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Abstract The microscopic heat transfer mechanism of metallurgical materials has a significant impact on the 
material properties, and the traditional numerical methods are difficult to deal with complex boundary conditions and 
multi-scale heat transfer problems. In this paper, the lattice Boltzmann method (LBM) is adopted to study the 
microscopic heat transfer mechanism of metallurgical materials, and a large-vortex simulation framework based on 
the D3Q19 model is established, and the coupling of the phase field method and the lattice Boltzmann method (PF-
LBM) is realized. The study simplifies the Boltzmann equation through the BGK collision operator, introduces the 
Smagorinsky sublattice model to deal with turbulence, and employs the bounce format and the nonequilibrium 
extrapolation format to deal with boundary conditions. The flow field, temperature field, solute field and phase field 
are coupled to realize the multi-field coupled simulation in micro-macroscopic scale. The results show that in the 
simulation of heat transfer power loss of the torque converter, the simulated value of 15.62 kW agrees well with the 
experimental value of 16.82 kW when the rotational speed is 1600 r/min; in the simulation of discontinuous heat 
transfer in nanoscale, the D2Q37 lattice model effectively overcomes the internal unphysical temperature jump 
effect and the boundary accuracy is improved by 27% when Kn = 0.42. The conclusion confirms that the method 
can accurately simulate the heat transfer process of metallurgical materials at different scales, which provides a 
theoretical basis for optimizing the thermal properties of materials. 
 
Index Terms Lattice Boltzmann method, Microscopic heat transfer, Large-vortex simulation, Phase-field method, 
Multi-field coupling, Nanoscale 

I. Introduction 
Mesoscopic kinematics methods based on the Boltzmann equation have been the hotspot and frontier of 
computational fluid dynamics research in recent years, and nowadays a variety of algorithms, such as the lattice 
Boltzmann method (LBM), gas kinematics format (GKS), gas kinematics algorithm (GKFS), and the lattice 
Boltzmann flux algorithm (LBFS), have been developed [1]-[4]. This class of algorithms not only effectively connects 
the macroscopic computational fluid dynamics methods oriented to continuous media and the microscopic 
computational methods based on molecular kinetics, but also has been successfully applied in many complex flows 
of metallurgical materials [5]. 

The lattice Boltzmann algorithm has been continuously developed in recent years and has now been applied to 
a number of fields such as moving boundaries, multiphase flows, incompressible isothermal flows, incompressible 
heat transfer fluid flows and incompressible conjugate heat transfer problems [6]. For example, Liu, Y et al [7] used 
the lattice Boltzmann method to simulate non-Fourier heat transfer and analyzed the effects of relaxation time, 
shape, and substrate temperature oscillations on heat transfer efficiency under periodic boundary conditions. Kiani-
Oshtorjani, M et al [8] used a novel lattice Boltzmann method to investigate the conjugate heat transfer phenomenon 
in mixtures of fluids and particle clusters and also explored its effect on thermal conductivity based on the particle 
contact and thermal conductivity ratio. Mishra, S. C et al [9] extended the lattice Boltzmann method to the study of 
radiative heat transfer mechanisms in one-dimensional planar media by introducing a new lattice for volumetric 
radiative calculations and verifying the accuracy of the results by using it with the finite volume method. Samian, R. 
S et al [10] used a finite volume lattice Boltzmann method to simulate transient heat transfer from the macroscopic 
scale to the microscopic nanoscale, validating the model against Fourier's law. 

It is important to note that flow and heat transfer in the field of metallurgical materials often occur in complex 
regions or within porous media [11]. These two types of problems involve complex heat-flow-solid interactions, thus 
designing efficient algorithms for these two types of problems is a challenging task [12]. Traditional numerical 
methods use finite difference and finite element methods to obtain detailed information about the flow field as well 
as the temperature field, etc. The LBM method has many advantages that are unmatched by the traditional methods, 
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and is well suited for dealing with flow and heat transfer problems under complex boundaries and in porous media 
[13], [14]. Qin, X et al [15] used the lattice Boltzmann method and fractal model to simulate and analyze the heat 
transfer mechanism in porous media and explored its effectiveness in predicting thermal conductivity and 
understanding the thermophysical mechanisms. Wang, C. H et al [16] also used the lattice Boltzmann method to 
numerically simulate the convective heat transfer mechanism in a porous medium with a rectangular heat source 
and explored the effects of various parameters on the heat exchange and flow field, and validated the results by 
comparing them with experimental data. Abchouyeh, M. A et al [17] numerically investigated water based nanofluid 
containing Cu nanoparticles, flowing in a channel and natural convection heat transfer by using lattice Boltzmann 
method and analyzed the effect of different parameters on the heat transfer efficiency. 

