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Abstract Complex and diverse topography and frequent lightning activities in Inner Mongolia pose a serious threat 
to agricultural production and infrastructure safety. Based on geographic information system and spatial 
interpolation techniques, this study explores the correlation between lightning activity and terrain features in Inner 
Mongolia and establishes an accurate prediction model. The study adopts the improved DBSCAN algorithm to 
cluster lightning activities, combines the kernel density estimation to adaptively determine the clustering parameters, 
utilizes kriging interpolation to determine the lightning fall area, and fits the thunderstorm movement trajectory 
through the least squares method. The experimental results show that the improved DBSCAN algorithm has an 
average offset error of 1.16 km on thundercloud center of mass prediction, which is significantly better than the 
linear extrapolation method (1.92 km) and the least squares method (3.09 km). The prediction accuracy is more 
than 80% and the false alarm rate is controlled below 40%. The topographic analysis found that the frequency of 
intensity lightning is highest on the northeast slope; the influence of slope on lightning density decreases gradually 
with the increase of lightning intensity, and Class I to III lightning is prone to occur on steep slopes. The study can 
provide scientific basis for the layout of lightning protection facilities, lightning disaster risk assessment and early 
warning in Inner Mongolia, and has practical application value for enhancing regional disaster prevention and 
mitigation capability. 
 
Index Terms lightning activity, topographic features, DBSCAN clustering algorithm, spatial interpolation, geographic 
information system, lightning prediction 

I. Introduction 
Lightning is a common natural phenomenon, which occurs frequently and is very harmful. Lightning disaster is listed 
by the United Nations as “one of the ten most serious natural disasters”, and also identified by the International 
Electrotechnical Commission (IEC) as “a major public hazard in the era of electronic” [1]. The powerful destructive 
nature of lightning originates from the strong physical effects such as current, high temperature, electromagnetic 
radiation and shock wave, etc., which can directly or indirectly cause casualties, and cause serious damage to 
buildings, distribution systems and communication equipment, and also cause forest and grassland fires and other 
disasters, which are very harmful to people's lives and properties [2]-[5]. 

Inner Mongolia Autonomous Region is a vast area, belonging to one of the provinces where thunderstorm 
activities and lightning disasters occur more frequently, characterized by high frequency and wide distribution. 
Lightning disasters have become the third major meteorological disaster after heavy rainfall and flooding, wind and 
hail. In the past 15 years, about 653 lightning accidents occurred in the region, with an average of 43.5 accidents 
per year, and the direct economic losses caused by lightning strikes were about 175.16 million yuan, with an average 
of about 11.678 million yuan per year, and lightning strikes caused about 15 casualties per year [6]-[8]. Carrying out 
relevant research on the characterization of lightning activity and lightning disaster can provide an objective scientific 
basis for strengthening the risk management of lightning disaster and improving the level of lightning disaster 
prevention and mitigation. A number of studies have shown that terrain is a factor that has a large impact on lightning 
activity, mountains, forests and buildings may affect the distribution of lightning, lightning generally occurs in the 
terrain open areas, it is smaller but more frequent, and different topographic features have different impacts on 
terrain [9]-[12]. Research on the correlation law of lightning activity and topography is very important for the 
development of lightning protection work in the power system, which can provide a scientific basis for the relevant 
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departments to strengthen the management of lightning protection and disaster reduction, and improve the ability 
of lightning protection and disaster reduction. 

Geographic information system (GIS) is the use of computer storage, processing of geographic information, a 
technology and tools. It is supported by computer software and hardware, various resource information and 
environmental parameters according to spatial distribution or geographical coordinates, in a certain format and 
classification code input, processing, storage, output, to meet the application needs of human-computer interactive 
information system, in terrain analysis, environmental protection, ecological monitoring, urban management, 
disaster prediction, emergency response and other aspects of the role played a positive role [13]-[17]. With the 
rapid development of GIS technology, spatial interpolation method as an important tool in GIS. As the spatial 
interpolation method is to predict and project the data values of the unknown region through the known spatial data 
points, thus revealing the spatial distribution characteristics and change rules, it has been widely used in many fields 
such as geology, agriculture, meteorology, environmental monitoring and so on [18]-[21]. The two provide a basis 
for exploring the connection between lightning activity and topographic features. 

