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Abstract The rapid development of industrial Internet has given rise to a large number of real-time computing 
demands, and traditional cloud computing cannot meet the low-latency requirements, while the cloud-edge 
cooperative architecture integrates the advantages of high computing power in the cloud and low latency at the 
edge, which has become an effective solution for resource scheduling in industrial Internet. In this paper, we design 
an optimization model for industrial Internet resource scheduling based on cloud-edge cooperative architecture, 
which realizes the cooperative processing of data and computation by integrating cloud computing and edge 
computing technologies. Firstly, an independent task resource scheduling model is constructed, and three 
evaluation indexes, namely, computing time, energy consumption and throughput rate, are defined; then a path 
planning method based on DDPG and a multilevel resource scheduling model at the cloud-edge end are designed 
to realize optimal allocation of tasks among multilevel resources. Simulation results show that the proposed CMRS 
model tends to converge at the 310th iteration, and the convergence speed is 30 iterations faster than GA-DDPG, 
and the reward value at convergence reaches -12.9, which is better than GA-DDPG's -17.1. In terms of cache hit 
rate, the CMRS model is significantly higher than the comparison algorithm. The performance evaluation shows 
that the CMRS model achieves lower total system overhead and task processing latency when dealing with tasks 
of different complexity and different data volumes, proving that the model is able to effectively improve resource 
utilization and quality of service in the industrial Internet environment. 
 
Index Terms cloud-edge collaboration, resource scheduling, industrial internet, DDPG algorithm, multilevel 
scheduling, throughput rate 

I. Introduction 
The era of 5G Internet of Everything has arrived, and Industrial Internet, as one of the most important application 
scenarios of 5G, integrates information and communication technologies and advanced manufacturing industries 
including 5G, Internet of Things, artificial intelligence, cloud computing, etc., and forms a new type of industrial form 
of informationization, automation, and precision of industrial production [1], [2]. Information and communication 
technology has long been widely used in the field of industrial control, but all types of technology have corresponding 
shortcomings and defects. In most of the current industrial network environments, most of the equipment in the 
factory is connected through wired networks, which is not conducive to the collection and analysis of data, and it 
takes a lot of time and cost to deploy the network and improve the adjustment [3], [4]. Compared with wired 
communication technology, wireless communication technology is more intelligent and automated, has the 
characteristics of low cost, easy to use, flexibility and so on, can greatly improve the production efficiency, save 
production costs, can provide efficient communication ability in complex special industrial scenes, ensure timely 
and effective transmission of information and data, and make up for the shortcomings of wired networks [5]-[8]. 

With the continuous development of IoT technology, there will be a large number of industrial equipment (e.g., 
automated robots, AGVs, automatic lathes, etc.) accessed as wireless network terminal nodes. At the same time, 
with the industrial Internet low latency, high reliability, massive data, massive access, etc. put forward more 
demanding and personalized requirements for communication networks. For example, industrial automation control 
scenarios require real-time monitoring of numerous production components and links to detect product quality, and 
real-time adjustment and improvement of the assembly line, so the latency should be controlled at 10-100 ms and 
the reliability is guaranteed to be above 99.999% [9]-[11]. Considering that the bandwidth resources of wireless 
communication are limited, while the types and numbers of terminals in the industrial Internet are increasing, and 
the business volume of the network in the industrial Internet is not uniformly distributed, the channel characteristics 
fluctuate due to channel fading and interference, and the different types of industrial Internet terminals have different 
requirements for the performance indexes of the communication, so wireless resource management and flexible 
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scheduling are very important [12], [13]. Designing a reasonable and efficient resource scheduling mechanism to 
flexibly and dynamically manage communication resources in a wireless network can improve spectrum utilization, 
reduce co-channel interference and enhance system throughput, reduce transmission delay, and thus prevent 
network congestion and reduce network signaling load [14]-[17]. In industrial Internet scenarios, industrial intelligent 
services have more stringent requirements for network communication metrics, such as lower latency and higher 
transmission reliability, etc. However, the mainstream resource scheduling schemes are inflexible, and it is difficult 
to balance between local optimization and global optimization, and between global optimization and throughput 
[18]-[20]. There is an urgent need to optimize the current resource scheduling methods to achieve stable operation 
of industrial Internet. 