The heat transfer characteristics of metallurgical materials directly affect their processing and utilization properties, 
while the micro-scale heat transfer mechanism is the fundamental factor determining the macroscopic thermal 
properties of materials. The traditional continuum mechanics approach has limitations in dealing with the microscale 
heat transfer problem, especially in the case of significant interfacial effects and scale effects, the accuracy of the 
classical heat transfer theory decreases dramatically. The lattice Boltzmann method, as a mesoscopic numerical 
method based on molecular dynamics theory, describes the fluid flow and heat transfer process by tracking the 
evolution of the distribution function of discrete particles, and shows unique advantages in dealing with the problems 
of complex boundaries, multiphase flow, and micro- and nanoscale heat transfer. The method is not only able to 
naturally deal with complex geometries and boundary conditions, but also able to reveal the physical mechanism of 
heat transfer directly from the microscopic level. In recent years, the application of the lattice Boltzmann method in 
the field of materials science has gradually increased, especially in the study of heat and mass transfer during the 
solidification process of materials, phase transition dynamics, etc. Important progress has been made. However, 
combining the lattice Boltzmann method with other numerical methods to construct a computational framework for 
multi-scale and multi-physics field coupling is still a challenging research topic. In this study, a numerical simulation 
framework for microscopic heat transfer in metallurgical materials is constructed based on the lattice Boltzmann 
method, which employs the D3Q19 lattice model and the BGK collision operator, and combines with the large eddy 
simulation technique to deal with turbulence effects. By coupling the lattice Boltzmann method with the phase field 
method, a multi-field coupling model of PF-LBM is established to realize the synergistic evolution of the flow field, 
temperature field, solute field and phase field. The research focuses on solving the key technical problems such as 
boundary condition processing, parameter dimensionlessness and data exchange between multi-fields. The 
accuracy and applicability of the established model are verified through two typical cases, namely, the simulation of 
heat conduction power loss in torque converter and the simulation of discontinuous heat transfer at nanoscale, to 
reveal the heat conduction mechanism of metallurgical materials at different scales. 

II. LBM-based simulation model of microscopic heat transfer in metallurgical materials 
II. A. Lattice Boltzmann Method (LBM) 
The lattice Boltzmann method (LBM) [18], as a numerical simulation method for complex flows, has the advantages 
of simple form and easy handling of complex boundaries, and has received extensive attention from scholars. 

In the LBM method, a simple regular distribution function of microscopic particles is used to represent the discrete 
particles in a certain velocity space and position space, and the discrete particles are bound to the corresponding 
grid nodes, and the discrete velocity model is established through the evolution equation to derive the distribution 
function of discrete particles, and then the macroscopic variables, such as density and velocity, are obtained by the 
direct calculation based on the distribution function of the particles.The LBM calculates the macroscopic density of 
the fluid based on the distribution function and macroscopic velocity, which is different from the traditional numerical 
method of directly discretizing and solving the Navier-Stokes equations, and its derivation process is similar to the 
molecular dynamics model (MD). 

Boltzmann equation is based on the systematic theory, combined with microscopic discrete particles and 
macroscopic fluid flow through the mesoscopic method for describing the non-equilibrium state of the distribution 
function evolution law of the equation, can also be obtained from the continuous Boltzmann equation. the basic 
model of the LBM is currently D1Q3, D2Q5, D2Q9, D3Q19 and so on. 

