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Abstract There are strong coupling relationships among temperature, pressure, flow rate and other parameters in 
the process of human specimen fluid exchange, which are easily affected by external disturbances, leading to the 
decrease of control accuracy and response lag. In this paper, a real-time adaptive regulation method based on fuzzy 
control theory for human specimen liquid exchange process is proposed to solve the problems of poor stability and 
weak anti-interference ability of traditional PID control when facing a nonlinear, multivariable coupled system. The 
study designed a two-input and three-output fuzzy adaptive PID controller to adjust the PID parameters in real time 
with the error and its derivatives as the control inputs, at the same time, the hybrid adaptive particle swarm algorithm 
(HAPSO) was proposed to optimize the parameters of the fuzzy controller through the introduction of the relative 
evolution factor and the particle diversity factor, and combined with the optimization strategy of the small living 
environment. Simulation results show that the HAPSO-optimized fuzzy adaptive PID control system reduces the 
overshooting amount from 10% to 3.5%, the stabilization time from 21 s to 17 s, and the liquid level fluctuation range 
from 18 cm to 6 cm compared with the traditional PID control system. In addition, the optimized system can be 
quickly stabilized at 16 °C and keep smaller fluctuation when the external environment changes in the temperature 
control test, which showing excellent robustness. The study proves that the adaptive regulation method based on 
fuzzy control theory and HAPSO optimization can effectively improve the control accuracy and stability of the human 
specimen liquid exchange process, which provides a new technical solution for the automation control in related 
fields. 
 
Index Terms Fuzzy control theory, adaptive regulation, human specimen fluid exchange, hybrid adaptive particle 
swarm algorithm, parameter optimization, PID control 

I. Introduction 
Human anatomy is one of the most basic morphological subjects in medical schools, which is highly intuitive and 
its practical teaching is very important. In the era of rapid development of science and technology, the teaching and 
learning resources of human anatomy have been greatly enriched, such as resin models, plasticized specimens, 
multimedia teaching resources have basically been popularized in medical schools, and some medical schools have 
even introduced more advanced digital human system and virtual anatomy system [1]-[4]. However, in the teaching 
of human anatomy, no type of teaching resources can replace the position of human specimens in anatomy teaching 
[5]. Human specimens are more capable of attracting students' attention and arousing their interest in teaching, and 
human specimens are more capable of reflecting the real structure of the human body in a more graphic way [6], 
[7]. Therefore, in the actual teaching of human anatomy, teachers mainly teach through human specimens, and 
students mainly learn through the observation of human specimens. 

In the long run, human specimens are scarce resources, in order to better and many times repeated use of human 
specimens, it is necessary to solve the problem of preservation of human specimens [8]. In the history of the 
development of human anatomy, 5% formaldehyde aqueous solution has long played an important role in the 
preservation of human specimens [9]. Formaldehyde, chemical formula HCHO, also known as anthranilic aldehyde, 
is soluble in water and ethanol. The concentration of formaldehyde aqueous solution can be up to 55%, usually 
used 35%~40% formaldehyde aqueous solution, called formalin, is a colorless liquid with a strong irritating odor 
[10]-[13]. A large number of studies have confirmed that formaldehyde is a highly toxic substance, which has a huge 
harmful effect on the human body [14]. Although formaldehyde has a great harm to the human body, but 
formaldehyde is very easy to combine with protein amino group to make it denatured, and can fix the lipid material, 
strong penetration, sterilization, antiseptic effect is good, but also has the preparation of convenient, cheap and 
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many other advantages [15]-[17]. Therefore, 5% formaldehyde aqueous solution, is still the most commonly used 
preservation fluid for human specimens [18]. In view of the almost irreplaceable nature of formaldehyde in the 
preservation of human specimens, as well as the serious hazardous effects on human health, scholars in recent 
years have studied the optimization of the process of changing the fluid of human specimens, aiming to reduce the 
impact of formaldehyde on human health [19]-[21]. 