Lightning activity is a common strong convective weather phenomenon in nature, which has a significant impact 
on human production and life and socio-economic development. Due to its unique geographic location and diverse 
topographic features, lightning activity in Inner Mongolia shows obvious spatial and temporal distribution 
characteristics, and agricultural losses, damage to power facilities and casualties caused by lightning occur 
frequently every year. Understanding the correlation between lightning activity and topographic features and 
establishing accurate lightning prediction models are of great significance to improve lightning disaster defense 
capability and reduce disaster losses. Traditional lightning prediction methods mainly rely on meteorological 
observation data and empirical models, with limited accuracy and poor timeliness. With the development of 
geographic information system (GIS) technology and spatial analysis methods, it has become possible to predict 
lightning activity by combining topographic factors. In this study, based on the lightning location data, thunderstorm 
day data, precipitation data, and severe convective weather hazard data for 2019-2022 in Inner Mongolia, the 
correlation between lightning activity and topographic features such as elevation, slope direction, and slope gradient 
is systematically analyzed by using geographic information system (GIS) and spatial interpolation techniques, and 
a prediction model for lightning activity based on the improved DBSCAN algorithm is constructed. The DBSCAN 
algorithm, as a density-based clustering method, does not need to specify the number of classes in advance, and 
is able to effectively identify clusters of arbitrary shapes, which is suitable for the identification and analysis of 
thunderstorm clouds. In this study, the parameters of the DBSCAN algorithm are optimized by kernel density 
estimation, which improves the adaptivity and accuracy of the algorithm. In terms of prediction, the study combines 
the Kriging interpolation and the least squares method to realize the accurate prediction of the moving trajectory of 
thunderstorm clouds and the area of mine fall. In terms of terrain correlation analysis, the study divides Inner 
Mongolia into plains, hills, basins and mountains according to elevation, nine categories according to slope direction, 
and seven levels according to slope gradient, and systematically examines the distribution patterns of lightning 
activities of different intensities under various terrain conditions. It is found that there is an obvious correlation 
between lightning activity and terrain characteristics, and lightning of different intensities show different distribution 
characteristics under different terrain conditions. Based on the results of the study, this paper puts forward 
suggestions for the location of flammable and explosive places, the setting of lightning protection level, the lightning 
safety inspection cycle, and the setting of lightning shelters, which provides a scientific basis for the lightning disaster 
defense work in Inner Mongolia. This study not only enriches the theoretical study of the relationship between 
lightning activity and topography, but also provides technical support for lightning disaster risk assessment, early 
warning and defense in Inner Mongolia, and has important practical application value for enhancing the regional 
disaster prevention and mitigation capabilities. 

II. Algorithm and process for predicting lightning activity in Inner Mongolia 
II. A. Clustering Algorithm Flow 
II. A. 1) DBSCAN algorithm 
In this paper, the DBSCAN algorithm [22] is selected to cluster and sort the lightning activities in Inner Mongolia 
without specifying the number of classes of the battery in advance: 

1) Input battery feature vector 
1 4{ , , }D x x   with parameters Eps , MinPts . 

2) Find the Eps   neighborhood subsample set of all lightning activity samples 
ix   by means of the distance 

metric, and if the number of samples in the subsample set satisfies ( )Eps iN x MinPts , the lightning activity 
ix  is 

added to the core object sample set  . If it is not satisfied, mark the cell 
ix  as a boundary point or noise point. 

3) In the core object collection  , randomly select a lightning activity core object o , establish a new cluster 
sample collection 

1C , and add all lightning activities in its Eps  neighborhood to the cluster 
1C ; check all lightning 
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activities in the cluster 
1C  in its Eps  neighborhood to be added to 

1C ; repeat the check until no new lightning 
activity can be added. Update the core object set 

1Q C   . 
4) Randomly select a lightning activity core object o  in the updated core object set  , repeat step 3) until the 

core object set   is empty, and output the cluster division result 
1 2{ , , , }nC C C . 

 
II. A. 2) Kernel density estimation 
The accuracy of the DBSCAN clustering algorithm is closely related to the settings of the parameters Eps  and 
MinPts . A very small setting of Eps  or a very large setting of MinPts  may result in too many or even all points 
being labeled as noise; when Eps  is set very large or MinPts  is set very small, it may result in a single cluster of 
all sample points. 

