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Abstract With the rapid development of quantum computers, traditional cryptographic algorithms face serious 
threats from quantum attacks. In this paper, we design a chameleon signature scheme that can resist quantum 
computer attacks and analyze its security in detail. The study adopts the idea of lattice-based cryptography to 
construct a novel chameleon signature scheme and proves the security of the scheme under the random predicate 
machine model. The innovation of the scheme is that by constructing identity-based chameleon signatures, it is able 
to withstand quantum computing attacks while maintaining its efficiency. Experimental results show that the scheme 
is computationally efficient when performing key generation, signature generation and verification. Specifically, 
under the simulation platform, the new chameleon signature scheme improves the computational efficiency in the 
handshake process by about 25% compared to the traditional RSA signature scheme. In addition, the scheme in 
this paper provides stronger authentication security and is able to realize encryption, signature and signing functions 
at the same time, which has the potential for a wider range of applications. Ultimately, the experiments show that 
the scheme achieves the desired goals in terms of performance and security, and provides new ideas for digital 
signature research in the post-quantum era. 
 
Index Terms Quantum Attack, Chameleon Signature, Lattice Cryptography, Security Analysis, Random Predicate 
Machine, Post-Quantum Era 

I. Introduction 
In recent years, with the development of quantum computers, difficult problems in traditional cryptographic regimes 
such as large integer factorization and discrete logarithm problems can be solved in polynomial time using quantum 
computers [1], [2]. Once the hardness problem, which is the cornerstone of traditional cryptographic regimes, is 
cracked, the security of various encryption algorithms and digital signature algorithms constructed on it will be fatally 
threatened by quantum attacks [3]-[5]. Quantum attack is a type of attack based on quantum computing, which 
utilizes the special properties of quantum computers to crack traditional encryption algorithms [6], [7]. There are 
two main ways of quantum attack, namely quantum key distribution attack and quantum computing attack [8], [9]. 

Quantum key distribution attack is when an attacker utilizes a quantum computer to attack the key distribution 
protocol in order to obtain the key information [10]-[12]. Quantum computing attack is that an attacker utilizes a 
quantum computer to crack the encryption algorithm so as to obtain the encryption information [13], [14]. The 
principle of quantum attack is based on the superposition and entanglement properties of quantum bits, which can 
break traditional encryption algorithms in a very short time through the parallel computing capability of quantum 
computers [15]-[17]. Therefore, designing a chameleon signature scheme that can resist quantum attacks is 
essential in the research of digital signatures in the post-quantum era [18], [19]. 

Distinguished from ordinary digital signatures, the chameleon hash function is used in chameleon signatures to 
hash the message [20], [21]. When there is no trapdoor information, the chameleon hash function has the same 
properties as the ordinary hash function [22]. When in possession of trapdoor information, it is easy to find another 
input with the same hash value [23]. A signature verifier is specified in a chameleon signature and that verifier is 
able to forge messages for known signatures such that the verification equation still holds [24], [25]. Thus, 
chameleon signatures are similar to non-repudiation signatures in that they are also non-transmissible, but they 
have the advantage that they do not require an interaction protocol [26], [27]. Due to these characteristics, 
chameleon signatures are able to withstand quantum attacks to some extent [28]. 

In recent years, the emergence of quantum computers has driven challenges to traditional cryptographic 
algorithms. Especially for cryptographic algorithms based on large integer factorization and discrete logarithm 



Security Analysis and Algorithm Design of Chameleon Signature Scheme Based on Lattice Cryptography under Quantum Attacks 

6328 

problems, the high-speed parallel computing capability of quantum computers is able to solve these problems in 
polynomial time, thus exposing these traditional algorithms to unprecedented security threats. To cope with this 
challenge, post-quantum cryptography has become a hotspot of current research, and lattice cryptography has 
gained widespread attention as a cryptographic method that naturally resists attacks from quantum computation. 

