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Abstract Computer vision is an important field in the digital era, and target detection technology plays a key role in 
it. Traditional methods have accuracy and robustness limitations in complex environments, and point cloud data 
has gradually become a research hotspot due to its advantage of 3D spatial information. Multimodal deep learning 
effectively solves the limitation problem of single modality by fusing different data sources, and significantly improves 
the performance of target detection. In this paper, an end-to-end deep learning model (MANet) based on mutual 
attention mechanism is proposed to realize the effective fusion of point cloud data and RGB image features for 3D 
target detection. The point cloud data is first preprocessed with statistical filtering and RANSAC ground 
segmentation, and then an end-to-end deep learning network composed of four modules: point cloud feature 
learning, image feature learning, mutual attention feature fusion, and target detection is designed. Through the 
mutual attention mechanism, the alignment and fusion of point cloud and image features are realized, and the 3D 
target detection performance is improved. Experiments on the KITTI dataset show that the proposed MANet 
algorithm achieves 86.13% accuracy on the Car AP 3D metric with medium difficulty, which is a 5.66% improvement 
over MAFF-Net, and 92.27% on the Car AP BEV metric.Ablation experiments on the Waymo Open dataset 
demonstrate the effectiveness of the mutual-attention feature fusion to make the 3D mAP of LEVEL_1 to improve 
from 84.57% to 85.84%. The experimental results show that the proposed multimodal fusion method can effectively 
improve the accuracy and robustness of 3D target detection, which is of great application value in the fields of 
autonomous driving and smart city. 
 
Index Terms multimodal target detection, deep learning, point cloud data, mutual attention mechanism, feature 
fusion, 3D target detection 

I. Introduction 
With the advent of the digital era, computer vision has become an important field, and many people are researching 
how to make computers able to perceive, understand, analyze, and process images and video data like human 
beings [1]-[3]. Among them, target detection technology is one of the most basic technologies in computer vision 
because it can help computers automatically identify, localize, and track target objects in images, which can not 
only improve people's quality of life, but also be widely used in industry, medicine, security, and other fields [4]-[7]. 
At present, end-to-end deep learning model of multimodal target detection technology has become mainstream, 
which realizes the detection of targets in images by training neural networks, while multimodal deep learning adds 
more modal information on the basis of retaining the traditional visual information, making the detection effect more 
accurate and stable, and it has important applications in point cloud data [8]-[11]. 

Point cloud data is a collection of a large number of points in three-dimensional space, which is used to represent 
the shape of an object or scene [12]. It is presented with the coordinate information of the points, which can intuitively 
reflect the geometric characteristics of the spatial target [13]. Point cloud data are often acquired with the help of 
LiDAR, which scans the collection of points in the surrounding environment, and photogrammetry can also acquire 
point clouds, and the 3D coordinates of points are calculated from multi-angle images [14]-[16]. 3D scanner is one 
of the commonly used devices to acquire high precision point cloud data [17]. And the end-to-end deep learning 
model of multimodal target detection technique can largely improve the accuracy and robustness of 3D environment 
perception by fusing point cloud and other modal data [18]-[20]. 

Computer vision has become an important field in the digital era, and many people are researching how to make 
computers like human beings to be able to perceive, understand, analyze and process images and video data. 
Target detection technology is one of the most basic technologies in computer vision because it can help computers 
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automatically identify, localize and track target objects in images, which can not only improve people's quality of life, 
but also be widely used in industry, medicine, security and other fields. At present, end-to-end deep learning model 
of multimodal target detection technology has become mainstream, which realizes the detection of targets in images 
by training neural networks, while multimodal deep learning adds more modal information on the basis of retaining 
the traditional visual information, which makes the detection effect more accurate and stable, and it has important 
applications in point cloud data. Point cloud data is a collection of a large number of points in three-dimensional 
space, which is used to represent the shape of an object or scene. It is presented with the coordinate information 
of the points, which can intuitively reflect the geometric characteristics of the spatial target. Point cloud data is often 
obtained with the help of LIDAR, which scans the collection of points in the surrounding environment, and 
photogrammetry can also be used to obtain the point cloud, and the 3D coordinates of the points are calculated 
through multi-angle images. 3D scanners are one of the common devices used to acquire high-precision point cloud 
data. The end-to-end deep learning model for multimodal target detection technology can largely improve the 
accuracy and robustness of 3D environment sensing by fusing point cloud and other modal data. However, the 
disorder, rotational invariance, and density inhomogeneity of point cloud data bring challenges to the design and 
implementation of algorithms. Existing single-modal methods are difficult to fully utilize the geometric properties of 
point cloud data, resulting in limited detection accuracy and robustness. In addition, how to effectively fuse the 
complementary information of different modal data is also a problem to be solved. Therefore, the development of a 
3D target detection method that can fully utilize multi-modal information has important theoretical value and 
application significance. This study will focus on solving the following problems: first, how to effectively preprocess 
the point cloud data to remove noise and irrelevant information; second, how to design a suitable feature extraction 
network to obtain the deep semantic features of the point cloud and the image; and third, how to realize the effective 
fusion of multimodal features to make full use of the complementary nature of different modal information. To this 
end, this paper proposes a multimodal target detection network MANet based on mutual attention, which 
preprocesses the point cloud data by statistical filtering and RANSAC ground segmentation, extracts the point cloud 
features using VoxelNet, extracts the image features based on ResNet, and designs the mutual attention module 
to realize the feature fusion, and finally achieves target classification and 3D box estimation to improve the accuracy 
and robustness of 3D target detection. 