For the cells to be clustered, the clustering results are made more accurate by setting the appropriate DBSCAN 
algorithm parameters based on the sample densities according to the kernel density estimation of the distribution 
density function solved for a given set of characteristic sample points. The effect of the size of the kernel density 
estimation window width h  on the kernel density estimation is consistent with the performance of Eps  in the 
clustering process. Therefore, in this paper, the DBSCAN algorithm parameter Eps  is converted to the optimization 
of the window width value h  in kernel density estimation. By determining the size of the window width value h , 
the appropriate value of the parameter Eps  can be determined. 

The mean square error method is commonly used in kernel density estimation to study the choice of window 
width, using the mean square error function MISE( h ) to reflect the goodness of the kernel density estimation. 

 
22 4 4

4
( ) ( ) 1

( )
4

nK x dx h f x dx
MISE h o h

nh nh

         
 

   (1) 

Approximation: 

 
22 4 4( ) ( )

( )
4

nK x dx h f x dx
MISE h

nh


 

     (2) 

where ( )K x  is the kernel density function; h  is the window width value; and   is the sample variance. 
From Eq. (2), it can be seen that the kernel density estimation MISE( h ) is required to be optimized, i.e., to solve 

for the minimum value of MISE( h ). The optimal window width h  is obtained by deriving Eq. (2) and making the 
first order inverse equal to zero, i.e.: 

 

1/5
2

4 2

( )

( ( ))n

K x dx
h

n f x dx

 
 
  




 (3) 

Defined for ease of calculation: 

 [ ( )] ( )R f x f x dx   (4) 

For the unknown quantity [ ( )]R f x , B.W. Sliverman proposed the thumb rule, which is obtained by replacing 
( )f x  with a normal density whose variance matches the estimated variance: 

 1/5 ˆ[4 / (3 )]Eps h n    (5) 

After determining the appropriate Eps , equation (6) is used to determine the appropriate MinPts . 

 
1

min
n

i

i

x x
Pts K

Eps

 
  

 
  (6) 

II. B. Lightning activity prediction algorithm and process 
II. B. 1) Spatial interpolation 
Following the principle of Kriging interpolation [23], the general formula is as follows: 

 
0

1

( ) ( ) ( 1,2, , )
n

i i
i

Z x Z x i n


    (7) 
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where, 
0( )Z x  is the predicted value at 

0x , ( )iZ x  is the true value at 
ix , and 

i  is the weight coefficients to be 
sought. 

Assuming that ( )Z x  satisfies the second-order smoothness condition throughout the sample space, based on 
the unbiasedness requirement: *

0 0[ ( )] [ ( )]E Z x E Z x , which can be deduced from Eq. (8): 

 
1

1
n

i
i




  (8) 

Minimize the estimation variance under unbiased conditions, i.e: 

 *
0 0

1

( ) ( ) 2 ( 1)
n

i
i

Min Var Z x Z x  


       
  (9) 

where   is the Lagrange multiplier. 
It can be obtained that the matrix form when solving for the weight coefficients 

i  expressed in terms of the 
variational function ( , )i jx x  is: 
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The inverse of the matrix yields the weighting coefficients ( 1, 2,..., )i i n  , from which the estimate at sampling 
point 

0x  can be obtained *
0( )Z x . Where the variational function is: 

 2( , ) ( ) [ ( ) ( )] / 2i j i j i jx x x x E Z x Z x      (11) 

II. B. 2) Least Squares 
Usually, when we study the interrelationships between variables ( , )x y  , we will start from a series of data 
( , )( 1, 2, , )i ix y i m   in groups, plot these points in an x y  coordinate system, and then use a curve to represent 
the relationship between these variables, which is the curve fitting problem. The least squares method [24] (also 
known as the least square method) is one of the more common curve fitting methods, which applies the principle of 
squaring and minimizing the sum of errors in the fitting process to match the best function of the data. 

Assuming the data is ( , )( 1, 2, , )i ix y I m   and the expression is 
0( , , , )ny f x a a  , the sum of squares of error 

expression is: 

  2

0 n 0 n
1

( , , ) ( , , , )
m

i i
i

F a a f x a a y


    (12) 

where, 
0 , , na a   is the pending parameter of the curve and m   is the given number of points. The pending 

parameters can be obtained by solving the system of derivative equations, which is necessary to obtain the extreme 
values: 

 0,( 0,1, , )
k

F
k n

a


 


  (13) 

Based on equation (13), 1n    equations can be obtained, and the pending parameters of the curve 

0( , , , )ny f x a a   can be found out immediately. In this paper, the variable ( , )x y  is the latitude and longitude of 
the thunderstorm cloud center, and the curve obtained is the thunderstorm cloud motion track. 