Liquid exchange of human specimens is an essential process for preserving human tissues or organs, and its 
quality directly affects the preservation effect of specimens and the value of subsequent research. In the process of 
fluid exchange, temperature, pressure, flow rate and other parameters need to be precisely controlled, but there 
are complex nonlinear relationships and strong coupling characteristics between these parameters, and the 
traditional control methods are difficult to meet the requirements of high precision and high stability. PID control is 
widely used in industrial process control because of its simplicity and ease of use, but in the face of the human 
specimen fluid exchange of this kind of nonlinear, time-varying, multivariable system, fixed-parameter PID controller 
shows obvious limitations, such as response lag, large overshooting, and interference. However, in the face of such 
nonlinear, time-varying, multivariable systems as human specimen fluid exchange, fixed-parameter PID controllers 
show obvious limitations, such as response lag, overshooting, and poor interference resistance. In recent years, 
the development of intelligent control theory provides a new method for solving the control problems of complex 
systems. Fuzzy control, as a control strategy based on human empirical knowledge, can deal with the uncertainty 
and nonlinear characteristics of the system and realize effective control without the need of an accurate 
mathematical model. However, the design of traditional fuzzy controllers relies on expert experience and lacks a 
systematic approach to parameter adjustment, making it difficult to obtain optimal control. Particle swarm 
optimization (PSO) algorithm, as an efficient population intelligence optimization algorithm, shows advantages in 
solving high-dimensional nonlinear optimization problems, but the standard PSO algorithm is prone to converge 
prematurely and fall into local optimal solutions. Therefore, combining fuzzy control theory and improved 
optimization algorithms to design an efficient adaptive control system applicable to the fluid exchange process of 
human specimens has become an important topic of current research. At present, domestic and international 
research on such systems mainly focuses on the industrial process control field, and relatively little research has 
been conducted for the special biomedical application of human specimen fluid exchange.Wu et al. (2025) proposed 
a bi-asynchronous fuzzy control method based on the triggering of memory events, which effectively improves the 
control performance of the semi-Markovian jump system.Abdellatif et al. (2025) combined the hybrid machine 
learning and multi-objective particle swarm optimization algorithms to structural seismic design and achieved good 
results.Ezlin et al.(2024) proposed an improved inverse analytic logic mining model in discrete Hopfield neural 
networks to optimize the training of small habitat genetic algorithms. These studies provide important theoretical 
and methodological references for this paper. 

In this study, a real-time adaptive regulation method based on fuzzy control theory to optimize the fluid exchange 
process of human specimen is proposed. Firstly, a two-input and three-output fuzzy adaptive PID controller is 
designed to realize the dynamic adjustment of the control parameters, secondly, a hybrid adaptive particle swarm 
algorithm (HAPSO) is proposed to solve the problem that the standard PSO algorithm is easy to fall into the local 
optimum through the introduction of relative evolutionary factor and particle diversity factor and the combination of 
the small habitat optimization strategy, finally, the HAPSO algorithm is applied to optimize the parameters of the 
fuzzy PID controller, and the effectiveness of the proposed method is verified by simulation experiments. The 
innovation of this study lies in the organic combination of fuzzy control theory and improved optimization algorithm, 
which provides a high-precision and high-stability adaptive control scheme for the human specimen liquid exchange 
process. By improving the inertia weight adjustment strategy in the particle swarm algorithm, the algorithm's global 
searching ability and local refinement searching ability are enhanced, so as to obtain better control parameters. 

II. Fuzzy control-based real-time regulation method for human specimen fluid exchange 
process 

In this chapter, fuzzy adaptive PID controller design is based on fuzzy PID control theory, and the standard particle 
swarm algorithm is improved to propose a hybrid adaptive particle swarm algorithm (HAPSO), which is applied to 
optimize the fuzzy adaptive PID controller, so as to realize real-time adaptive regulation of the human specimen 
liquid exchange process. 

 
II. A. Fuzzy PID control theory 
Fuzzy control [22] takes fuzzy mathematics as the theoretical basis and automatic control principle and computer 
control as the technical support. Fuzzy mathematics mainly includes fuzzy set theory, fuzzy language knowledge 
expression and fuzzy rule reasoning. 
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II. A. 1) Fuzzy control fundamentals 
The fuzzy control algorithm first needs to convert the clear rules in the fuzzy direction. The error E  is obtained by 
differing the process value obtained by sampling from the set value and is used as an input value for the fuzzy 
controller. The input error E  is fuzzified and calculated by fuzzy control rule R . A fuzzy vector e  can be obtained 
for error E . In fuzzy control, the fuzzy control quantity u  is the product of fuzzy vector e  and fuzzy control rule 

R , Eq: 

 *u e R  (1) 

The overall structure of the fuzzy control system is shown in Fig. 1, the sensor collects the value of the controlled 
object and the value obtained by making difference with the reference value, and then enters into the fuzzy control 
inference part through A/D converter, and then goes through the fuzzy quantization, fuzzy control rule inference, 
fuzzy decision-making to calculate the fuzzy quantity, and then finally obtains the digital control quantity through the 
non-fuzzy processing. This closed-loop control realizes the whole fuzzy control. 
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Figure 1: Structure of the fuzzy control system 

II. A. 2) Basic structure of a fuzzy controller 
Fuzzy control generally consists of four parts: fuzzy controller, input/output interface device, generalized object, and 
sensor. Compared to the traditional control system, fuzzy control system is the replacement of the traditional 
controller with a fuzzy controller. Therefore, fuzzy controller (FC) is the most important part of fuzzy control system. 
Fuzzy inference controllers are a class of linguistic algorithmic controllers, which control based on established 
linguistic rules and later output the corresponding control quantities. 