The Boltzmann equation is a conservation equation that describes the spatial and temporal variation of the particle 
velocity distribution function f : 

 ( )
f

f f
t


   


 (1) 

where   denotes the velocity of the particle and ( )f  is the collision operator that represents the effect of the 
collision. Discretization of this equation yields the lattice Boltzmann equation (LBE): 
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 ( , ) ( , ) ( )i i i if x c t t t f x t f        (2) 

Due to the extremely complex nonlinear integrals of the collision operator design, the Boltzmann equation is very 
limited in its application, and many kinds of simplified collision operators or collision models have been proposed 
for this purpose.The BGK model is the simplest and the most commonly used collision operator model, which is 
represented by the collision operator as: 

 1
( , ) ( , )eq

i i if x t f x t

       (3) 

With the introduction of the BGK model, the lattice Boltzmann equation can be approximated as: 

   1
, ( , ) ( , ) ( , )eq

i i i i if x c t t t f x t f x t f x t

           (4) 

where ( , )if x t  is the distribution function of the discrete velocity of the particle at moment x  at moment t  for 
ic , 

  is the relaxation time, t  is the time step, and eq
if  is the corresponding equilibrium state distribution function. 

Among the BGK models, the DnQb  model ( n  is the number of spatial dimensions and b  is the number of 
discrete velocities) is the most representative.The D3Q19 model has 19 discrete velocities in three dimensions. 

In the D3Q19 model, the equilibrium distribution function can be expressed as: 
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where 
i  is the weighting factor and 

sc  is the speed of sound. 
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The macroscopic density and macroscopic velocity can be calculated from equation (7): 

 ,i i i
i i

f u c f     (7) 

II. B. Large eddy simulation based on the lattice Boltzmann method 
The Large Eddy Simulation (LES) [19] method is a spatial averaging of turbulent pulsations that separates large-
scale eddies from small-scale eddies by some filter function, where large-scale eddies are simulated directly and 
small-scale eddies are closed by a model. The basic approach to large eddy simulation is to simulate large-scale 
motions by directly solving the N-S equations and small-scale motions by sublattice format. The first step in large 
eddy simulation is to perform a filtering operation: 

 ( ) ( ) ( , )dw x w x G x x x    (8) 

where w  is the velocity, density and other flow field macroscopic quantities, and G  is the spatial filtering function. 
Assuming that the filtering process and the derivation process can be exchanged and the filtering operation is used 
in the N-S equation, the corresponding filtering control equation can be obtained. 

Continuity equation: 

 0i

i

u

x





 (9) 

Momentum equation: 
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
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 (10) 

where 
ij  is the Reynolds stress: 

ij i j i ju u u u   . 
Currently, the more commonly used subgrid-scale model for turbulence is the Smagorinsky model: 
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where 
ij  is the Kronecker tensor; 

t  is the vortex viscosity coefficient; | |S  is the mode of the large-scale strain 
tensor 

ijS ; C  is Smagorinsky's constant, 0C  ; and   is the filter width. 
In this paper, we use large eddy simulation (LBM-LES) based on the lattice Boltzmann method, following the idea 

of the Smagorinsky sublattice model [20], keeping the equilibrium distribution function in the model unchanged, as 
well as the relation between the chirp time and the viscosity in the original model, viz: 

 2 1

6
tot

tot





  (14) 

In Eq. (15), the total viscosity coefficient 
tot  is divided into two components, the physico-dynamic viscosity 

0  
and the eddy viscosity 

t : 

 
0tot t     (15) 

Eq. 2
t C S   . 

thus obtaining: 
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Derived from the unbalanced part of the distribution function of the filtered nodes: 
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By joining the above equations, S  can be obtained. 
At this point, the evolution equation for D3Q19 becomes: 

 
1

( , ) ( , ) ( , ) ( , )eq
i i i i i

tot

f x c t t t f x t f x t f x t


           (20) 

The total collision operator in the BGK model can be solved by bringing in 
tot , | |S , and substituting into the 

evolution equation. 
 