Chameleon signature is a digital signature scheme with non-repudiation and non-transferability. Unlike traditional 
digital signatures, chameleon signatures make it possible to forge valid signatures even for those who have the 
signer's public key by introducing a chameleon hash function, and this feature gives it an advantage against 
quantum attacks. Since the construction of chameleon signatures relies on the special properties of hash functions 
and requires the involvement of trapdoor information, it is fundamentally different from traditional digital signature 
schemes. 

In this paper, we focus on chameleon signature schemes based on lattice cryptography, aiming to improve their 
security in quantum computing environments. Specifically, we propose a new chameleon signature construction 
that utilizes difficult problems in lattice cryptography to ensure its resistance to quantum attacks. In the scheme 
design, not only the traditional security requirements are considered, but also the defense mechanism against 
quantum attacks is specifically incorporated. Through accurate mathematical modeling and experimental 
verification, the security of the scheme under quantum computing attack is further proved, and the computational 
efficiency is higher than that of the traditional scheme. 

In terms of research ideas, firstly, through a review of the existing literature, the threat of quantum attacks on 
traditional cryptographic algorithms is clarified, and the potential of chameleon signatures in defending against these 
attacks is further analyzed. Then, an identity-based chameleon signature scheme is designed by combining the 
basic theories of lattice cryptography. By introducing reasonable parameters and security assumptions, the 
theoretical security of the scheme is ensured. In addition, in order to evaluate the performance of the scheme in 
practical applications, a detailed performance analysis and experimental comparison are conducted to verify its 
superiority. 

II. Preparatory knowledge 
II. A. Grid cryptography 

Definition 1 (lattice): given a set of linearly independent vectors 
1 2, , , m

nb b b   , the lattice   can be generated 

by a linear combination of the integer coefficients of the vectors 1 2, , , nb b b , defined as follows: 

  1 2
1

, , , ,1
n

n i i i
i

b b b x b x i n


 
     

 
   (1) 

Here the vectors 1 2, , , nb b b   are said to be a set of lattice bases of the lattice   , denoted 

 1 2, , , m n
nB b b b    . 

There exists a matrix U   which is the youngest modulus matrix if all elements in U   are integers and U  

satisfies the determinant 1 . It is easy to prove that    B B     if and only if B BU   [29]. 

If there exists m n , then the lattice  1 2, , , nb b b   is said to be full-dimensional; and if A  is a matrix of n m , 

then the column vectors are 1 2, , , mb b b , and the lattice basis B  generates the lattice, denoted: 

      1 2, , , m
mB b b b Bx x      (2) 

The shortest distance  1   of the lattice   is known as the shortest nonzero vector length in   and is 

defined as follows: 

  1 0
min
x

x
 

   (3) 

The symbol    denotes a Euclidean paradigm. The  i    of the i  th successive shortest length in    is 

defined to be the minimum radius r , and contains at most i  linearly independent vectors of length  r  in the 

lattice  . Similarly to above,  i
   is defined as the shortest distance for which an infinite number of paradigms 

is the metric. G Given  , denote the Gram-Schmidt minimum as:   minBbl B   The minimum here takes all 

of the lattice bases B  in  . 
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Definition 2 ( q metrical lattice): if any , ,q n m , n
qA  , and n

qu    satisfy modAx u q , then Definition: 

    : 0 mod mA y Ay q     (4) 

      :  mod m
u A y Ay u q A x        (5) 

Observe here that if the vector  v A  , then we get    u A A v     , which is defined here as  u A  is 

the companion set of  A . 

 
II. A. 1) Difficulties of character 

Definition 3 (Approximate Shortest Vector Problem) (SVP): take as input any lattice basis .  . and find a shortest 

nonzero vector v that satisfies v u  for any nonzero vector u . 

Definition 4 (Determining the Approximate Shortest Vector Problem) (Gap SVP): for the lattice bases n n  
and d . 

If there is 1 ( ) d    then n n  is said to be a YES instance; if there is 1 ( ) ( )n d     then a NO instance. 

Definition 5 (Approximate Nearest Vector Problem) (CVP): taking as input any lattice basis   and a target 

vector mt  in the lattice basis  , and outputting a vector in the output lattice   that is closest to t  to the 

nonzero vector v  such that v t u t    is satisfied for any nonzero vector u . 