(1) Input interface 
The main role of input interface is fuzzification. Fuzzification mainly refers to the process of transforming the clear 

values of the input into fuzzy subsets and affiliation functions by appropriate changes. Fuzzification is indispensable 
because in order to adapt these clear values to the inference rules constructed by the linguistic expressions in 
subsequent calculations, they need to be converted into fuzzy quantities, i.e. fuzzy subsets. For the number of fuzzy 
subsets, the control accuracy can be improved when the number is high, but when the number is high, the number 
of fuzzy rules will correspondingly grow more rapidly, thus increasing the amount of computation substantially, and 
the number of fuzzy subsets is generally chosen according to the arithmetic power of the computer and the 
complexity of the algorithms, and the larger the number of fuzzy subsets, the greater the control accuracy, and, at 
the same time, it will be accompanied by the enhancement of the demand of the arithmetic power of the computer 
and the program's computation With the time increase. 

(2) Knowledge base 
A knowledge base generally consists of a database and a rule base. The database holds the set of affiliation 

functions for input-output calculations. It can provide data support to the reasoning machine in the process of 
causing reasoning, and generally converts digital quantities into fuzzy quantities. The rule base provides a series of 
control rules in the reasoning machine reasoning, stored in the approximate reasoning in some of the conditional 
choice statements and some algorithms in the approximate reasoning. 

(3) Fuzzy Reasoning and Clarification 
According to the input fuzzy quantities, according to the fuzzy inference rules in the knowledge base, fuzzy 

inference in the form of linguistic inference so as to solve the relationship, this process is fuzzy inference. The fuzzy 
reasoning obtained is still a fuzzy set, which is often the output of an irregular multi-segment set due to the 
computation of the affiliation function. Clarification, i.e., defuzzification interface needs to map these multi-
segmented, irregular fuzzy sets into a representative value, and finally output an exact output as the output of the 
controller. 
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II. A. 3) Fuzzy adaptive PID controller design 
In this paper, the controlled object is the process of human specimen liquid exchange, and the adopted controller 
selects the program of two inputs and three outputs, the fuzzy controller takes the deviation e  and its derivative 
ec  as the control inputs, and the outputs are the three parameters of the PID controller, and the PID controller is 
updated directly. For different controlled object deviation and deviation derivatives, the fuzzy controller will input 
different proportional, integral and differential parameters to the PID controller, which can be used for different 
processes, the fuzzy PID controller is able to adaptively find the optimal control parameters of the PID, so as to 
have better stability and dynamic characteristics. The principle of fuzzy adaptive PID controller is shown in Figure 
2. 
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Figure 2: Principle of fuzzy adaptive PID controller 

II. B. Particle Swarm Algorithm Improvement 
II. B. 1) Standard Particle Swarm Algorithm 
The particle swarm algorithm [23] first initializes a group of random particles (random solutions), the goodness of 
the solutions is determined by a fitness function, then the particles update themselves by following the current 2 
optimal solutions, the first one is the particle itself and the second one is the optimal solution currently found by the 
whole population. Finally, the search is carried out by the particles continuously following the 2 optimal solutions 
until a specified number of iterations is reached or a preset arithmetic accuracy is satisfied. In this case, the particle 
velocity and position update iteration formula is shown in equation (2): 
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where ,k k
i ix v  denotes the speed and position of the i nd particle in the k rd iteration, respectively, 

1c  denotes the 
degree of self-cognition, which is used to track the current individual optimal position of the i th particle 

ipbest , 
2c  

denotes the degree of cognition of the group, which is used to track the current global optimal position of the whole 
population gbest , 

21,r r  is a random number in the interval [0,1], and   refers to the inertia weights. 
The standard particle swarm algorithm adjusts   linearly and is calculated as in equation (3): 

 max min
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k
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
   (3) 