 
II. B. 3) Prediction Algorithm Flow 
The improved DBSCAN clustering algorithm, which can adaptively determine the clustering parameters, and the 
weighted Euclidean distance is conducive to the elimination of noise points and the retention of core points, is more 
suitable for the identification and clustering of thunderstorm clouds, and lays a good foundation for further 
thunderstorm prediction. The flowchart of thunderstorm cloud identification is shown in Fig. 1. 
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Start

The number of clustering cloud clusters 
N1 and N2 within the continuous time 

periods t1 and t2, as well as the lightning 
frequency of each cloud cluster

N1=N2?

Compare the number of 
lightning strikes and the 
centroid distance in the 

clustering

Cluster cloud clusters 
match in different time 

periods

The results of the time period with 
fewer clustering cloud clusters 
were selected as the reference

Cluster cloud cluster matching

Screen the unmatched sac-like 
cloud masses and perform the 

centroid calculation

End  

Figure 1: Thundercloud mass recognition flow chart 

The specific steps for thunderstorm warning are as follows: 
(1) Apply the trans-Gaussian kernel density estimation to determine the parameters   and MinPts, and select 

the ground flash data set D. 
(2) Select a point as the starting point, mark p, and further search the    neighborhood of the point via the 

weighted Euclidean distance formula to determine whether it is a core point. 
(3) If the point is a core point, create a new clustering cluster C, and find out all the points in the neighborhood 

with direct density reachable to join the candidate set N. 
(4) Determine whether all points in the dataset N are traversed or not, if not, repeat steps (2)-(4). 
(5) Merge all points with reachable density and extend cluster C. 
(6) Output the set of target clusters to generate thunderstorm clouds. 
(7) Find the center of each cluster and apply kriging interpolation to determine the thunderstorm region. 
(8) Apply least squares fitting to the center of thunderstorms for multiple time periods to generate the location of 

the thunderstorm motion track. 
(9) Calculate the direction and speed of thunderstorm movement, and predict the location of thunderstorms and 

the area of falling mines for the next time period. 
 

II. C. Sources of information 
II. C. 1) Flash localization data 
Graphic display client is a combination of geographic information systems (GIS) using high-tech web communication 
functions, digital analysis of data into a graphical way, timely calculation of cloud-to-ground flash occurrence time, 
geographic location, lightning parameters. Receive lightning data in real time, realize the query and statistical 
function of the data. Through the lightning monitoring system is very good to monitor the lightning data into colorful 
graphics presented at a glance, so that people can analyze the data in a timely manner is conducive to the timely 
application of lightning information. 
 
II. C. 2) Information on thunderstorm days 
A thunderstorm day is defined as a day in which thunder is heard (once or more than once), regardless of its duration, 
and is counted as a thunderstorm day in days. In this paper, the data of thunderstorm days observed manually by 
six basic meteorological stations (Hohhot suburb, Wuchuan, Helinger, Tumet Left Banner, Qingshuihe, and Toketo 
County) for surface meteorological operations from 1983 to 2022 are utilized for the study. 
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II. C. 3) Regional precipitation data 
This paper utilizes the 24h corresponding precipitation data from 1983 to 2022 at six meteorological observation 
stations, the precipitation is measured by the tipping bucket rain sensor, currently used in Inner Mongolia is the SL3-
1 type double tipping bucket rain sensor, the tipping bucket rain sensor is a common instrument for measuring 
rainfall, at the same time, it can be converted into the rainfall expressed in the form of switches to the output of 
digitized information to meet the information transmission, processing, recording and display needs. 
 
II. C. 4) Data on severe convective weather hazards 
Data on agricultural disasters caused by strong convective weather in the Hohhot area from 2011 to 2022 provided 
by the Hohhot Meteorological Bureau, specifically including the types of strong convective disasters, affected crops, 
damaged areas, economic losses and other information. 
 
II. C. 5) Lightning hazard data 
Data on agricultural disasters caused by strong convective weather in the Hohhot area from 2011 to 2022 provided 
by the Hohhot Meteorological Bureau, specifically including the types of strong convective disasters, affected crops, 
damaged areas, economic losses and other information. 