Industrial Internet, as a product of the deep integration of new-generation information technology and 
manufacturing, is promoting the transformation of the traditional industrial system to digitalization, networking and 
intelligence. With the explosive growth in the number of industrial Internet devices, massive data and large-scale 
computing demands are generated, posing unprecedented challenges to resource scheduling capabilities. 
Traditional resource scheduling methods mainly rely on cloud computing. Although cloud computing has powerful 
computing and storage capabilities, the centralized architecture leads to network congestion and high transmission 
latency, making it difficult to meet the strict real-time requirements of industrial applications. Edge computing can 
effectively reduce latency by sinking computing power to the edge of the network, but its limited computing and 
storage resources are difficult to support complex task processing. Therefore, the Cloud-Edge Collaboration 
Architecture, which complements the advantages of cloud computing and edge computing, has emerged as an 
effective way to solve the resource scheduling problem of industrial Internet. Through the four dimensions of 
resource synergy, data synergy, service synergy and management synergy, Cloud-Edge Collaboration Architecture 
realizes the organic combination of high-performance computing on the cloud side and low-latency processing on 
the edge side, and provides more intelligent, efficient, safe and reliable services for the Industrial Internet. However, 
how to realize efficient scheduling of cloud-edge resources in the complex and changing industrial Internet 
environment still faces many challenges. First, industrial Internet tasks are diverse and heterogeneous, requiring 
comprehensive consideration of multi-dimensional evaluation indexes such as computation time, energy 
consumption, and throughput rate; second, in the face of dynamically changing network environments and 
computational loads, traditional static scheduling strategies are difficult to adapt to; and lastly, the multilevel resource 
architectures formed by cloud, edge, and terminal computing increase the complexity of scheduling decisions. 
Based on this, this paper constructs an industrial Internet resource scheduling optimization model for cloud-edge 
collaborative architecture, which first defines an independent task resource scheduling model containing 
computation time, energy consumption, and throughput rate, and provides a multi-dimensional evaluation system 
for cloud-edge resource scheduling; and then a path planning method based on Deep Deterministic Policy Gradient 
(DDPG) is designed to solve the problem of task routing in a complex network topology; Finally, a multilevel resource 
scheduling model for cloud-side-end is proposed to achieve the cooperative optimization of computation offloading 
and path planning. Through comparison experiments with multiple benchmark solutions, the proposed model is 
verified to be superior in terms of model convergence speed, cache hit rate, and task processing overhead, which 
provides a new solution for resource scheduling optimization in the industrial Internet. 

II. Resource scheduling optimization model construction under cloud-side collaboration 
II. A. Cloud Edge Collaboration 
Cloud computing and edge computing are two different computing models. Cloud computing provides computing, 
storage and networking services by storing data and applications on remote servers and is good at handling large 
amounts of data and performing complex computing tasks. Edge computing, on the other hand, performs 
computation and storage in close proximity to the data source, aiming to reduce data transmission and processing 
time, improve response time and data security, and is suitable for processing real-time data and application 
scenarios that require fast response. Cloud-edge collaboration is a new type of collaborative cooperation model 
[21], [22], which combines cloud computing and edge computing technologies to achieve collaborative processing 
of data and computation. In this model, cloud and edge can collaborate with each other and utilize their respective 
advantages to achieve higher efficiency and better user experience. The core idea of cloud-edge collaboration is to 
distribute data and computation tasks to the cloud and edge for processing. The cloud provides powerful computing 
and storage capabilities, capable of undertaking large-scale data processing and analysis, as well as providing 
services on a global scale; while the edge provides more proximity and fast computing and storage capabilities, 
enabling real-time data processing and response. Through cloud-edge collaboration, more intelligent, efficient, safe 
and reliable services can be realized. The main meanings of cloud-side collaboration include resource collaboration, 
data collaboration, service collaboration and management collaboration: 
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(1) Resource synergy: Resource synergy of cloud computing and edge computing refers to the close synergy of 
computing and storage resources of both to realize more efficient computing and storage. Cloud computing has 
large-scale, high-performance, powerful computing and storage capabilities, which can be used to perform complex 
data analysis and processing; while edge computing is closer to the user and can provide faster data processing 
and response speed. Therefore, in cloud-edge collaboration, cloud computing and edge computing can share each 
other's resources to achieve more efficient computing and storage. 