II. 3D point cloud target detection model based on multimodal feature fusion 
In order to improve the 3D target detection accuracy by utilizing the image information to assist the point cloud data, 
this chapter proposes an end-to-end deep learning network for 3D target detection with adaptive fusion of 
multimodal features based on the preprocessing of point cloud data. 
 
II. A. Point cloud data and its characteristics 
II. A. 1) Point cloud data 
Point cloud data is a three-dimensional data representation that is typically acquired through sensors such as LIDAR. 
Based on the measured distance and angle information, the radar detection results can be converted into point 
cloud data. The coordinates of each point in the point cloud are determined by its distance, bearing, and pitch angle, 
so the three-dimensional shape of the target can be constructed from the point cloud data. 

The point cloud data can be expressed in the form of equation (1): 

 { , , , 1 2 }| , , ,i i i iP x y z t i N    (1) 

The , ,i i ix y z  in the formula represent the 3D coordinate information of the i th point, and it  represents the 

possible other attributes of the i th point, such as the color information, the intensity information, etc., which makes 
the point cloud data have many advantages over the 2D image data. 

 
II. A. 2) Characterization of Point Cloud Data 
3D point cloud data has disorder, rotational invariance and density inhomogeneity. 

(1) Point cloud disorder 
The disorder of point cloud data refers to the fact that there is no clear order relationship between the points in 

the point cloud, unlike the pixels in the image data which are arranged in an orderly manner according to a two-
dimensional matrix. The acquisition results of point cloud data may be affected by the data acquisition equipment, 
scanning method, or other factors. As a result, the order of point cloud data is usually random or irregular. Points in 
a point cloud are discrete, and each point has its own 3D coordinates and incidental other attributes, but the order 
between these points does not affect the point cloud representation. 

(2) Rotational invariance of point clouds 
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The rotation operation of point cloud data in 3D space does not change the geometric structure and features 
described by the point cloud data. In other words, if any rotation operation is performed on the point cloud data, its 
overall shape and structure remain unchanged. For some specific application scenarios, such as point cloud 
alignment and alignment, it is sometimes necessary to consider the rotation of point cloud data. In these cases, 
rotational invariance can be used to simplify the processing of the problem and improve the efficiency and 
robustness of the algorithm. 

(3) Density inhomogeneity of point cloud 
Unlike image data where pixels are uniformly arranged according to a two-dimensional matrix, the distribution of 

points in each region of point cloud data is not uniform, i.e., there is a phenomenon that some regions may be dense 
while others may be sparse. This non-uniformity can be due to a variety of reasons, including the resolution of the 
acquisition device, the sampling method, the complexity of the object surface, and occlusion. 

 
II. B. Point cloud data preprocessing 
II. B. 1) Point Cloud Statistical Filtering Processing 
Point cloud data are usually collected by LIDAR, and due to the error of the equipment itself and the influence of 
environmental factors, the collected data may contain some noise and outliers. These noise and outliers will affect 
the subsequent point cloud processing and analysis, resulting in false detection of the target, so it is necessary to 
remove these noise. The noise distribution of outlier points in point cloud data is relatively sparse, and the statistical 
filter is a filtering method based on the principle of statistics, which can determine whether a point is an outlier by 
calculating the statistical characteristics of the neighboring points around each point in the point cloud, and remove 
it from the point cloud. 