II. C. Computational parameters and boundary conditions 
The geometry of the computational domain for the numerical simulation of the backstage flow is shown in Fig. 1. 
The fluid flows along the X -axis from the left side of the channel with the velocity calculated from the Reynolds 
number, which is changed by changing the inlet velocity, and exits from the right side of the channel at the outlet, 
which is a pressure outlet with a pressure of 101 kPa. The upper and lower walls and the step wall are in the 
standard rebound format while the front and rear walls of the channel are in the non-equilibrium extrapolated 
boundary conditions. The step is located on the left side of the channel and has a length of L , a width of D  and 
a height of H . The length of the channel is 

cL , the width is 
cD  and the height is 

cH . 
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Figure 1: The three-dimension al model of back- facing step flow 

Boundary Condition Processing When using some kind of macroscopic physical boundary conditions to process 
the boundary problem in the lattice Boltzmann method, the appropriate boundary format will have a direct impact 
on the numerical accuracy, stability and solution efficiency. In the LBM model, the macroscopic physical quantities 
are not involved in the evolution, and the distribution function of the internal flow field nodes can be obtained by 
using the collision and migration rules, and the part of the distribution function on the boundary nodes has to be 
determined according to the known boundary condition settings or macroscopic physical quantities. Choosing a 
reasonable boundary processing method can improve the numerical computation accuracy, computational 
efficiency and computational stability. In this paper, the solid-liquid boundary of the flow field is processed using the 
bounce format, the external boundary of the solute field is used as a diffusion-free boundary, the solid-liquid 
boundary is used in the bounce format, and the temperature field does not deal with the solid-liquid boundary, and 
the external boundary is used in the non-equilibrium extrapolation format. 

(1) Bounce format 
Bounce format is a simulation of stationary solids, the most commonly used processing method to deal with 

moving boundary conditions. Along the solid wall of the boundary movement of the incident particles touch the solid 
wall, to the opposite direction of the movement of the rebound back to the fluid domain, before and after the collision 
of the speed of the moving particles does not change, but the direction of movement is opposite. This rebound 
format is easy to implement, easy to write the program, can ensure that the system's mass, momentum conservation 
and no slip velocity, the solution accuracy is only first order. 

(2) Non-equilibrium extrapolation format 
The basic idea of the non-equilibrium extrapolation format is to decompose the distribution function on the 

boundary into two parts: the equilibrium distribution function that constructs a new approximate equilibrium state 
according to specific macroscopic boundary conditions and the non-equilibrium distribution function that uses the 
non-equilibrium portion of the adjacent fluid node to replace the non-equilibrium distribution function, and the non-
equilibrium distribution function is determined by extrapolation using the first-order accuracy. The format has 
second-order accuracy and can well handle flow boundary problems such as velocity and pressure boundaries, and 
can also be used to deal with isothermal and adiabatic boundary problems for thermal flows. 

 
II. D. PF-LBM coupling modeling 
The phase field method (PFM), as the most effective method to simulate the phase transition process of alloy 
solidification microstructure evolution, introduces the phase field variables in the phase field control equation, and 
couples the LBM flow field and external fields such as the temperature field and solute field into the phase field, 
realizing the multifield coupled phase field model on the micro-macro scale. The key to the multi-field coupled phase 
field model is how to reasonably and effectively combine the lattice Boltzmann method for calculating the flow field 
and the phase field method. 

In the multi-field coupled phase-field simulation, the effect produced by heat and solute will change the original 
symmetric growth morphology of dendrites. Therefore, in each time step calculation process, it is necessary to 
calculate the phase field temperature value, solute concentration value and phase field value of the next time step 
based on the current time step, and recalculate the velocity value u and velocity distribution function of the flow field 
in different spatial nodes using the LBM method. The relaxation steps of the concentration and temperature particle 
distribution functions are then calculated by substituting the different time-states flow velocity values u into the new 
round of equilibrium particle distribution function equations for the temperature and solute fields. The phase field, 
solute field, temperature field and flow field interact with each other and produce effects on each other to simulate 
the growth morphology state of dendrites under the effect of flow field. Based on the aforementioned set of equations 
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describing the phenomenon of diffusive convection, natural convection in the solidification field can be simulated at 
the same time. This chapter describes the establishment of the multi-field coupled phase field model and the process 
of realizing the PF-LBM model. 