The particle swarm algorithm is usually defaulted to the standard particle swarm algorithm, and the flow of the 
algorithm is shown in Figure 3. 
II. B. 2) Improved methods for dynamic adaptive weighting 
In the standard particle swarm algorithm,   varies linearly with the number of iterations, and for some nonlinear 
complex function optimization problems, the use of linear decreasing weight adjustment formula often makes the 
population fall into the local optimal solution due to the lack of improvement in the enlightenment of the particles. 
Moreover,   is not linked to the actual algorithm execution state, and is only related to the number of selected 
generations, which lacks certain rationality. Based on this, this paper proposes an adaptive weight adjustment 
strategy that is nonlinear and combines the state of the algorithm's generation selection process. 

In the iterative process of the algorithm, the distance between the individual optimal value of different particles 
and the optimal value of the group of this iteration is different, if the same weight is set, the particles that are farther 
away from the optimal value of the group position close to the group are obviously slower, which affects the efficiency 
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of the search, so in order to make these particles close to them faster, their inertia weights can be increased so that 
they have a faster flight speed. In addition, in the late stage of generation selection, in order to enable the algorithm 
to search the nearby neighborhood more finely, the inertia weights of the particles at this time should be set to be 
smaller. 
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Figure 3: Flowchart of the standard PSO algorithm 

For this reason, this paper introduces 2 indicators for the improvement of the weight adjustment strategy: relative 
evolution factor 

il  and particle diversity factor tg . 
Among them, the relative evolution factor 

il , which associates the state information of each particle with the 
inertia weights to determine the distance between the individual optimal values of different particles and the group 
optimal values, thus adjusting the inertia weights, can be expressed as: 

 , .

, .
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where, 
,gbest kF  is the global optimal fitness value of the k nd iteration, 

,i kF  is the i th particle fitness value of the 

k th iteration. 
It can be seen that in each iteration, the closer the individual optimal value of particle i  is to the global optimal 

value of this iteration, 
il  the closer it is to 1. 

The particle diversity factor tg , on the other hand, is to determine whether the algorithm has reached the late 
iteration, because the later the iteration, the lower the particle diversity, which can be indirectly represented by the 
standard deviation   of the different particle fitness values 

,i kF  to calculate the degree of its dispersion: 
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where, N  is the total number of particles. 
For the particle swarm algorithm, let 

i  be the weight of the i rd particle, the smaller the relative evolution factor 
is, indicating that the further away from the population optimum, then the larger it should be, thus enabling the 
particle to fly faster to the neighborhood of the optimal solution. The lower the particle diversity is, the later the 
iteration is, the smaller it should be, enabling the algorithm to perform a finer search, and thus can be expressed in 
equation (8): 

 1i i i igl tg        (8) 
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where 
1, tg   is a constant, 

1  takes the value of [0.4,0.6] and 
tg  takes the value of [0.05,0.20]. 

However, due to the particle “close” phenomenon, the algorithm will fall into a local optimum when the diversity 
of particles is poor. In order to set up a diversity critical index 

reftg , when 
reftg tg , when the particle diversity is 

poor, can be introduced into the small habitat optimization population strategy to optimize, improve the diversity, 
jump out of the local optimum. 

 
II. B. 3) Strategies for optimizing populations in microhabitats 
The small habitat optimization population strategy [24] is to first merge the offspring population after crossover and 
mutation with the parent population to form a new population, and then use pre-selection and crowding to select the 
better adapted part from it to continue the next iteration, which better maintains the diversity of the population, and 
can well jump out of the locally optimal solution, the steps are as follows: 

(1) Perform selection, crossover, and mutation operations on the population. 
(2) Combine the M  genetically produced offspring individuals with the N  parent individuals and calculate the 

Hemming distance between every 2 individuals in the new population using the following formula: 
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where d  is the dimension of 
ix  and 

jx . 
Denote the small habitat radius by S . When || ||i jx x S  , penalize the less adapted of the two using Eq. (10): 

 
min ( , )i jF x x Peanlty  (10) 

(3) Rank the fitness of individuals in the new population and select the N  individuals with the best fitness as the 
parent population for the next iteration of the particle swarm algorithm. 

 
II. B. 4) HAPSO algorithm flow 
The specific flow of HAPSO algorithm is as follows: 

Step1: Initialize the initial position and velocity of the particle. 
Step2: Calculate the individual optimal fitness value and global optimal fitness value to obtain the particle's 

individual optimal position 
ipbest , this iteration global optimal position gbest . 