For each point in the point cloud, statistical filtering will look for k  points around it and compute the Euclidean 
distance between that point and other points. The calculation formula is shown in equation (2): 

 2 2 2
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The obtained inter-point distances are Gaussian distributed, and then the mean   and the standard deviation 
  are obtained, and the calculation of the mean and the standard deviation are shown in Eq. (3) and Eq. (4): 
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Based on the neighborhood statistics information, a distance threshold 
md  is calculated to determine whether a 

point is is a noise point, and if the distance between the point and the key point is greater than this threshold, it is 
an outlier point that needs to be removed. The threshold is calculated by the formula: 

 
md     (5) 

where   is a constant, which can be expressed as a standard deviation multiplier, the size of the value affects the 
denoising effect. For each point, according to its neighborhood statistical information and threshold value, determine 
whether it is noise or outliers. If it meets the filtering conditions, it is retained, otherwise it is regarded as a noise or 
outlier and removed or replaced with one of the values in the neighborhood statistical information. The principle of 
statistical filtering is shown in Fig. 1, the radius of the center of the circle is the calculated distance threshold, there 
is one point in the neighborhood of the pl point which is judged to be an outlier, and there are two points in the 
neighborhood of the p2 point which are judged to be outliers, and these outliers will be removed in the filtering 
process. 
II. B. 2) RANSAC ground point cloud data segmentation 
Removing the ground point cloud and then detecting the obstacles can avoid the problem of ground irrelevant point 
cloud interfering with the detection. Therefore the segmentation of ground point cloud is very important in 3D 
detection. In this paper, we use the Randomized Sample Consistent (RANSAC) algorithm [21] to remove the ground 
point cloud. 
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Figure 1: Schematic diagram of Statistical filtering 

The RANSAC algorithm divides the data into interior and exterior points, the interior points are the data points 
that conform to the fitted model, i.e., those that are close to the results of the model fitting. Outpoints are data points 
that do not conform to the results of the fitted model, usually noise or anomalies. In the RANSAC algorithm, outlier 
points are excluded from the fitting process to minimize their impact on the model fit. The advantage is the ability to 
identify results quickly and accurately and with some robustness in samples that contain erroneous data. 

The steps for ground segmentation of point cloud data using RANSAC algorithm are as follows: 
(1) For the three points 

1 1 1 1( , , )p x y z  , 
2 2 2 2( , , )p x y z  , 

3 3 3 3( , , )p x y z   form these 3 points into a plane 
0Ax By Cz D     and use Eq. (6) to compute the normal vector n

  of the plane: 

 
2 1 3 1( ) ( )n p p p p   

  (6) 

(2) Calculate the distance from a point to a plane in a point cloud: 

 1

|

( )

|| |

T
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i

n p p
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
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

  (7) 

(3) Set the threshold value    and compare it with the distance   of each point calculated in Equation (7), if 

distance  , the point is an outer point, and the points with distance   are recognized as inner points, and then 
calculate the ratio of the resulting number of inner points to the whole point cloud data  , as shown in Equation 
(8), 

inn  represents the number of inner points and 
outn  represents the number of outer points: 

 in

in out

n

n n
 


 (8) 

(4) Repeat the above operation to reach the iteration threshold T  through continuous iteration, and then find out 
the parametric model with the highest number of interior points. Denote by p  the probability that a point randomly 
selected from the data set belongs to the inner point. Assuming that the model selects a total of n  points, the 
probability that all n  points belong to the inner point is n , and the probability that at least one of them belongs 
to the outer point is 1 n , which can be shown that (1 )n T  denotes the probability of never picking n  points 
that are all inside points, and is equal to 1 p , so that equation (9) can be obtained: 

 (1 ) 1n T p    (9) 

Taking the logarithm of Eq. (9) yields Eq. (10), obtaining the iteration threshold T: 

 
log(1 )

log(1 )n

p
T







 (10) 

The RANSAC ground filtering algorithm mainly contains two core parameters: the distance threshold   and the 
number of iterations T . Among them, the distance threshold is especially critical, which directly determines the 
accuracy of extracting valid information from the original data set. If it is set too strictly, points that originally belong 
to the set of interior points may be wrongly eliminated. If it is set too loosely, the outer points may be misjudged as 
inner points, thus affecting the accuracy of the algorithm. The number of iterations T  is mainly dependent on the 
amount of data in the original 3D point cloud and is closely related to the operation efficiency of the algorithm. 
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Theoretically, the size of T  is proportional to the final result of extracting the plane, but too large a value of T  will 
lead to a decrease in the running speed of the algorithm and affect the real-time segmentation. 