III. Correlation analysis between predicted lightning activity and topographic features in 
Inner Mongolia 

III. A. Forecast of lightning activity in Inner Mongolia 
Python3.10 was used as the platform for program simulation, and ArGIS10.2 was used as the development tool. 
The original data were obtained from the thunderstorm data in the Inner Mongolia grassland region monitored by 
the lightning detection and positioning system. Due to the large amount of data, the thundercloud center-of-mass 
movement data in 2021-2022 were intercepted as the historical data to train the improved DBSCAN algorithm to 
verify the effectiveness of the prediction with the strong thunderstorm data occurring on August 5, 2021, from 8:05-
8:35 located in the range of E125.0°-E127.5°, N23.2°-N27.3°. N27.3° range of strong thunderstorm data occurring 
in the range of N27.3° to verify the effectiveness of the prediction. The trained and improved DBSCAN algorithm is 
then used to predict the thundercloud center-of-mass moving trajectories in the next 17 min. The past thundercloud 
centers-of-mass for three consecutive time periods are used as input values, and the output values are the predicted 
centers-of-mass of thunderclouds for three consecutive time periods in the next 17 min. 

After clustering the separate noise points are eliminated, and the remaining falling thunder points are compact, 
after clustering the separate noise points are eliminated, and the remaining falling thunder points are compact and 
dense, it can be clearly seen that three thunderstorm cloud clusters, C1, C2, and C3, are formed, and all three 
clusters have a tendency to move toward the southeast. The centers of mass of clouds C1, C2, and C3 in the three 
time periods are calculated, and the centers of mass of the clustered clouds in each time period are obtained as 
shown in Table 1. 

Table 1: The results of the cluster of the cluster 

Time Cluster cloud 
Center of mass coordinates 

Longitude/° Latitude/° 

8:05-8:10 

C1 128.721 27.348 

C2 128.097 25.815 

C3 128.184 24.956 

8:10-8:15 

C1 128.822 27.214 

C2 128.194 25.722 

C3 128.415 24.982 

8:15-8:20 

C1 128.933 27.847 

C2 128.297 25.673 

C3 128.428 24.857 

 
Calculating the actual offset distance of each prediction method is shown in Table 2, the improved DBSCAN 

algorithm has the smallest average offset error on the prediction of thundercloud center of mass, with the average 
offset error within 2km, which is better than the other two algorithms. 
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Table 2: The parties act to predict the offset error 

Thunder number Forecast time 
Deviation error /km 

Linear extrapolation Least squares Improved DBSCAN 

C1 

8:20-8:25 1.84 2.22 0.86 

8:25-8:30 3.62 5.08 1.14 

8:30-8:35 2.29 5.29 1.79 

C2 

8:20-8:25 0.64 1.18 0.51 

8:25-8:30 1.49 2.91 0.92 

8:30-8:35 1.67 3.79 1.51 

C3 

8:20-8:25 2.85 2.37 0.96 

8:25-8:30 0.81 2.24 1.14 

8:30-8:35 2.09 2.75 1.57 

Mean value 1.92 3.09 1.16 

 
Based on the reference range of the thundercloud obtained by IDW interpolation and the center of mass of the 

thundercloud predicted by the improved DBSCAN algorithm, we can dynamically predict the moving trajectory of 
the thundercloud in the next 17 min as shown in Fig. 2. After predicting the center of mass of the thundercloud, the 
size and shape of the thundercloud need to be reproduced, and the thundercloud is basically stable and no longer 
continues to expand its lightning strike range after the thundercloud continues to fall for 5 min. The inverse distance-
weighted interpolation is performed with the time period of 8:15-8:20 to obtain the contour and range of the 
thundercloud. 

 

(a) 8:20-8:25 Predict the lightning strike area     (b) 8:20-8:25 Actual lightning strike area 

 

(c) 8:25-8:30 Predict the lightning strike area     (d) 8:25-8:30 Actual lightning strike area 
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(e) 8:25-8:30 Predict the lightning strike area     (f) 8:25-8:30 Actual lightning strike area 

Figure 2: Ray cloud's prediction range is compared to the actual fall 

The results of calculating the prediction accuracy in each time period are shown in Table 3, where the number of 
predicted lightning falls is the number of lightning that falls within the prediction range, and the total number of 
lightning falls for this time period is the total number of lightning falls. The accuracy is the ratio of the number of 
lightning falling into the predicted range to the total number of lightning. 