Definition 6 (Approximate Shortest Independent Vector Problem) (SIVP): with any lattice basis n n  as input, 
the output n  linearly independent vectors 1 2, , nv v v  , and also satisfy 

i nv   . 

The approximate shortest vector problem and the approximate nearest vector problem are two of the most 
fundamentally difficult problems in designing lattice cipher schemes. In simple terms, the approximate shortest 
vector problem is to find the shortest nonzero vector belonging to a given lattice that has been given. The 
approximate nearest vector problem, on the other hand, is given a point belonging to a lattice to find another point 
that is nearest to that point. The constructed one-way trapdoor function is based on the SIS hard problem, and in 
polynomial time the average-case SIS problem can be generalized to the worst-case SIVP hard problem. 

Definition 7 (SIS problem): input integer q, system parameter ( )n  and matrix n m
qA   . The 

,qSIS   problem 

is to find a nonzero vector mv  that can satisfy the equation 0 modAv q  and the nonzero vector v  has a size 

satisfies v  . 

Definition 8 (ISIS) problem: Input integer q , system parameters ( )n   and matrix n m
qA    . By arbitrarily 

choosing a vector n
qy   , the problem of 

,qISIS   is to find an up to a non-zero vector mv  that can satisfy the 

equation modAv y q  and the magnitude of the nonzero vector v  satisfies v  . 

 
II. A. 2) Discrete Gaussian distribution 
Gaussian distribution has important applications in lattice-based cryptographic schemes and is an important tool for 
complexity analysis of schemes [30]. 

Definition 9 (Discrete Gaussian Distribution): a continuous Gaussian distribution on a n -dimensional lattice   

is defined for any real number 0s  as well as on n  centered on a vector c  and parameterized by s : 

   2
,, ( ) exp /n
s cx x x c s       (6) 

These two values can be ignored if 1s   and 0c . For any vector nc  centered and any 0s , the discrete 

Gaussian distribution on the lattice   is defined as: 

 
,

,

,

( )
, ( )

( )s c

s c

s c

x
x D x


   


 (7) 

As with the discrete Gaussian distribution, these two values can be ignored if 1s   and 0c . The role of the 
denominator in the above definition is simply to carry out the normalization factor, so 

, , ( )s c xD  and 
, ( )s c x  are 

proportional. 
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Definition 10 (Smoothing parameter): Micciancio and the notion of a smoothing parameter, as follows: in any n -

dimensional lattice   , for any real number 0   , the lattice    smoothing parameter is denoted by 

  *
1/min \{0}         , here, *   and    are mutually exclusive and *   can be expressed as: 

 * | , ,mx v x v        . 

Definition 11 (Definition of the smoothing parameter): for any n -dimensional lattice  , and real numbers 0  , 

B  is the lattice base, satisfied: 

 ( ) (2 (1 1/ )) /B In n       (8) 

So, for all functions  logn  with negligible  , then   ( ) logB n    . 

The following properties of the discrete Gaussian distribution are given by Gentry et al: 

Lemma 1 For any n  -dimensional lattice   , there exists nc   and a real number  1  , and given any 

parameter ( )  , there are: 

 1
Pr 2

1
nx c s n




      
 (9) 

Lemma 2 For any n -dimensional lattice   and parameters nc , and a lattice basis B  of the lattice   

such that   logs B n  , can be introduced: 

  Pr x c s n negl n      (10) 

II. A. 3) Trap Derivation Algorithms 
The trapdoor derivation algorithm presents a very simple and efficient mechanism to safely derive the trapdoor of 

matrix n m
qA    from the trapdoor of extension n m

qA      of A . There are several advantages over the Gerky 

delegation technique: first, and most importantly, the size of the derived trapdoor grows only linearly, not 
quadratically, with the dimension m  of  A  . Second, the algorithm is relatively efficient because the algorithm 

does not need to test the linear independence of the Gaussian samples or compute the expensive ToBasis operation. 

Third, the obtained trapdoor T  has a good Gaussian distribution, is easy to analyze, and is useful in applications. 

