and 0.941 respectively,
which are closer to the real data, Lookback mechanism coding method can further improve the similarity to a certain
extent, after using Lookback mechanism coding the model of this paper's NLH and PCH are improved by 0.023 and

0.004 respectively.

Table 4: OA Distances on NLH and PCH (Unit: percentage)

MuseGAN MMM Textual Textual+Lookback
NLH 0.764 0.723 0.894 0.917
PCH 0.775 0.416 0.941 0.945
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IV. Conclusion

In this study, a multilevel accompaniment generation method for piano based on temporal data modeling is proposed,
which applies the constant Q-transform and the short-time Fourier transform to the time-frequency analysis of piano
audio, and designs a multilevel accompaniment generation model based on the structure of the codec. Through
experimental validation on three datasets, LPD, Freemidi and GPMD, the model in this paper shows significant
advantages over MuseGAN and MMM. In terms of the quality of intra-track music fragment generation, the pitch
quantity metric of this paper's model on the GPMD dataset differs from the real data by only -0.445, which is better
than MMM's +0.718; in terms of the inter-track harmonization metric, the inter-track distance between the piano and
the guitar of this paper's model on the LPD dataset is only 0.632, which is much lower than MuseGAN's 1.174 and
MMM's 1.387. Especially on the pitch and note length distribution, the note length histogram (NLH) coverage of this
paper's model reaches 0.917, and the scale histogram (PCH) coverage reaches 0.945, which are higher than the
comparison models. The results show that the Lookback mechanism encoding can effectively improve the quality
of accompaniment generation and increase the note length histogram coverage by 0.023. The model proposed in
this paper not only generates single-track high-quality accompaniment music, but also achieves good results in
maintaining the harmony among multiple tracks, which provides a new technological path for generating multi-level
accompaniment effects in piano art instruction, and has important theoretical value and practical significance.
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