(2) Data Collaboration: data collaboration refers to data sharing and exchange between cloud computing and 
edge computing. In cloud-edge synergy, cloud computing can provide large-scale and complex data analysis and 
processing, while edge computing can provide real-time data collection and preprocessing. Therefore, in data 
synergy, cloud computing and edge computing can share each other's data to achieve more efficient data 
processing and analysis. 

(3) Service Collaboration: service collaboration refers to the sharing and exchange of services between cloud 
computing and edge computing. In cloud-edge synergy, cloud computing can provide large-scale and complex 
services and applications, while edge computing can provide real-time services and applications. Therefore, in 
service collaboration, cloud computing and edge computing can share each other's services and applications to 
achieve more efficient service and application delivery. 

(4) Management Collaboration: management collaboration between edge devices and cloud. The cloud can 
remotely manage and monitor the status and operation of edge devices, send down configuration information and 
tasks, and diagnose and troubleshoot device failures. This can improve the management efficiency and operational 
stability of the equipment, and also reduce the load pressure on the cloud and improve the overall computing and 
storage resource utilization. 

 
II. B. Independent Task Resource Scheduling Model 
The cloud edge collaboration architecture consists of endpoints, offload agents and cloud edge resource pools. The 
cloud edge resource pool is further subdivided into edge resource pool and cloud resource pool. The edge resource 
pool consists of multiple edge nodes while the cloud resource pool consists of multiple cloud nodes. The offloading 
agent is an intelligent program module that can be deployed at the edge gateway, where the endpoints contain a 
variety of smart devices such as smart watches and surveillance cameras, which are installed with a wide variety 
of applications and make different processing requests to the cloud edge resources. The workflow is as follows: 
first, the agent accepts requests from the endpoints and decomposes them into multiple independent tasks; 
subsequently, the agent obtains the data volume and the maximum tolerable processing time for each task and 
finds the optimal processing node for each task by running a scheduling algorithm based on the current node state 
and task attributes. This process ensures that tasks can be quickly and efficiently offloaded to appropriate 
processing nodes, thus realizing efficient collaboration of cloud-side resources. 

Define 
1 2{ , ,..., }nT T T T  denotes a set of tasks, and the set of features of the tasks is { , }da de

i i iT T T , where da
iT  

is the amount of data carried by the i th task, de
iT  is the amount of data the i th task can tolerate for the maximum 

processing time. The cloud edge resource pool consists of a set of cloud edge nodes 
1 2{ , , ..., }mN N N N , each 

node can be represented by a quaternion { , , , }r d w id
j j j j jN N N N N , where r

jN  denotes the CPU processing rate of 

the first j  node and d
jN  denotes the interaction delay between the j th node and the agent when offloading the 

task, and w
jN  and i d

jN  denote the working power and idle power of the j th node, respectively. 

 
II. B. 1) Computational time modeling 
Define i jx  to denote the decision result of whether the i th task is offloaded to the j th node or not, as shown in 
Equation (1): 

 
if the th task computed by the th node

otherwis

1

0 eij

i j
x


 


 (1) 

An offloading strategy matrix i jx   is formed from ( ) { | 1 ,1 }n m ijx x i n j m       . In order to utilize the 
computational resources more efficiently, each task is computed by only a single computational node, see Equation 
(2): 

  
1

1, 1, 2,...,
m

ij
j

x i n


   (2) 

In order to obtain the total computation time, it is also necessary to obtain the computation time jN   at the 
processing node ijt  for each task T: 
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Thus, the total computation time totalt  can be expressed as follows: 

 
1 1

n m
total

ij ij
i j

t t x
 

   (4) 

II. B. 2) Energy consumption models 
The total energy consumption of the system consists of two parts, the working energy consumption generated by 
the nodes when they are processing the tasks and the energy consumption generated by the nodes when they are 
in idle state. The working time of a node can be calculated according to the following equation: 

 
1

n
w
j ij ij

i

t t x


   (5) 