Step3: Calculate the relative evolution factor and diversity factor of the population according to Eqs. (4)~(7), and 
get the inertia weight 

i  of each particle, when 
reftg tg , execute Step5, otherwise execute in order. 

Step4: Execute the small habitat optimization population strategy to select the N  individuals with the best fitness 
as the parent population for the next iteration of the particle swarm algorithm. 

Step5: Judge whether the termination condition is reached, if not, update the particle velocity and position 
according to equation (2) and return to Step2. otherwise, the algorithm ends the run. 

 
II. C. Parameter optimization of HAPSO-based fuzzy PID controller 
In adaptive fuzzy PID control system, in addition to the fuzzy rules having an effect on the system performance, the 
quantization factor and the initial PID parameters also affect the control effect. The HAPSO algorithm is used to 
optimize the five parameters, the quantization factor of the error and the rate of change of the error as well as the 
initial parameter values of the PID 

0 0 0, ,p i dK K K  in the adaptive fuzzy PID controller, to obtain the optimal values 
so as to obtain a good control effect. 

The schematic diagram of HAPSO optimized fuzzy PID is shown in Fig. 4. 
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Figure 4: The principle of HAPSO optimizing fuzzy PID 
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The fitness function uses the ITAE metric, i.e: 
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The HAPSO optimized fuzzy PID flowchart is shown in Fig. 5. 
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Figure 5: Flowchart of HAPSO optimizing fuzzy PID 

The HAPSO algorithm optimizes the fuzzy PID parameters through a three part program. The first part of the 
HAPSO optimization program written by MATALB, the second part is the SIMULINK simulation model, and the third 
part is the linking program between the HAPSO optimization program and the SIMULINK simulation model. 

(1) HAPSO optimization program 
In order to send the optimization parameters of the adaptive fuzzy PID controller to the connection program 

pso_fuzzypid.m, it is implemented by calling the function handle through the feval function. 
(2) SIMULINK simulation modeling 
SIMULINK system simulation model for HAPSO optimization is established on the basis of adaptive fuzzy PID 

controller. Add the indicator part of human specimen liquid exchange process in the model. It is obtained by 
integrating the product of time and absolute value of error, and setting the output value of output port 1 will be used 
as the adaptation value of HAPSO algorithm. 

(3) Connection program 
In the connection procedure, firstly, the parameters optimized by the particle swarm algorithm are assigned to the 

SIMULINK model by using the assignin function, then the SIMULINK model is run by using the sim function, and 
finally, the simulation results, i.e., the value of the fitness function, are returned to the HAPSO optimization procedure, 
and the cycle of operation continues until the iteration condition is reached. 

III. Simulation analysis of adaptive fuzzy PID controller optimization 
In order to verify the practical effect of the proposed HAPSO-based adaptive fuzzy PID controller in regulating the 
human specimen liquid exchange process, simulation experiments are conducted in this chapter to compare the 
performance of the HAPSO algorithm and evaluate the control effect of the adaptive fuzzy PID controller, 
respectively. 
 
III. A. Simulation of HAPSO-based PID controller parameter optimization 
The conventional step signal is used as input, and the PID parameters are tuned using the HAPSO and Z-N methods, 
and simulation experiments are carried out to obtain the comparison curves of the PID parameters tuned by the 
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HAPSO and Z-N methods as shown in Fig. 6. When the liquid level in the human specimen container is initially set 
to 260 cm, the rise time of the PID controller tuned by the ordinary Z-N method and the PID controller optimized by 
HAPSO are 5.8 s and 6.2 s, the overshooting amount is 23% and 13%, and the steady state time is 30 s and 24 s. 
It can be seen that, with the optimization of the PID parameters by HAPSO, the overshooting amount and the steady 
state time are significantly reduced and the control effect is improved. are significantly reduced and the control effect 
is improved. 

 

Figure 6: Comparison of PID parameters tuned by HAPSO and Z-N methods 

Based on the premise of good calibration effect of HAPSO algorithm, the initial liquid level is set to 170cm, 
simulation experiment is carried out, and the set liquid level is changed to 260cm at 40 s. Ordinary PID and fuzzy 
adaptive PID are respectively used to control the liquid exchange process of human specimen, tracking the control 
effect, and obtain the comparison of the response curve between the PID and the fuzzy adaptive PID, such as 
shown in Fig. 7. 

It can be seen that the fuzzy adaptive PID optimized by HAPSO improves the overshooting amount and steady 
state time indexes compared with the ordinary PID optimized by HAPSO, which can better satisfy the response 
requirements of the system, and the tracking and stabilizing effect is better than that of the ordinary PID. 