 
II. C. 3D target detection model construction with multimodal fusion 
In this paper, we propose a deep neural network MANet based on mutual attention, which aims to align and fuse 
the features of 2D RGB images and 3D point clouds in the feature learning stage for more effective 3D target 
detection. 
 
II. C. 1) Deep Neural Network for 3D Target Detection 
The 3D target fusion detection deep learning network is shown in Fig. 2, which mainly includes point cloud feature 
learning, image feature learning, mutual attention feature fusion, and target detection modules. In the feature 
learning stage, point cloud features are extracted based on VoxelNet [22] and image features are extracted based 
on ResNet [23]. In the multimodal feature fusion stage, mutual attention is calculated based on feature correlation, 
and the effect of fusing multimodal features is achieved through feature correction. Finally, target classification and 
3D box estimation are realized based on Regional Proposal Network (RPN) [24] and Classification Regression 
Multi-Task Learning Network. 
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Figure 2: The structure of 3D object detection neural network 

II. C. 2) Feature learning 
Feature learning consists of two branches: the Lidar branch and the camera branch, which extract point cloud 
features and image features, respectively. For the Lidar branch, it is assumed that a 3D object contains N points, 
and the point cloud data of the object is represented as { , , , }i i i ix y z r , where , ,i i ix y z  is the spatial coordinate of the 
i rd point and 

ir  is the size of the corresponding reflection value of the point. Similar to VoxelNet, the point cloud 
data sampled by LIDAR is first converted to a 3D voxel grid, where a certain number of point clouds are selected 
by random sampling, and the point cloud features are learned by a forward neural network to obtain the voxel 
features based on the maximum pooling operation, and then the features corresponding to the point cloud data are 
learned by the 3D sparse convolutional neural network. For the camera branch, image features are extracted using 
Resnet2D convolutional neural network. 
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II. C. 3) Mutual Attention Feature Fusion Module 
Inspired by the concept of mutual correlation in signal processing and the attention mechanism in the field of 
machine learning, the mutual attention module is designed for the information fusion of features between different 
modalities. 

The point cloud features and image features are denoted as 
pG  and 

iG , respectively, and the steps for the 
fusion of the two features are as follows: 

(1) Calculate the correlation degree value between 
pG  and 

iG : 

 tanh( ( ))i p i i iR G WG b    (11) 

 tanh( ( ))p i p p pR G W G b    (12) 

In Eqs. (11) and (12), in order to realize the alignment of the two modal features at the eigenspace level, the 
eigenspace transformations of 

pG   and 
iG   are carried out by multiplying them by the matrices 

pW   and 
iW  , 

respectively, plus the bias vectors 
ib  and 

pb  The feature space translation is achieved so that the point cloud 
feature space and the image feature space are aligned by learning to optimize the values of , ,p i iW W b  and 

pb . The 
two correlation values are then transformed using the tanh function to obtain the values of the cross-correlation 
function between 

pG  and 
iG , 

iR  and 
pR , respectively. 

(2) Use the obtained correlation function values to compute the attention scores for each component in the point 
cloud features and each component in the image features: 

 ( )i iA softmax R  (13) 

 ( )p pA softmax R  (14) 

iA   and 
pA   are the mutual attention scores between point cloud features and image features. Numerical 

transformation of the correlation function values using softmax  allows normalization on the one hand, transforming 
the original correlation scores into a probability distribution in which the sum of the weights of all elements is 1. On 
the other hand, through the function transformation mechanism inherent in softmax  to highlight more important 
relevant attention scores, amplifying the saliency feature weights will be more conducive to the extraction of deep 
semantic features. 

(3) Multiply the attention weights and the feature vector matrix to get the image correction matrix after updating 
by the attention mechanism: 

 
i p iC G A   (15) 

The image features corrected by the point cloud information are: 

 
i i iG G C   (16) 

(4) Use the corrected image features 
iG  and the attention matrix to obtain the correction matrix for the point 

cloud features: 

 
p i pC G A   (17) 

The point cloud features corrected by the image features based on the attention mechanism are: 

 
p p pG G C   (18) 

pG  is the feature that fuses the image information and the point cloud information to provide the feature base for 
the subsequent 3D target detection. In the above feature fusion process,   denotes the matrix dot product, and 

, ,p i iW W b  and 
pb  are the parameters that need to be optimized, which is achieved by the optimization of the loss 

function in the subsequent target detection network to optimize , ,p i iW W b  and 
pb  parameter optimization. 