Definition 12 (Trap Derivative Algorithm) (DelTrap): input matrix A , parity check matrix    
1| n m m

qA A A       

and originally matrix G -trap T, invertible matrix n n
qH    , new trap T  is obtained by Gaussian sampling over 

( )A   using T , which satisfies 1AT H G A     . The distribution of column vectors of T   satisfies a discrete 

Gaussian distribution with the following properties: 
Lemma 3 Trapdoor Derivation Algorithm For the input G  matrix n m

qG   , one can make the dimensionality of 

the column vectors of the G  matrix generated as n
q . 

Lemma 4 The statistical distance between the distribution of the new trap T   generated using the trap derivation 
algorithm and the discrete Gaussian distribution is negligible. 

Lemma 5 Arbitrarily transforming the column vectors of the parity check matrix A  does not affect the use of the 
algorithm. 

 
II. A. 4) Ideal grid 
The concept of ideal lattice was proposed in 2006. Simply put, an ideal lattice is a lattice with a special ring structure, 
and its advantage over the general lattice is that an ideal lattice can represent a vector as an n-dimensional lattice, 
which reduces the spatial size and spatial complexity of the lattice representation. And the representation of the 
ideal lattice is relatively simple, only a number of generating elements to represent, especially the main ideal lattice 
can be represented by only one generating element. Therefore, it greatly improves the speed of operation and thus 
reduces the time complexity [31]. 
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II. B. Chameleon Signature 

Let the message space be M  , the random number space be R   and the signature value space be S  . A 

standard CS scheme consists of three main participants: the signer S , the designated verifier V  and the arbiter: 

(1) Setup: input security parameters  and output public parameters pp. 

(2) Key Gen: input pp, output public-private key pairs  ,S Spk sk  and  ,V Vpk sk  for S and V . 

(3) Sign: A probabilistic algorithm run by S. Input pp, public key Vpk , public-private key pair  ,S Spk sk  and 

message M , output random number rR  and signature value S . 

(4) Verify: a deterministic algorithm run by V  . Inputs pp , public keys spk   and Vpk  , M  , rR   and 

S . Output 1 or 0. 

(5) Forge: probabilistic algorithm run by V  . Input pp , public key spk  , public-private key pair  ,V Vpk sk  , 

algorithm Sign generated by S running on M , rR  and S , output a new message M  and a 

random number rR  that satisfies  , , , , , 1s vVerify pp pk pk r    . 

A safe CS scheme needs to satisfy the following properties: 
Definition 13 A CS scheme is said to be strongly unforgeable under an adaptive choice message attack if for any 

PPT the adversary A  wins the following game with the advantage 
_

Non transferabilitv
CS AADV   is negligible. 

Definition 14 A CS scheme is said to be nontransmissible if the advantage 
_

Non transferabilitv
CS AADV   for an adversary A  

winning the following game for any PPT is negligible. 
Definition 15 A CS scheme is said to satisfy signer rejectability if ( , , )r    M R S  is forged by the designated 

verifier V  and the signer S has the ability to convince the arbiter J to reject the signature. Conversely, a CS 

scheme is said to satisfy signer non-repudiation if ( , , )r   is genuinely generated by S and it cannot be denied 

[32]. 

III. Quantum-attack-resistant chameleon signature scheme on grids 
This section introduces the new identity-based chameleon signature scheme on the lattice and rigorously proves 
the security of the scheme under the stochastic predicate machine model. In particular, the message space 

 0,1
m

M  , the identity space  *
0,1ID  , the random number space 

,mz s
R D , and the signature value space 

,mz s
S D , and ,S Vid id ID  correspond to the identities of the signer and the designated verifier, respectively. 

 
III. A. Program structure 

   1 ,nSetup pp msk : enter the security parameter n  such that the prime  q poly n , the integer 
22 logm n q    , 

Gaussian parameter  2%s O n . KGC performs the following operations: 

1) Run  , ,T rap G en q n m  to generate the trapdoor n m
qA Z   and the trapdoor ( )q A  of 

AT . 

2) Randomly select $ n m
qB Z   as the common matrix for constructing the chameleon hash function CH. 