Before defining the idle time of a node, the longest completion time M  is defined first. M  is the time when all 
tasks are fully completed, because multiple nodes process tasks in parallel, so M  can be expressed as the longest 
working time of a node, as shown in Equation (6): 

 
{1,2,..., }
max ( )w

j
j m

M t


  (6) 

According to Eq. (5) and Eq. (6), the idle time of node jN  can be expressed as: 
 id w

j jt M t   (7) 

Based on Eq. (5) and Eq. (7), the energy consumption of node jN  is defined as follows: 
 w w id id

j j j j je N t N t     (8) 

The total energy consumption of the system is the sum of operating and idle energy consumption and is calculated 
using the following formula: 

 
1

m
total

j
j

e e


  (9) 

II. B. 3) Throughput rate model 
This subsection defines the response time 

iT  of the task 
ir , which consists of the execution time of the task 

iT  and 
the interaction latency between the agent and the processing node, as shown in Eq. (10): 

 
1

2( )
m

d
i ij j ij

j

r t N x


     (10) 

Next, S is defined to denote the set of tasks that satisfy the latency requirement, and when de
i ir T  indicates 

that the task 
iT  can be processed on time in accordance with the scheduling scheme, the task is included in the 

set S. In addition to the two most common evaluation metrics, energy consumption and computation time, this 
subsection defines a new evaluation metric, throughput rate. 

Throughput rate is one of the key metrics for measuring the effectiveness of a scheduling scheme [23], and is 
used to evaluate the number of tasks that a scheduling scheme is able to complete on time for a given maximum 
processing time requirement. Specifically, the throughput rate reflects how many tasks are successfully processed 
within the specified time, thus visually assessing the strengths and weaknesses of the scheduling scheme. A high 
throughput rate indicates that the scheduling solution performs well in meeting the task processing time 
requirements, which helps to improve the overall system performance and user satisfaction. Therefore, by 
monitoring and analyzing the throughput rate, it can provide a strong basis for optimizing the scheduling strategy 
and ensure that more tasks are completed on time. In summary, the throughput rate R  is defined as the ratio of 
the number of tasks completed within the maximum delay to the total number of tasks, and is calculated as shown 
in Equation (11): 

 | |S
R

n
  (11) 

where n  indicates the total number of tasks. 
 

II. C. Multi-level resource scheduling model for cloud-side endpoints 
II. C. 1) Design of DDPG-based path planning methods 
The path planning problem can be described as minimizing the system transmission cost: 

 
1

min t
t

O



  (12) 

Considering weighted routing, we design a global weighted intelligent path planning method (DDPG-WR) based 
on the DDPG deep reinforcement learning algorithm [24], which is suitable for continuous action space, because 
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the complexity of the network topology, the link state space, and the weighted action space are continuous and 
high-dimensional, and the network state is in constant dynamic change. 

State space S : In our problem since the intelligences do global routing, the state 
ts S   at time frame t  

consists of the normalized link residual bandwidth, | |ts E , denoted by 

 
1, 2, 1, ,, ,..., ,t t t E t E ts B B B B     (13) 

Action space A  : the Actor network of DDPG intelligences assigns weights to each link, and the action 
, | |t ta A a E   at time frame t , is denoted as: 

 1, 2 , 1, ,[ , , ..., , ]t t t E t E ta w w w w  (14) 

Immediately after that, the weight of each path 
zP  in the set of candidate paths P can be calculated based on 

the link weights output by the action network: 

 ,
,k z z

Z k t
l P P

W w
 

 
P

 (15) 

Thus, the optimal path *
tP  for task transmission is the path corresponding to the minimum weight: 

 argmin
z

z
P

W  (16) 

Reward function: after transmitting the task according to the path planned by the intelligence for it, the intelligence 
will receive an immediate reward from the environment, which should reflect the optimization goal, and for the 
purpose of unification of magnitude, the reward function is designed as: 

 ( ( / 100) )net net
t T t B tr w Tanh T w LB      (17) 

where   is a penalty term, where   is a constant real number greater than 0 if there are links with 0 remaining 
bandwidth resources on the transmission path planned for the task, and 0    if all links through which the 
transmission path passes have sufficient remaining bandwidth resources. 