 
II. C. 4) Classification and regression multitasking networks 
In this step, an RPN architecture is constructed for 3Dbox estimation. The architecture of this RPN consists of three 
stages, each combining a convolutional layer, batch regularization and a linear rectifier unit layer (ReLU). The fused 
features are fed into this network and the output of each stage of this part is upsampled to a feature map with the 
same dimensions. Next, the feature maps of these three stages are stitched together into a single feature map. 
Finally, a convolutional layer using three 1×1 sized convolutional kernels predicts the category, offset, and 
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orientation. In the last layer of this network, a non-great suppression layer is added to generate a 3D outsourced 
rectangular box of the final detected object. 
 
II. C. 5) Loss function 
In order to perform the 3D target classification and 3Dbox localization tasks simultaneously, the loss function is 
defined as the sum of the classification and regression loss functions, i.e., the multi-task loss function, as shown in 
equation (19) below: 

 
total cls regL L L   (19) 

where 
ckL   and 

regL   represent classification loss and regression loss, respectively, and 
clsL   is used with the 

FocalLoss function shown in equation (20): 

 (1 ) log( )cls t t tL p p    (20) 

where 
tp  is the class probability estimated by the model. 

t  and   are the parameters of FocalLoss, and 
t  

and   are set to 0.3 and 3, respectively, during training. 
For 3D target detection, 

regL   consists of 7 parameters, and the real 3Dbox is represented as 
( , , , , , , )g g g g g g g

c c cx y z l w h  , where ( , , )g g g
c c cx y z  denotes the center point of the 3Dbox, ( , , )g g gl w h  denotes the length, 

width, and height of the 3Dbox, and g  is the orientation angle of the 3D object. For the anchor box of positive 
samples, this paper parameterizes it as ( , , , , , , )a a a a

c c cx y z l w h   . Define the residual vector * 7R  , the vector *  
contains the seven target parameters to be regressed, which are denoted as the positional residuals ( , , )x y z   , 
the residuals of the length, width and height in the three dimensions ( , , )l w h   , and orientation angle residuals 
 , which are calculated by the following equation: 
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 (21) 
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 g a      (23) 

where 2 2( ) ( )a a ad l w   is the length of the diagonal in the horizontal plane of any ANCHOR. In order to correctly 
retrieve the parameters of the real 3Dbox from the positive samples to be matched, the regression loss is calculated 
using the following equation: 

 *1
1( )reg i

ipos

L SmoothL
N

   (24) 

In Eq. (24), *
i  denotes the vector of residuals between the i th real 3Dbox and the 3Dbox predicted by the 

model. Where the 1SmoothL  function is calculated as follows: 

 
* 2 *

*
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III. Multimodal target detection experiment based on point cloud data 
In order to verify the effectiveness and correctness of the proposed multimodal target detection method, this paper 
conducts a large number of experiments on the KITTI dataset, compares and analyzes it with a variety of more 
popular algorithms, and explores the validity of the modules in the model through ablation experiments. 
 
III. A. Data sets 
In this paper, the algorithm performance is evaluated using the KITTI dataset, which is the largest dataset in the 
world for evaluating algorithms in autonomous driving scenarios, including point clouds and images of three 
categories: cars, pedestrians and cyclists. For each category, the detection results are evaluated according to three 
difficulty levels: easy, medium, and difficult, which are determined based on target size, occlusion status, and 
truncation level, respectively. The algorithm is comprehensively evaluated and the training data is subdivided into 
training set and validation set to obtain 3824 data samples for training and 3875 data samples for validation. After 
segmentation, samples of the same sequence are not included in both training and validation sets. 
 
III. B. Evaluation indicators 
In this paper, based on the official evaluation protocol provided by KITTI, the algorithm of this paper and various 
existing algorithms are compared and experimented on the validation set. The protocol requires that target detection 
needs to complete the work of target category judgment and location selection at the same time. 

Among them, the judgment of target localization is based on judging whether the degree of overlap between the 
prediction frame and the truth frame, i.e., the intersection and merger ratio (IoU), reaches a certain threshold, if the 
intersection and merger ratio is greater than the threshold, it is considered that the localization is accurate, and vice 
versa, it is considered that the localization is incorrect. The judgment of target classification is based on whether 
the classification confidence reaches a certain determined threshold, if it is greater than the threshold, the 
classification is considered accurate, and vice versa, the classification is considered incorrect. 