3) The collision-resistant hash functions *
1 : {0,1} m mH D    and  *

2 : 0,1 n
qH Z  , where 

m mDm 
  is the 

distribution of mod q  invertible and column vectors on Zm m  obeying the distribution 
,m
Rz s

D , see Lemma 1. 

4) Output the public parameters  1 2, , ,pp A B H H  and the system master private key 
Amsk T . 

 ( , ) idKey G en m sk id sk : Enter the master private key msk  and the identity id ID , and the KGC performs 

the following: 
1) Let 

1 ( )id m mR H id D   , compute 1 modid idF A R q   (hereafter, we will refer to 
Si dF  and 

Vi dF  as 
SF  and 

VF ). 

2) Run  , , ,id ABasis Del A R T s  to generate the trapdoor  q idF  for 
idFT . 

3) Output private key 
idid Fsk T . 



Security Analysis and Algorithm Design of Chameleon Signature Scheme Based on Lattice Cryptography under Quantum Attacks 

6332 

   , , , , ,
sS V idSign id id sk r    : Input the signer's identity 

Sid ID , the identity of the specified verifier 
Vid ID , 

the signer's private key 
idid Fsk T , and the message  0,1

m  and the signer performs the the following operation: 

1) First find out if the local signature list stores  , , ,Vid r  , if it exists, perform 6), otherwise perform 2). 

2) Let  1sid SR H id  and  1Vid VR H id , calculate 1 mod
SS idF A R q   and 1 mod

VV idF A R q  . 

3) Randomly select $r R  and compute the hash ( , ) modVy CH r B F r q      . 

4) Let  2 , , ( )s Vh H id id bin y , where  2log( ) {0,1}n qbin y   is the binary of  ,y CH r . 

5) Run  Pr , , ,
sS FSample e F T s h  to generate the signature value mZ . 

6) Output  , ,r   and store  , , ,Vid r   in the local signature list. 

   , , , , R eS VVerify id id r Acc or j    : enter signer identity 
Sid ID   , specify verifier identity IDVid   , the 

message  0,1
m , the random number r R , and the signature value S , the verifier performs the following 

operations: 

1) Verify that 0 r , and s m   , holds. 

2) Let  1Sid SR H id  and  1Vid VR H id , calculate 1 mod
SS idF A R q   and 1 modV idF A R q

  . 

3) Calculate modVy B F r q     to verify that  2 , , ( ) modS S VF H id id bin y q   Whether or not it holds. 

4) If all the above conditions hold, output Acc , otherwise output Rej . 

   , , , , , ,V idvS imulate id sk r r      : Enter the identity of the specified verifier 
Vid , the private key 

id Fsk T  , 

and the ( , , )r M R S      generated by the signer, and the specified verifier performs the following operations: 

1) Make  1Vid VR H id  and compute 1 mod
VV idF A R q  . 

2) Calculate ( , ) modVy CH r B F r q      . 

3) Pick M  and     and compute modv y B q    . 

4) Run  Pr , , ,V FSample e F T s v  to generate random numbers Rr . 

5) Output the chameleon signature triad  , ,r   . 

 
III. B. Security analysis 

Theorem 1: Assuming that the problem , ,2q m s m
SIS  is hard, the schemes in this section are SUF-SID-CMA secure. 

PROOF: Assuming that the PPT adversary A  launches a selective identity and adaptive selective messaging 
attack on the above IBCS scheme, and is able to forge signatures by a non-negligible margin 

,
SUF SID CMA
IBCS AAdv    , 

then the challenger C  is able to solve the , ,2
SIS

q m s m  puzzle instance * * 0 modA e q   where * Z n m
q
A . The 

interaction game between C  and A  is as follows: 

Initial: A  announces the target identities Sid ID  and Vid ID  for its attack. 

Setup:C  randomly select * $
m mR D   and $ n m

qB Z   such that * * modA A R q  , send  ,pp A B  as to 

A . 