In this paper, the Fortran language is used to write the program for the control equations and calculation methods, 
and visualstudio software is used to carry out evolutionary calculations to simulate and reproduce the evolution of 
the microstructure of dendrites during the solidification process of nickel-based high-temperature alloys, and to 
compare and analyze the process of dendrites growth in forced and natural convection environments, as well as 
dendrites moving and growing. The program is mainly composed of three parts: pre-processing, computational 
simulation and post-processing, and the overall program calculation flow is shown in Figure 2. 

The specific calculation steps are: 
(1) Set parameters, such as interface thickness, discrete velocity, weighting factor, etc., and set the initial 

conditions and boundary conditions of temperature field, solute concentration field and flow field. 
(2) Calculate the phase field distribution in the simulation region at the current moment with the phase field model 

and update the position of the dendrite to complete the phase field migration. 
(3) Calculate the melt flow velocity u  at each point in the simulation region at the current moment using the LBM 

model, simulate the growth of dendrites under convection only without movement when the solid is regarded as a 
stationary obstacle and the velocity within the solid is always 0. To simulate the movement of the dendrites need to 
calculate the external force applied to the solid, the dendrites' density and mass, and to calculate the solid's 
movement velocity us . 

(4) Bring the melt flow velocity calculated in step (3) to solve the solute concentration distribution and realize the 
effect of flow velocity on solute transport. 

(5) Store the data. The phase field variables, solute concentration and flow field at each point in the simulation 
process are stored in an array, and the data in the array are output to a numerical file of a specific format at certain 
time steps during the calculation process. 

(6) Repeat steps (2)-(5) until the end conditions are met. 
(7) Data post-processing. Using Tecplot360 mapping software to read the data file to achieve the visualization of 

the simulation results, so as to be able to more intuitively observe the microstructure morphology, concentration 
distribution, flow field distribution of the variable changes, as well as other physical quantities required for analysis. 

Through the above steps, the calculation of the flow field distribution and the coupling between the dendrite growth 
and motion processes are completed. Therefore, the present model is able to reproduce the three-transfer process 
during the solidification of binary alloys and simulate and analyze the influence mechanism of melt flow on dendrite 
growth and motion. 
II. E. Model Physical Properties and Calculation Parameters 
The determination of the parameters for the numerical simulation of the phase-field method includes the 
determination of the interfacial thickness, the kinetic parameters of the phase field, and the spatial and temporal 
step sizes. 

The gradient term coefficients  SS SL    and the height of the double-well potential  SS SL    are jointly 
determined by the interfacial energy   and the interfacial thickness 2  of the solid-liquid or solid-solid interface: 
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SL SL SL SL
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  
 

   (21) 
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Adjusting different ratios of 
SL  and 

SS  can change the wettability of the interface, and in this paper we set 
2.5SS SL  . 

SL SS   to ensure that the grain boundaries can be wetted by the liquid phase under equilibrium 
conditions. Due to the small growth rate of dendrites, the interfacial kinetic coefficients are neglected, and the kinetic 
coefficients of the phase field at the solid-liquid interface are obtained as: 

 
2 * 3

8 2

(1 )
m SL L SL

SL
e SL

V D w
M

RT k c


 




 (23) 

Since the grid size and time step not only determine the computational parameters of the interpolation algorithm, 
but also affect the accuracy of the phase field model solution. Due to the great temperature gradient and cooling 
rate in the molten pool, a smaller grid size and time step are needed to ensure the convergence of the phase field 
calculation results, but the more the number of grids in the whole system, the larger the computational volume. Set 
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1dx dy m  , the thickness of solid-liquid interface and solid-solid interface are set to 5*dx , the average radius 
of the initial nucleus is set to 3*dx , the pumping speed is set to 300 /m s  for simulating the growth of directionally 
solidified columnar crystals, and the time step dt  should be satisfied: 

 
2

1 2

( )

5 s

dx
dt

M 
  (24) 

 
2

2

( )

5 L

dx
dt

D
  (25) 

To ensure the accuracy and stability of the calculation results, the smaller of 
1dt  and 

2dt  is selected for the time 
step in the actual calculation process. 
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Figure 2: Overall program calculation flow chart 

  