The final target detection correctness is determined by combining the judgments of target localization and 
classification correctness, converting the problem of detecting multi-category targets into a binary classification 
problem so that a confusion matrix can be constructed, and evaluating the model accuracy using a series of metrics 
for target classification. Experiments were conducted to compare the algorithms using the average precision (AP) 
metric, which is the mean value of precision at different recall rates, and the mean average precision (mAP). 

 
III. C. Experiments on point cloud random sampling threshold analysis 
In order to analyze the impact of point cloud random sampling thresholds on the performance of the algorithm, this 
paper carries out controlled experiments on this paper's algorithm applying different sampling thresholds (T) at three 
difficulty levels of the automotive category of the KITTI validation set, and the experiments set up five kinds of 
sampling thresholds: 15, 30, 40, 50, and 60, and use the average accuracy index to measure the algorithm's 
accuracy, and record the average time the algorithm spends on each detection. The experimental results for different 
point cloud sampling thresholds are shown in Table 1. 

It can be seen that the time overhead of the algorithm rises as the random sampling threshold increases, because 
a higher sampling threshold means that the network needs to process more points. As the random sampling 
threshold in the algorithm increases from 15 to 40, the average accuracy of target detection is significantly improved. 
When the threshold is raised from 40 to 50, the detection accuracy shows a decrease in easy difficulty and only a 
small increase in medium and hard difficulty. And when the threshold was raised from 50 to 60, the detection 
accuracy showed a decrease. The experimental results show that too low a sampling threshold can lead to a point 
cloud that is too sparse, missing spatial information and affecting the detection accuracy. Too high a sampling 
threshold will cause the algorithm to be affected by the uneven density of the point cloud data, and will lead to higher 
computational overhead. Considering the detection speed and accuracy, this paper determines the random 
sampling threshold of the point cloud as 40 in the subsequent experiments. 

Table 1: Experimental results of cloud sampling thresholds at different points 

Point cloud sampling threshold Time cost /ms 
Detection accuracy /% 

Simple Medium Difficult 

15 118 64.87 59.26 53.64 

30 185 79.43 64.51 60.07 

40 232 83.86 68.75 65.41 

50 269 82.05 69.42 66.73 

60 284 81.32 67.31 64.58 
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III. D. Experiments on density analysis of voxel divisions 
In order to analyze the effect of voxel division density on the detection effect of the algorithm, this paper sets up 
three different voxel division setting schemes: 

(1) D'=10, W'=250, H'=100. 
(2) D'=20, W'=500, H'=200. 
(3) D'=30, W'=100, H'=400. 
where D', W', and H' are the number of voxels contained in the Z, Y, and X-axis direction dimensions of the point 

cloud after division, respectively. 
Comparison experiments of the algorithms using the three grouping methods were conducted on all difficulty 

levels of the three categories on the KITTI dataset, and the results of the experiments at different voxel dimensions 
are shown in Table 2. 

Analyzing the data shows that the second division achieved the best detection accuracy on all difficulty levels of 
the three categories. The experimental results show that too sparse division will ignore the local information of the 
input data, while too dense division will ignore the connection between features due to too much focus on localization. 
In the subsequent experiments, this algorithm will adopt the second division method. 

Table 2: Experimental results at different voxel sizes 

Voxel division 
Detection accuracy /% 

Automobile Category Pedestrian category Bicycle category 

D'×W'×H' Simple Medium Difficult Simple Medium Difficult Simple Medium Difficult 

10*250*100 80.51 65.36 63.21 57.52 53.74 49.20 65.57 47.35 46.28 

20*500*200 84.83 69.59 66.43 60.84 57.62 52.28 70.54 50.46 48.19 

30*1000*400 80.72 66.14 63.45 57.93 53.48 59.56 66.31 48.12 46.74 

 
III. E. Experiments for quantitative evaluation of model performance 
This section aims to evaluate the performance and effectiveness of the proposed MANet-based multimodal target 
detection algorithm through quantitative analysis. 

In the experiments based on the KITTI dataset, the dataset is first divided into dataset and validation set on a 1:1 
basis for validation experiments. The performance comparison of this paper's algorithm with other algorithms 
performed on the KITTI validation set is shown in Table 3. 

From the analysis, it can be concluded that the performance of the proposed MANet algorithm on the KITTI 
validation set is improved compared to the performance of the representative algorithms. In the Car AP 3D medium 
standard evaluation metric, the MANet algorithm achieves 86.13% accuracy, which is an improvement of 5.66% 
compared to the advanced MAFF-Net algorithm. The MANet algorithm also achieved a very good performance in 
the Car AP BEV metric, with an accuracy of 96.16%. 