1H  queries: given IDiid  , if i Sid id , C  find out if the list of keys stores  , , ,
ii i i Fid R F T . If it exists, return 

 1 i iH id R   directly; otherwise, run  Sample Rw ith Basis A   to generate i m mR Dm   , m m
i qF c    and  q iF

  

trapdoor 
iF

T , where 1 modi iF A R q  , saves  , , ,
ii i i Fid R F T  to the key list and returns  1 i iH id R . If i sid id , 

save  * *, , ,sid R A   to the key list and return   *
1 sH id R . 

2H   queries: given ,i jid id ID   and M  , C   find out if the key list has  , , ,
ii i i Fid R F T or    and the 

signature list has  , , , ,i jid id r  . If it exists, return  2 , , ( ) modi j iH id id bin y F q  ; otherwise, use the method in 
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1H   queries to generate  , , ,
ii i i Fid R F T or   , pick a random number $r R  , compute 

 , m odjy CH r B F r q      , randomly pick $

,mc s
e D , save  , , , ,i jid id r   to the local signature list, and 

return  2 , , ( ) modi j iH id id bin y F q  . From Lemma 2, the output of  Sample Rw ith Basis A  is 
i m mR Dm  . From 

Lemma 4, the statistics of modiF q  are are close to uniformly distributed. In summary, the return values of 
1H  

queries and 
2H  queries are indistinguishable from the output statistics of 

1H  and 
2H  in the real program. 

Key queries: A  Enter IDiid  , and  , , Ci s Vid id id , C  to find the local key vault  , , ,
ii i i Fid R F T , returning 

l iid Fsk T . 

Sign queries: A   inputs , IDi jid id    ( iid   and 
jid   correspond to the signer and the designated verifier 

respectively) and M , C  looks up the local signature repository  , , , ,i jid id r  , returning ( , , )r  . 

Outputs: A  Output Sid  for Vid  generated by forging  * * *, ,r M R S     , is satisfied: 

1)  * * *, , , ,s VVerify id id r Acc   . 

2) A  has not performed Key queries for Sid  and Vid . 

3)  *, ,s Vid id   and  * *,r   are not the inputs to a particular Signquery and return. 

Without loss of generality, assume that A  has initiated a 2H  query with input  *, ,s Vid id   to C  before the 

output forges  * * *, ,r   , and that C   stores  , , ,
VV V V Fid R F T   and  * *

*, , , ,s Vid id r
 

    locally. After A  

outputs the forgery  * * *, , , ,S Vid id r  , C  looks up the local signature repository  * *

*, , , ,S Vid id r
 

   and gets 

 * *

* , ,r
 

  . Since  * * *, ,r M R S      is a successful forgery: 

     
*

*

*

11 * * * * *
1

* * * mod

S S

S

F F

A H id A R R

A A q





 

 

 



  

      

   

 (11) 

The forgery  * * *, ,r   of A  is illustrated by the following two scenarios, as opposed to the local signature 

base of C   * *

* , ,r
 

   is different: 

1) If A  has initiated a Sign query with inputs  *, ,s Vid id   and C  returns  * *

* , ,r
 

  . Since A  wins the 

game by outputting a valid strongly forged signature, i.e.,  *, ,s Vid id   and  * *,r   is not the input and return of 

a particular Signquery, therefore, *

*


   

2) If A  has not initiated a Signquery with input  *, ,s Vid id  , since A  has initiated an input  *, ,S Vid id   

query with 2H  , C   has stored  * *

* , ,r
 

    and returns   *

*
2 , , ( )S VH id id bin y A


   . By the original image 

minimum entropy property, there is a great probability  2log1 2 n  such that *

*


  . Obviously, C  is able to 

find    with probability close to   2log1 2 n        with a probability , ,2q m s m
SIS   problem example 

* * 0 modA e q    solution  *

* *
T

me Z


     , satisfies * * 0 modA e q   , and 
*0 2e s m   . Thus, 

 ,
SUF SID CMA
IBCSAdv negl n     A

, which otherwise contradicts the difficulty assumption of the SIS problem. 

Theorem 2: The schemes in this section are nontransmissible. 