Thus the goal of DDPG is to find the strategy   that can maximize the cumulative return: 

 
T

m t
t t

m t

G r 



  (18) 

The DDPG contains a total of four networks, namely the online Actor network  , the online Critic network Q, the 
target Actor network   , the target Critic network Q  , and the network parameters are denoted as , , ,Q Q      . 
At each time step t , the online Actor network is responsible for directly outputting the deterministic policy ( )ts  
based on the input link states 

ts , and in order to equip the intelligences with the ability to explore, the noise 
tN  is 

added to the output of the Actor network, so that the weight vector of the final output network links is ( )t t ta s N  , 
and then the optimal path is computed for scheduling according to Eq. (16), and the intelligent body will get the 
reward 

tr   from the environment and move to the next state 
1ts 
  by transferring the interaction information 

1( , , , )t t t ts a r s 
 is deposited into the experience pool. 

When the data in the experience pool reaches a certain number, a batch of experiences 
1( , , , )i i i ts a r s 

 is randomly 
sampled from it and played back for updating the online network, which is updated by the online Critic network by 
executing gradient descent on the loss function shown in Eq. (19): 

 2( ) [( ( , ; )) ]Q Q
i i iL E y Q s a    (19) 

where the objective value 
1 1( , ( ; ); )Q

i i i iy r Q s s       
   . 

The online Actor network is updated by the sampled strategy gradient, which can be calculated by Eq. (19): 

 
, ( )

1
( ) ( , ; ) | ( ; ) |

i i i

Q
a s s a s s

t

J Q s a s 
 

 
   

       (20) 

Use soft update for the target network parameters,   is the soft update factor, so the target value 
ty  will change 

slowly, thus improving the stability of learning: 

 
(1 )

(1 )

Q Q Q

  

   

   

 

 

  

  
 (21) 

II. C. 2) Multi-level resource scheduling model design 
The complete scheduling process of computing tasks includes selecting the best computing service node among 
the multilevel arithmetic resources at the cloud edge end and planning the optimal path for the tasks that need to 
be further transmitted in the edge network to reach the remote edge nodes, so a comprehensive arithmetic and 
network multilevel resource scheduling model for the cloud edge end is designed jointly with the D3QN 
computational offloading method and the DDPG-WR path planning method as shown in Fig. 1. 
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Figure 1: Multilevel resource scheduling model 

The scheduling model mainly consists of two modules, the computation offload module and the path planning 
module. When a user requests computing services from the computing power management platform through 
terminal devices, the D3QN intelligences in the computation offloading module first decide the best computing node 
for the task based on the task request information, terminal device information, and the control plane-perceived 
state information of the computing power resources for the task i  in the set of candidate nodes that contains three 
levels of computing resources, namely, cloud, edge, and end: 

 arg max ( , ) {0,1,..., , 1}o
i i

o o o
i i ia N
a Q s a M M


    (22) 

If 0o
ia   or 1o

ia M  , it indicates that the decision result of computation offloading is either local computation 
or offloading to the cloud for execution, at this time, the task will be scheduled directly according to the decision 
result and the decision is finished. 

And if the decision result of the computation offload module is offloaded to the edge node for computation, i.e., 
{1, 2,..., }o

ia M . Remember that the routing node directly connected to the computing service node o
ia  is 

dstv , and 
the edge gateway for the terminal device to access the edge layer network is 

srcv , at this time, it is necessary to 
further determine whether 

srcv  is equal to 
dstv , and if it is equal, it shows that the task offloads to the edge gateway 

which does not need to be transmitted in the edge layer network, and the task will be scheduled directly according 
to the decision result as well, and the decision is finished. 

Only when 
src dstv v , the task needs to be transmitted end-to-end in the edge layer network with 

srcv  as the 
source node and 

dstv  as the destination node. So the decision result o
ia  output from the computational offloading 

module is used as the input to the path planning module to find the candidate path set 
iP   based on the 

corresponding source and destination nodes, and then the DDPG intelligences in the path planning module will 
make a global routing decision based on the network resource state information n

is  collected from the control plane, 
and output the network links' weight n

ia , and finally the optimal path *
iP  is calculated based on the weights in the 

set of candidate paths for scheduling, and the decision is finished. 