Table 3: Performance evaluation of representative algorithms and the algorithm in this paper 

Algorithm 
Car AP 3D /% Car AP BEV /% 

Simple Medium Difficult Simple Medium Difficult 

VoxelNet 82.25 66.43 62.75 - - - 

Frustum PointNets 84.84 72.92 64.39 - - - 

SECOND 88.07 77.21 70.05 - - - 

Point-GNN 89.04 78.37 78.59 91.27 88.2 88.83 

PointRCNN 89.64 79.91 78.88 - - - 

Frustum ConvNet 89.23 79.47 78.54 91.75 89.52 87.68 

MAFF-Net 90.57 80.47 76.31 94.82 90.98 87.38 

MANet (Ours) 93.69 86.13 83.54 96.16 92.27 90.11 

 
Meanwhile, the dataset is divided into dataset and validation set to train the model in the ratio of 8:2, and the 

model is submitted to the KITTI official website to test the detection performance of the algorithm on the KITTI 
training set. In this section of the algorithm, the detection is mainly performed from three categories: cars, 
pedestrians and bicycles, and there are four detection criteria for each category, which are: 2D detection accuracy, 
orientation accuracy, 3D detection accuracy and BEV detection accuracy. The performance evaluation results of 
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the algorithm on the KITTI training set are shown in Table 4. It can be seen that the algorithm in this paper achieves 
superior detection results. 

Table 4: Performance evaluation of KITTI training set for MANet algorithm 

Testing standard Simple Medium Difficult 

Car (Detection) 98.45% 95.51% 93.72% 

Car (Orientation) 98.47% 96.05% 93.57% 

Car (3D Detection) 91.74% 83.35% 78.04% 

Car (Bird's Eye View) 94.77% 91.68% 87.19% 

Pedestrian (Detection) 60.64% 54.70% 52.76% 

Pedestrian (Orientation) 58.08% 50.19% 48.90% 

Pedestrian (3D Detection) 44.05% 38.40% 38.22% 

Pedestrian (Bird's Eye View) 49.50% 44.33% 42.59% 

Cyclist (Detection) 80.22% 71.84% 67.42% 

Cyclist (Orientation) 79.76% 73.02% 66.52% 

Cyclist (3D Detection) 74.73% 60.87% 57.17% 

Cyclist (Bird's Eye View) 77.67% 64.75% 59.95% 

 
In order to validate the effectiveness of the algorithm, in addition to evaluating it using the detection criteria 

described above, the category Car results on the training set of the algorithm were compared with other state-of-
the-art algorithms. This allows for a more comprehensive assessment of the algorithm's performance in the target 
detection task. The results of the algorithm performance comparison are shown in Table 5. 

Based on the comparison results, it can be concluded that the multimodal target detection algorithm MANet in 
this paper has a significant improvement in AP 3D and AP BEV metrics compared to the state-of-the-art algorithms, 
which proves the advantage of the algorithm. Compared with the state-of-the-art fusion algorithm EPNet, the Car 
AP 3D metrics are improved by 0.63%, 2.38%, and 2.56% at three different detection difficulties: simple, medium, 
and difficult, respectively, which proves that the algorithm's target detection accuracy is significantly improved at 
different difficulty levels. On the Car AP BEV metric, the MANet algorithm improves 0.27%, 1.94%, and 2.19% 
relative to EPNet under three different detection difficulties: simple, medium, and difficult, respectively, 
demonstrating that the algorithm also significantly improves the detection accuracy under the BEV perspective for 
the automobile category. 