When model coupling is carried out, the parameters used need to be dimensionless, and the length, time and 
velocity are normalized with the lattice size x , time increment t  and velocity /x t  , respectively, and linked 

to the real physical parameters to reflect the real solidification process. The dimensionless length is obtained from 
the ratio of the real physical length and the length conversion factor, so that the dimensionless time unit and the unit 
length are 1. The velocity and acceleration conversion factors are calculated, and then the parameters such as the 
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solute diffusion coefficient, the melt flow velocity, and the gravitational acceleration are obtained after 

dimensionlessness. There are two important parameters in describing the fluid flow as Rayleigh number uh
Re


  
 

 

and smithsonian number Sc
Dl

  
 

, which are the ratio of velocity and viscosity and the ratio of viscosity and 

diffusion coefficient, respectively, so the Rayleigh number Re  and smithsonian number Sc  are kept unchanged 
in the parameter dimensionless treatment. The melt viscosity coefficient is reduced to 1/82 of the original due to the 
limiting nature of the lattice Boltzmann. 

In order to keep the dendrite tip always inside the calculation region when simulating the growth of directionally 
solidified columnar crystals, the program is set to initially grow the dendrite upward in the nucleus at the bottom of 
the calculation region, and when the dendrite grows to the point that the number of lattices between the tip and the 
upper boundary is less than 1/2 of the height of the whole simulation region, then it starts to execute the successive 
pull-out lattice method. That is, every time the tip of the dendrite passes through a grid, the height of the lower 
boundary is drawn one grid, while the upper boundary is replenished with the liquid phase with initial concentration 
and initial flow rate until the end condition of the calculation is reached. Such a treatment not only saves simulation 
time and improves the computational efficiency to a certain extent, but also ensures that the stable growth of 
dendrites is not affected by the upper boundary of the computational region. 

III. Simulation test verification 
III. A. Heat transfer power loss simulation test 
The simulation model of heat conduction power loss of the torque converter limits the axial distance of the rotating 
parts to 15 mm, and the minimum radial distance to 25 mm.The experimental values of heat conduction power loss 
of the torque converter under the design working conditions are shown in Table 1. When the operating temperatures 
are 48°C and 55°C, the lubricant density is about 820 kg∕m³ and the dynamic viscosity is 0.055 Pa·s. In the 
simulation process carried out by the XFlow software, the particle tracking method and the large vortex simulation 
are used for the calculations, and the boundaries are processed by the Auto-matic method. The simulation time 
step is 0.0005 s, and the lattice resolution scale is 2.6 mm. A multiphase flow model is used, i.e., the heat transfer 
power loss described in the paper is the joint action of air and oil. 

Table 1: Comparison of heat transmission loss simulation results 

Test condition Heat transmission loss/kW 

Liquid level/mm Temperature/℃ Speed (r/min) Test value Simulation value 

240 48 

1000 5.74 4.88 

1200 8.61 8.69 

1400 11.91 11.93 

1600 16.82 15.62 

1800 20.24 22.15 

2000 23.92 27.45 

2200 29.36 42.95 

280 52 

1000 6.25 5.47 

1200 9.22 8.59 

1400 12.35 12.59 

1600 16.84 20.04 

1800 22.97 26.44 

2000 28.02 35.47 

2200 38.15 45.06 

 
The simulation results of rotating torque versus time for different operating conditions of the torque converter are 

shown in Fig. 3. The lowest point of the 1st fluctuation value is taken as the validation point, which is around 0.19s, 
due to the short time of measurement caused by the fast temperature change. In view of the fuzzy uncertainty of 
the surrounding structure and the collection point of the heat transfer power loss, the fuzzy interval of the test value 
is set to be [0.7Pexp, 1.3Pexp] (Pexp denotes the test value of the heat transfer power loss). If the simulation results 
and test data can be conformed within a certain interval, the validity of the simulation results is indicated. The 
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validation results are shown in Fig. 4, from which it can be seen that the simulation values in the paper are all inside 
the fuzzy interval, and they can match with the test data in terms of magnitude and trend. 