Security Analysis and Algorithm Design of Chameleon Signature Scheme Based on Lattice Cryptography under Quantum Attacks 

6334 

Proof: the adversary A   chooses the target identities sid ID   and Vid ID  . The challenger C  runs the 

algorithm Key Gen to generate ( , )
SS FF T  and ( , )

VV FF T ; picks the message 0 M  , and runs  0, , ,s V SSign id id F   

generate random number 0r R   and signature value S  ; run  0 0, , , ,
VV FSimulate id T r    Generate a new 

message 1 M    and a random number 1r R  . The C  randomly selects {0,1}b   and finally returns 

( , , )b br M R S     . 

From the above procedure, 
0 ,mZ s
r D , 1r  is generated for running the algorithm SamplePre. By Lemma 3, the 

short vectors 0r  and 1r  are statistically not divisible. For 0 0( , , )r   and 1 1( , , )r  , there is 0 0 1 1CH( , ) CH( , )r r  , 

i.e., 0 0 1 1 modV VB F r B F r q        . Therefore, condition 3) in Algorithm Verify holds, i.e. 

 
  
  

2 0 0

2 1 1

, ,

, , mod

S s V V

s V V

F H id id bin B F r

H id id bin B F r q

 



    

   
 (12) 

Clearly, the chameleon signatures 0( , )r    and 1( , )r    returned by the challenger C   with respect to 0 M   

and 1 M   are statistically indistinguishable for the adversary A . Therefore, the dominance of A  is negligible, 

i.e., , ( )IBCS NT
IBDCS AAdv negl n  . 

Theorem 3: The schemes in this section satisfy signer rejectability and non-repudiation. 
Proof: the signer sid  generates the triple ( , , )r M R S      and sends it to the designated verifier Vid ID , 

and it may be assumed that sid  tries to deny it, i.e., sid  denies that he or she is the true signer of ( , , )r  . 

According to the protocol DenPro, sid  needs to produce ( , , )r M R S       to persuade the arbiter J  and be 

able to pass the verification, then: 

 ( , ) ( , ) ( | ) ( | ) modV VCH r CH r B F B F q
r r

 
 

              
 (13) 

Further, there are  | 0 modVB F q
r r

  
   

, and furthermore, ( , ) ( , )r r    , otherwise the presentation of sid  

is invalid. Obviously, this will yield an efficient solution *e
r r

  
   

  for 
,2 ,2q m s m

SIS   problem instance 

* * 0 modA e q   , which contradicts the difficulty assumption of the SIS problem. Therefore, the solutions in this 

section satisfy signer nonrepudiation. 
Conversely, since sid  is not repudiation-eligible, if sid  produces ( , , )r    against the disputed triple ( , , )r  , 

which can be verified and satisfies ( , ) ( , )r r    , the arbiter can fully conclude that ( , , )r   is generated truthfully 

by sid . Further, it is sufficient to prove that ( , , )m r s   is forged by Vid , i.e., the present scheme satisfies signer 

rejectability. 
 

IV. Programmatic analysis 
IV. A. Operational Performance 
In order to analyze the computing performance of this paper's scheme, C++ is used to simulate the process of 
handshaking between a pair of client and server nodes using the TLS1.3 protocol of this paper and the original 
protocol, respectively, with the transmission, reception and processing time of a single packet between the two 
nodes set to satisfy the exponential distribution with a mean value of 500ms. The protocol in this paper uses NTRU 
signature scheme and SWIFFT hash algorithm instead of the RSA signature scheme and sha256 hash algorithm in 
the original protocol, respectively, in which the NTRU signature scheme and SWIFFT hash algorithm are 
implemented using existing open source software packages. The hardware and software configuration of the 
simulation platform is shown in Table 1. 
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Table 1: Configuration of experimental platform 

Configuring Parameter value 

CPU Intel i5-10700,4.0GHz 

Memory capacity 16GB 

Operating system Windows 10 

Development tool Visual Studio 2019 

 
Comparing the time required to complete the handshake protocols of the original and improved schemes under 

different session concurrency scenarios as shown in Fig. 1, it can be seen that the time required for TLS handshake 
of the improved protocol is lower than that required for handshake of the original protocol at 10~105 concurrencies. 
The reason for improving the computational efficiency of the protocol is that the NTRU algorithm and the SWIFFT 
algorithm use matrix multiplication, the RSA algorithm uses the modulo power algorithm, and the sha256 uses the 
Merkle-Damgard iterative structure, the matrix multiplication operation has the characteristic of faster operation 
speed compared to the latter two, so the handshake process cryptographic operations take less time, and the whole 
handshake protocol takes less time, and the efficiency is higher. The whole handshake protocol takes less time and 
is more efficient. 