 

Figure 7: Comparison of PID and fuzzy adaptive PID response curves 

A comparison of the performance of the system when reaching the first steady state is shown in Table 1. The 
results show that the fuzzy adaptive PID control overshoots and the time to reach steady state are significantly 
reduced. 

Table 1: Comparison of Simulation Results 

Algorithm Overadjustment /% Stabilization time /s Liquid level /cm 

PID 10 21 169~187 

Fuzzy Adaptive PID 3.5 17 170~176 

 
III. B. Simulation of control effect of adaptive fuzzy PID controller 
III. B. 1) Comparison of Adaptive Fuzzy Control and PID Control Results 
Comparison of the results of the step response using adaptive fuzzy PID control and PID control system is shown 
in Fig. 8. From the comparison results, it can be seen that the stability and anti-interference ability of adaptive fuzzy 
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PID control is better than conventional PID control. In the process of responding to the step temperature control 
command, the temperature overshoot caused by adaptive fuzzy PID control and only PID control algorithm is small 
and can be stabilized quickly. Temperature stabilization control, the external ambient temperature and thermal load 
sent to change, adaptive fuzzy PID control can make the control temperature quickly stabilized, volatility is small, 
anti-interference ability, while only using PID control algorithms of the controller by the outside world is more likely 
to destabilize and easy. As a result, the adaptive fuzzy PID control has fast response, short stabilization time, and 
better adaptability to the load changes, and the control system has good followability, stability and robustness. 

 

Figure 8: The step response results of adaptive fuzzy PID control and PIDD control systems 

III. B. 2) Comparison of adaptive fuzzy control results before and after optimization 
The variation curve of the cost function adaptation value with the number of optimization iterations for the 
optimization of the human specimen fluid exchange process using the HAPSO algorithm is shown in Fig. 9. It can 
be seen that after 50 optimization iterations, the cost function adaptation value is stable at around 525. 

 

Figure 9: The curve of the cost function varying with the number of optimization iterations 

The simulation results of the fuzzy adaptive PID controller after optimization with HAPSO are compared with the 
simulation results when the parameters are not optimized in the same graph, and the corresponding system 
response curves of the optimal control parameters during the optimization iteration process are shown in Fig. 10, 
and the optimized controller has a faster transient response speed and smaller steady-state error, which 
demonstrates the effectiveness of the HAPSO optimization algorithm. 

The temperature of both control schemes was finally stabilized at 16°C within the normal range of 4~25°C. 
However, it is obvious from the curve that the temperature output curve of the human specimen liquid exchange 
process optimized by the HAPSO algorithm has the characteristics of small overshooting amount, short rise time, 
short regulation time and small stabilization error, and the control system has a more excellent control performance. 
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Figure 10: The output of the fuzzy adaptive PID controller before and after optimization 

IV. Conclusion 
In this paper, through the combination of improved particle swarm algorithm and fuzzy control theory, a real-time 
adaptive regulation method for human specimen liquid exchange process is constructed. The experimental data 
show that, compared with the PID controller tuned by ordinary Z-N method and the PID controller optimized by 
HAPSO, when the initial liquid level is set to 260 cm, the former has a rise time of 5.8 s, an overshooting amount of 
23%, and a steady state time of 30 s, while the latter has a rise time of 6.2 s, an overshooting amount of only 13%, 
and the steady state time is shortened to 24 s. Based on the good HAPSO rectification effect, the fuzzy adaptive 
PID control was further optimized. The adaptive value of the cost function is stabilized at about 525 after 50 
optimization iterations, which verifies the convergence of the algorithm. In the tracking control test when the initial 
liquid level is set to 170 cm and the set level is changed to 260 cm at 40 s, the fuzzy adaptive PID controller shows 
less volatility and stronger anti-interference ability in the temperature stabilization control, which enables the control 
temperature to quickly reach and stabilize at 16 °C, which is located within the normal temperature range of 4 °C to 
25 °C for the preservation of human specimens. The hybrid adaptive particle swarm algorithm proposed in this study 
effectively overcomes the problem that the standard PSO algorithm is prone to fall into local optimum by introducing 
the relative evolution factor and particle diversity factor and combining the small habitat optimization population 
strategy. The experimental results prove that the real-time adaptive regulation method based on fuzzy control theory 
has obvious advantages in the control of human specimen liquid exchange process, which provides a new technical 
idea for similar control systems with high precision and strong robustness requirements. 
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