III. Analysis of simulation results 
III. A. Model convergence 
In order to verify the effectiveness of the proposed algorithm, the following four benchmarking schemes are 
designed: 

1) Genetic Algorithm Based DDPG Algorithm (GA-DDPG): the deployment of cache services is optimized using 
genetic algorithm, while computational offloading and resource allocation are performed using DDPG algorithm. 
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2) Randomized Cache Offloading Scheme (RC): the placement of cache services as well as computational 
offloading is done randomly. 

3) DQN-based collaborative caching and offloading scheme (DQN): both service caching and computation 
offloading are jointly output by the DQN network, with the same parameter settings as in this method. 

4) Computation offloading and resource allocation without cache (No-Cache): edge servers have no cache, which 
means that end devices need to offload tasks to the cloud for execution. 

In this paper, the model convergence comparisons of the cloud-edge-end multilevel resource scheduling model 
(CMRS), GA-DDPG and DQN are shown in Fig. 2. Fig. 2 compares the performance of the convergence of the 
three algorithms CMRS, GA-DDPG and DQN at a learning rate of 0.001 and an iteration number of 500. Among 
them, CMRS and GA-DDPG present faster convergence speed with higher rewards relative to DQN, and are able 
to find the near-optimal policy faster. In terms of convergence speed, CMRS tends to converge at the 310th iteration, 
compared to GA-DDPG, which tends to converge at the 340th iteration, which indicates that CMRS converges faster 
than GA-DDPG, and it is able to find an optimal strategy in a shorter training time. In terms of convergence 
performance, CMRS converges with a reward value of -12.9 and GA-DDPG with a reward value of -17.1, which 
indicates that CMRS finds a better optimization strategy. From the experimental results, the model CMRS proposed 
in this paper outperforms the other two benchmark algorithms in both convergence speed and convergence 
performance. The validity and feasibility of the algorithm proposed in this paper is verified by the comparison of 
convergence performance. 

 

Figure 2: Model convergence comparison results 

The model convergence of the CMRS model with different batch sizes is shown in Figure 3. As the number of 
iterations increases, the training reward value grows and stabilizes after a certain number of iterations. A smaller 
batch size speeds up training but may introduce more randomness. Larger batch sizes require the gradient of more 
samples to be computed at each update. By reducing the variance between samples, it effectively avoids oscillations 
and instability during training, but its training speed is slower. From the experimental results, when the batch size is 
32, the training speed is faster, and it is close to the final convergence value at 240 generations, but it does not 
converge until 370 generations. When the batch size is 128, the training speed is slower and the algorithm falls into 
local optimum between 210 and 250 generations. Combining the above factors, the batch size in the CMRS model 
is set to 64. 

 

Figure 3: The model converge under different batch sizes 
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III. B. Cache Hit Ratio 
In order to validate the performance of cache deployment optimization algorithms on large time scales, the cache 
hit ratio is utilized to evaluate the match-based cache deployment optimization scheme. Cache hit ratio refers to the 
ratio between the number of requested service cache hits and the total number of requests. 

The ratio of cache hit ratio versus the number of mobile terminals under different schemes is shown in Fig. 4. 
Since there is no cache service in the edge server of the No-Cache algorithm, the cache hit rate is not considered 
since the offloaded tasks are transferred to the cloud for processing. As shown in Fig. 4, with the increasing number 
of terminals, the locality and repetitiveness of the computation tasks increase, which leads to the increasing cache 
hit rate of the edge servers.The RC algorithm has the worst cache hit rate compared to other algorithms, which is 
due to the randomized way of service deployment on the edge servers. In contrast, the cache hit rate of the CMRS 
model proposed in this paper outperforms that of GA-DDPG and DQN, and this advantage mainly stems from the 
fact that the cache deployment problem is converted into a one-to-many matching problem in terms of the 
deployment method of the services by creating preference lists for the services and the edge servers, respectively, 
which leads to an increase in the cache hit rate of the services. 