Due to the relative expansion of the thundercloud range after the interpolation of the inverse distance weights, 
the false alarm rate becomes an important indicator to assess whether the predicted lightning fallout area can truly 
and reasonably reflect the thundercloud mass, and the false alarm rate of the lightning prediction for each time 
period is shown in Table 4. The false alarm rate is the ratio of the number of false alarm grids to the total number of 
predicted lightning grids, and the number of false alarm grids is the number of grids that fail to correctly predict 
lightning. Due to the large prediction range, the grid division spacing is chosen to be 0.05°. From Table 3 and Table 
4, it can be seen that the prediction accuracy of this prediction method is more than 80%, and the false alarm rate 
is below 40%. 

Table 3: lightning prediction accuracy 

Forecast time Forecast drop number Thunderbolt Accuracy rate /% 

8:20-8:25 182 204 89.22% 

8:25-8:30 193 231 83.55% 

8:30-8:35 211 252 83.73% 

Table 4: lightning prediction accuracy 

Forecast time Virtual police grid number Grid total Alarm rate /% 

8:20-8:25 67 221 30.32% 

8:25-8:30 83 221 37.56% 

8:30-8:35 91 221 41.18% 

 
III. B. Correlation analysis between lightning activity and terrain features 
III. B. 1) Effect of altitude on lightning activity at different intensity levels 
Based on the terrain classification convention will be plains (h<200m), hills (200m ≤ h<500m), basins (500m ≤ 
h<1000m), and mountains (h≥1000m) in the study area, with plains, hills, basins, and mountains accounting for 
26.71%, 42.92%, 24.83%, and 5.54% of the area, respectively. Inner Mongolia is dominated by hills, and the area 
of high mountains accounts for the least. 

The average annual frequency and density of lightning of each intensity in the study area from 2019 to 2022 are 
shown in Figure 3. As can be seen from Figure 3, the frequency and interval area share of each intensity of lightning 
are basically consistent with respect to the change in elevation, indicating that the larger the interval area share, the 
more lightning occurs within the region. 
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(a) Level 1                      (b) Level 2 

  

(c) Level 3                      (d) Level 4 

Figure 3: Different intensity thunderstorms vary with altitude 

III. B. 2) Influence of slope orientation on lightning activity at different intensity levels 
The slope direction is divided into 9 categories, and the statistical results of each slope direction interval and the 
area share of the interval where it is located are shown in Table 5, and the distribution area of each slope direction 
in Inner Mongolia does not differ much. 

Table 5: The classification and area ratio of the slope of the sea level 

Slope classification Elevation interval /(°) Area ratio /% 

Flatness 0 0.37 

Northern Slope (0,23.4], (341.2,360] 12.54 

Northeast slope (23.4,68.2] 11.88 

East slope (68.2,114.7] 12.67 

Southeast slope (114.7,159.1] 13.74 

South slope (159.1,211.6] 12.94 

Southwest slope (216.6,255.3] 11.97 

Western slope (255.3,295.7] 12.26 

Northwest slope (295.7,344.2] 13.27 

 
Statistics on the frequency and density of lightning of each intensity in Inner Mongolia with the change 

characteristics of slope direction in 2019-2022 are shown in Figure 4. As can be seen from Figure 4, there are 
differences in the density distribution of each intensity of lightning in each slope direction, and this paper defines 
the slope direction with the highest and second highest density values of each intensity of lightning as the prone 
area, and the Class I (weak) lightning prone area is the northeast slope and southwest slope; the Class II (moderate) 
lightning prone area is the northeast slope and southwest slope; the Class III (strong) lightning prone area is the 
northeast slope and northwest slope; and the Class IV (very strong) lightning prone area is the northeastern slope, 
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south slope. In general, the lightning prone areas in Inner Mongolia are the northeast slope, south slope, southwest 
slope and northwest slope. The reason for the above phenomenon may be that Inner Mongolia is affected by the 
subtropical monsoon climate, and the prevailing southwestern monsoon is easily triggered by the convection on the 
windward side due to the uplift of the terrain. 

 

(a) Level 1                      (b) Level 2 

 

(c) Level 3                      (d) Level 4 

Figure 4: Different intensity lightning frequency, density varies with slope 

III. B. 3) Effect of slope on lightning activity at different intensity levels 
Slope classes were classified according to the slope classification method applied by the International Geographical 
Union Commission on Geomorphological Surveys and Geomorphological Cartography on detailed 
geomorphological mapping, and the statistics of each slope classification and area share are shown in Table 6. 