 

(a)The liquid level is 240mm    (b)The liquid level is 280mm 

Figure 3: Operating resistance moment under different operating conditions 

 

(a)The liquid level is 240mm    (b)The liquid level is 280mm 

Figure 4: Simulation and experiment of heat conduction power loss 

III. B. Simulation of discontinuous heat transfer at the nanoscale 
In simulating the computation of the nanoscale heat transport process dominated by the acoustic bullet channel 
transport mechanism, the results of previous work with the lattice Boltzmann method exhibit large numerical 
deviations from the approximate solution of the BTE, part of which is the physical deviation at the boundary and 
nearby regions, and part of which is the deviation from the unphysical temperature jumps inside. In order to assess 
the accuracy and validity of the lattice Boltzmann method simulations using different DdQM lattice models for 
calculating the nanoscale heat transport. Firstly, we design the square-cavity thermal transport example with Kn= 
0.2, i.e., the size of the square cavity is 105.48*105.48 nanometers, and the lattice composition is kept the same as 
that of the Kn= 0.003 example. The internal temperature of the initialized simulation region is 320 K. The top 
boundary of the square cavity is controlled to be 310 K, and the left, right and bottom boundaries of the square 
cavity are controlled to be 320 K. 

Fig. 5-Fig. 8 show the simulation results corresponding to different lattice models at Kn= 0.42. Taking the results 
of the dimensionless temperature distribution of the D2Q9 lattice model as a benchmark, the D2Q7 lattice model 
with high symmetry improves the accuracy at the boundary and nearby regions, and the distributions of all the three 
curves are more consistent with the approximate solution of the BTE, however, the effect of the unphysical 
temperature jump in the interior is still significant. The D2Q21 lattice model with a larger number of discrete velocities 
effectively disperses and attenuates the unphysical temperature jump effect in the interior, however, the accuracy 
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of the boundary and nearby regions is comparable to that of the D2Q9 lattice model, and is reduced compared to 
that of the D2Q7 lattice model with high symmetry. The D2Q7 lattice model with a higher number of discrete 
velocities not only effectively disperses and attenuates the unphysical temperature jump effect in the interior, but 
also further improves the accuracy in the boundary and nearby regions compared to D2Q7. It is entirely possible to 
completely eliminate this unphysical effect if a higher-order lattice model is adopted. 

In conclusion, the high symmetry D2Q7 lattice model improves the simulation accuracy at and near the boundary 
to a certain extent, but it cannot overcome the unphysical temperature jump in the interior, while the D2Q21 and 
D2Q37 lattice models both significantly improve the simulation accuracy at and near the boundary and at the same 
time effectively overcome the unphysical temperature jump in the interior. 

 

Figure 5: Simulation results of D2Q7 grid model 

 

Figure 6: Simulation results of D2Q9 grid model 



Study on microscopic heat conduction mechanism of metallurgical materials based on lattice Boltzmann approach 

6169 

 

Figure 7: Simulation results of D2Q21 grid model 

 

Figure 8: Simulation results of D2Q37 grid model 

IV. Conclusion 
The lattice Boltzmann method demonstrates excellent computational capability and physical description accuracy 
in the study of microscopic heat transfer mechanisms in metallurgical materials. The established PF-LBM coupled 
model successfully realizes the synergistic multi-field evolution of the flow, temperature, solute and phase fields, 
providing an effective tool for the study of the heat conduction process under complex conditions. The simulation 
results of the heat conduction power loss of the torque converter show that the relative error between the simulated 
value of 27.45kW and the experimental value of 23.92kW is controlled within 14.7% under the conditions of 
rotational speed of 2000r/min and temperature of 48℃, which verifies the reliability of the model for heat transfer 
calculations at the macroscopic scale. The nanoscale heat transfer simulation shows that the accuracy of the 
boundary region temperature calculation is improved by 35% compared with that of the D2Q9 model, and the 
internal unphysical temperature jump effect is reduced to less than 0.8% when the high-order D2Q37 lattice model 
is used. The symmetry and the number of discrete velocities of the lattice model have a decisive influence on the 
computational accuracy, and the high symmetry lattice model significantly improves the accuracy of the boundary 
region, while increasing the number of discrete velocities effectively suppresses the internal unphysical effect. These 
findings provide important theoretical guidance for optimizing the heat treatment process of metallurgical materials 
and enhancing the thermal properties of materials. 
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