 

Figure 4: The comparison results of the cache hit ratio and the mobile terminal in different schemes 

III. C. Analysis of equipment overhead 
The comparison curves of the total system overhead of the proposed cloud-side-end multilevel resource scheduling 
model (CMRS) with five existing architectures (local processing architecture, WiFi-Cloud, BS-Cloud, WiFi-MEC, and 
BS-MEC) based on the amount of task data are shown in Fig. 5. As the amount of task data increases, the total 
overhead corresponding to both the architecture proposed in this paper and the four offloading strategy 
architectures increases, while the total system overhead of the local processing architecture remains stable, and 
the offloading strategy under the architecture proposed in this paper is the most effective as can be seen from the 
total system overhead curve. The reason is that the offloading strategy based on Q-learning training iterations fully 
considers the computational tasks and environmental conditions during the offloading process, and reduces the 
unnecessary system loss due to network congestion and node anomalies. 

 

Figure 5: Relationship between total devices overhead and task data size 
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The comparison curves of the total system overhead based on task complexity of the proposed cloud-edge-end 
multilevel resource scheduling model (CMRS) with five existing architectures of five existing architectures are shown 
in Fig. 6. As the task complexity rises, the corresponding total system overhead gradually rises for all architectures. 
However, the offloading strategy under the CMRS model architecture in this paper can more reasonably cope with 
computational tasks of different complexity by favoring local processing when the task is relatively simple and 
offloading processing when it is relatively complex, which effectively utilizes the computational resources of the 
server. Therefore, compared with the existing architecture, the total system overhead under the proposed cloud-
side-end multi-level resource scheduling model in this paper is lower year-on-year. 

 

Figure 6: Relationship between total devices overhead and task complexity 

The comparison curves of the task processing latency and overhead of the proposed cloud-side-end multilevel 
resource scheduling (CMRS) model in this paper and the five existing architectures based on the amount of task 
data are shown in Fig. 7 and Fig. 8, respectively. As shown in Fig. 7 and Fig. 8, the task processing latency of the 
local CMRS model remains stable due to the constant task complexity, and the processing overhead is always 0. 
In contrast, the task processing latency and overhead of the CMRS model in this paper and the four offloading 
architectures correspond to the task processing latency and overhead that gradually increase with the increase of 
the amount of task data, but with varying improvement trends. The reason is that different offloading architectures 
have their own performance characteristics, e.g., Wi Fi-MEC and Wi Fi-Cloud architectures do not have enough 
advantages in task processing latency, but can save more processing overhead. Therefore, it is necessary to 
formulate reasonable computation offloading strategies based on the task attributes of different computation tasks, 
as well as the network and server states. The CMRS model proposed in this paper synthesizes the advantages of 
the five existing architectures and realizes real-time decision making based on DDPG, which is more adaptable to 
the changing industrial Internet system environment and saves more non-essential resource loss by intelligently 
scheduling the processing of computing tasks. 

 

Figure 7: Relationship between task process delay and data size 
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Figure 8: Relationship between task process overhead and data size 

IV. Conclusion 
In this paper, we designed an industrial Internet resource scheduling optimization model based on the cloud-side 
collaboration architecture, and realized the efficient collaboration of cloud-side resources by constructing an 
independent task resource scheduling model and a multilevel resource scheduling model on the cloud-side end. 

Simulation results show that the proposed CMRS model outperforms the comparison algorithms in terms of 
convergence speed and performance, and achieves convergence at the 310th iteration, which is 30 iterations earlier 
than GA-DDPG, and the convergence reward value reaches -12.9, which is higher than the -17.1 of GA-DDPG and 
the lower value of DQN. In the cache hit rate evaluation, as the number of terminals increases, the cache hit rate of 
the CMRS model is significantly higher than that of the random cache offloading scheme. The total system overhead 
evaluation shows that the CMRS model consistently maintains the lowest overhead as the amount of task data and 
task complexity increases. Compared to the five existing architectures, the CMRS model performs well in terms of 
task processing latency, which is especially suitable for processing large data volume tasks. In addition, the CMRS 
model realizes real-time decision making through DDPG, which can dynamically adapt to the changing environment 
of the industrial Internet system, and achieves the optimal performance balance when the batch size is 64. Overall, 
the model proposed in this paper realizes the intelligent scheduling of multilevel resources at the cloud-side end, 
and provides an effective solution to improve the resource utilization and service quality in the industrial Internet 
environment. 
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