Table 5: Comparison results of algorithm performance 

Algorithm Data mode 
AP 3D /% AP BEV /% 

Simple Medium Difficult Simple Medium Difficult 

MV3D L&R 75.84 64.87 54.56 87.54 79.91 70.56 

FrustumPointNets L&R 82.12 71.41 63.42 89.96 85.12 76.52 

AVOD L&R 82.91 72.47 67.26 89.33 84.83 78.69 

MMF L&R 87.82 77.83 69.47 - - - 

MVAF-Net L&R 89.22 79.66 76.42 92.95 88.97 85.73 

CLOCs L&R 89.68 81.94 78.04 94.08 90.74 87.92 

Fast-CLOCs L&R 89.72 81.54 78.19 93.85 90.71 87.51 

3D-CVF L&R 90.02 81.14 73.86 94.95 90.38 83.52 

EPNet L&R 90.69 80.25 75.79 95.04 89.17 84.67 

MANet (Ours) L&R 91.32 82.63 78.35 95.31 91.11 86.86 

 
III. F. Model ablation experiments 
To further demonstrate the effectiveness of the proposed multimodal target detection model, this section conducts 
ablation experiments on the Waymo Open dataset, which is one of the largest and most comprehensive open 
datasets for autonomous driving. The dataset is collected from Waymo's self-driving fleet while driving on a variety 
of city streets, suburban roads, and highways, and has a total of about 12 million 3D labels and 10 million 2D labels 
for four types of targets: vehicles, pedestrians, signs, and bicycles. 

In the ablation experiments, this paper explores the effects of the point cloud feature learning and image feature 
learning modules (Module 1) and the mutual attention feature fusion module (Module 2) on the performance of 3D 
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target detection, and a comparison of the results of the ablation experiments is shown in Fig. 3. The metrics of the 
ablation experiment results are shown in Table 6. 

The experimental results show that the 3D mAP is 84.57% and 75.64% for LEVEL_1 and LEVEL_2, while the 3D 
mAPH is 82.72% and 74.57% for LEVEL_1 and LEVEL_2, respectively, in the case of modeling with only point 
cloud features and image features. Even without the mutual attention feature fusion module, the model can 
effectively improve the accuracy of target detection by deeply learning and fusing different point cloud features and 
image features, but it is not yet the best performance. When modeled with only inter-attentive features, the 3D mAP 
of LEVEL_1 and LEVEL_2 decreases to 83.49% and 74.35%, respectively, and the 3D mAPH decreases to 81.16% 
and 72.83% accordingly. In comparison, the performance decreases but still demonstrates the effectiveness of the 
mutual attention feature fusion module in capturing the interrelationships between points and the spatial structure 
information in point cloud data. The model performs best when both the point cloud feature learning and image 
feature learning modules and the mutual attention feature fusion module are used, with the 3D mAP improving to 
85.84% and 76.41% for LEVEL_1 and LEVEL_2, respectively, while the 3D mAPH improves to 84.28% and 76.35%, 
respectively. The results clearly demonstrate the significant impact of the two modules on improving the overall 
performance of the model when they are combined, indicating that they complement each other in improving the 
target detection accuracy, and effectively enhance the recognition capability of the model through deep feature 
fusion and relational modeling. 

Table 6: Ablation experiment results of the Waymo dataset 

Module LEVEL_1 LEVEL_2 

Module 1 Module 2 3D mAP 3D mAPH 3D mAP 3D mAPH 

√ × 84.57 82.72 75.64 74.57 

× √ 83.49 81.16 74.35 72.83 

√ √ 85.84 84.28 76.41 76.35 

 

Figure 3: Comparison of ablation experiments 

IV. Conclusion 
The multimodal target detection technique effectively solves the limitations of single-modal methods in complex 
scenes by fusing the complementary information provided by different data sources. In this paper, MANet, a 
multimodal target detection network based on the mutual attention mechanism, is proposed to provide a new idea 
for 3D target detection in point cloud data. MANet realizes the effective fusion of point cloud features and image 
features by designing the mutual attention module, which makes full use of the advantages of the two modalities. 
Experiments on the KITTI validation set show that MANet achieves 86.13% detection accuracy on the Car AP 3D 
metrics with moderate difficulty, which is 5.66% better than the advanced MAFF-Net algorithm; and achieves 96.16% 
accuracy on the Car AP BEV metrics, which demonstrates superior performance. Compared with the current state-
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of-the-art fusion algorithm EPNet, MANet improves the Car AP 3D metrics on the KITTI training set by 0.63%, 2.38%, 
and 2.56% at three different difficulties, namely easy, medium, and hard, respectively. Ablation experiments on the 
Waymo Open dataset further demonstrate the effectiveness of the inter-attentive feature fusion module, which 
improves the 3D mAP of LEVEL_1 from 84.57% to 85.84% when both point cloud feature learning and inter-attentive 
feature fusion module are used. The experimental analysis of point cloud random sampling threshold and voxel 
division density shows that reasonable parameter settings have a significant impact on model performance. Future 
work will further optimize the algorithm structure to improve the computational efficiency and explore more flexible 
and efficient multimodal fusion strategies to adapt to more complex and changing application scenarios. 
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