Table 6: The classification of each slope and the product ratio 

Type Slope interval /° Area ratio /% 

Plain [0,0.5) 1.23 

Micro slope [0.5,3) 9.63 

Slow slope [3,6) 16.37 

Slope [6,17) 39.23 

Steep slope [17,37) 36.09 

Steep slope [37,58) 0.95 

Vertical wall [58,93] 0.01 

 
Statistics on the frequency and density of lightning of each intensity in Inner Mongolia from 2019-2022 are 

characterized with slope as shown in Fig. 5. Considering that the three slope intervals of plains, craggy slopes, and 
vertical walls may be more contingent and prone to discrepancies with the overall pattern due to the low frequency 
of recorded lightning and small area share, these three slopes are not included in the analysis of this study. 
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It can be seen that the density of Class IV (very strong) lightning does not change with slope, while the density of 
the other three intensities changes more significantly with slope: the density of Class I (weak) lightning increases 
almost linearly with slope; The density of Class II (moderate) lightning varies with slope in a V-shape; the density of 
Class III (strong) lightning varies with slope in a trough shape; The density of Class IV (very strong) lightning, on 
the other hand, basically does not vary with slope. Therefore, it can be seen that the influence of slope on the 
density of lightning is less and less obvious with the increase of lightning intensity. Statistics on the susceptibility of 
each intensity of lightning to occur on slopes show that Class I (weak), Class II (moderate), and Class III (strong) 
lightning are susceptible to occur on steep slopes, and Class IV (very strong) lightning has the same probability of 
occurring on all slopes. 

 

(a) Level 1                      (b) Level 2 

 

(c) Level 3                      (d) Level 4 

Figure 5: Different intensity lightning frequency, density varies with slope 

Combining the results of the study and in connection with the actual environment, the following suggestions are 
made in four aspects: (1) the sites of flammable and explosive places, large-scale farms, and warehouses of 
hazardous chemicals should avoid the terrains prone to strong lightning and extremely strong lightning; (2) when 
the sites cannot avoid the terrains prone to strong lightning and extremely strong lightning, the lightning protection 
level of buildings and structures should be increased, and the lightning disaster risk assessment should be carried 
out in the pre-design stage; (3) the lightning protection facilities (catching facilities) of buildings and structures 
constructed in the areas prone to strong lightning and extremely strong lightning should be improved. structures of 
lightning protection level, and in the pre-design of lightning disaster risk assessment; (3) construction in the strong 
lightning, very strong lightning prone terrain area of the buildings and structures of lightning protection facilities 
(flashover, surge protector, etc.) are more prone to aging, attenuation, and therefore the need to strengthen the 
inspection patrol, it is recommended to carry out half a year of lightning safety inspection (4) construction in the 
strong lightning, very strong lightning prone terrain areas of the Tourist attractions, large-scale activities, such as 
squares, should be set up to prevent lightning shelter for the masses in a timely and effective hedge. 
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IV. Conclusion 
In this study, based on GIS and spatial interpolation techniques, the correlation between lightning activity and 
topographic features in Inner Mongolia was explored, and a lightning activity prediction model based on the 
improved DBSCAN algorithm was established. The results show that the improved DBSCAN algorithm performs 
well in thundercloud center of mass prediction, with an average offset error of only 1.16 km, which is reduced by 
39.6% and 62.5% compared with linear extrapolation and least squares methods, respectively. The accuracy of 
predicting the area of falling mines reaches 89.22%, 83.55% and 83.73% at 8:20-8:25, 8:25-8:30 and 8:30-8:35, 
respectively, and the false alarm rate is 30.32%, 37.56% and 41.18%, respectively. The topographic characterization 
found that the frequency of each intensity of lightning and the area share of the interval were basically the same 
relative to the change in elevation; the northeastern slope was the common susceptibility area of each intensity of 
lightning, class I and II lightning was also susceptible to occur on the southwestern slope, class III lightning was 
susceptible to occur on the northwestern slope, and class IV lightning was susceptible to occur on the southern 
slope; the slope had a significant effect on the density of class I to class III lightning, and they were generally 
susceptible to occur in the area of the steep slopes, whereas class IV lightning density did does not change with 
the change of slope. This study can provide a scientific basis for the planning and layout of lightning protection 
facilities, lightning disaster risk assessment and accurate early warning in Inner Mongolia, which is of great practical 
significance for improving disaster prevention and mitigation measures and guaranteeing the safe development of 
the region. 
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