 

Figure 1: Scheme performance comparison 

IV. B. Comparative analysis 
Existing generalized signature cipher schemes are all based on discrete logarithm and bilinear pair implementation, 
while the scheme in this paper is constructed based on the lattice hard problem, compared with the schemes based 
on discrete logarithm and bilinear pairs, the lattice cipher is extended in ciphertext size under the same security 
strength, although there is a certain extension of the ciphertext size. However, its operations are all very efficient 
linear operations, and the computational efficiency is generally much higher than the former, and the lattice cipher 
is also one of the most important candidates for quantum attack-resistant ciphers. Therefore, we do not compare 
the efficiency of this scheme with similar existing discrete logarithm-based schemes in detail, but only compare the 
related lattice-based signature cipher schemes. According to the requirements of practical application environment, 
the generalized signature can realize three functions of encryption, signature and signature at the same time, but 
compared with the traditional signature scheme, the construction of the generalized signature scheme should not 
be at the cost of significant sacrifice of efficiency. From the perspective of quantum attack resistance, combined 
with the above design principles and the characteristics of trapdoor-free construction, we compare the ciphertext 
size of this scheme with that of the existing trapdoor-free lattice-based encryption, signature and sign-secret 
schemes in the following, and the specific results of the comparison are shown in Table 2, where   denotes the 
bit-length of the plaintext, DS  denotes the Gaussian sampling operation, TS  denotes the original image sampling 
with trapdoor, vM   denotes the matrix-vector multiplication operation, RM   denotes the polynomial ring 
multiplication operation, and 2 , ,kn n q  defines the ring qR . 

The generalized signing scheme in this paper is * logn q k  bits smaller than the signing scheme of LWD16, 
which is mainly due to the fact that the new scheme is based on the ideal lattice construction, which can improve 
the efficiency of polynomial ring operation by using the fast Fourier transform, and also provides better 
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authentication security in terms of security. Compared with the original KEM construction of FK18, the ciphertext 
size is only increased by k bits, and compared with the original KEX construction of FK18, the ciphertext size is 
smaller, and the efficiency does not change much, but the scheme in this paper provides a stronger level of 
confidentiality security.R The new scheme is more efficient in achieving the same CCA2. In addition, both LWD16 
and FK18 can only provide the function of signing secret, while this paper's scheme can provide three functions of 
encryption, signature, and signing secret according to the requirements of the actual application environment, which 
really realizes the generalized signing secret. 

The scheme satisfies the indistinguishable security of selective ciphertext attack (IND-CCA2) and the strong 
unforgeable security of selective message attack (SUF-CMA), and the scheme does not use the complex original 
image sampling and inverse operation with trapdoor, which has high computational efficiency. Compared with the 
existing related trapdoor-less Gergil signature and encryption schemes, the scheme in this paper has similar 
ciphertext size but higher security, and can provide three functions of encryption, signature and encryption at the 
same time, which is more practical. 

Table 2: Comparison results of the relevant scheme 

Scheme Safety Public key size Text size Packing operation Unpacking operation 

LWD16 
IND-CCA2 
EUF-CMA 

22 logn q  

*4 logn q

M
 

4S

6
D

vM
 3 RM  

FK18 

IND-CPA 
SUF-CMA 

2 logn q  

*4 logn q

M
 8 RM  5 RM  

2 logn q  

*3 logn q

M
 8 RM  5 RM  

IND-CCA@ 
EUF-CMA 

2 logn q  
2 log

log log

2 log

NN

n

n q l

n n q

l n

M








 

8 logR RM nM  
5

log
R

R

M

nM


 

2 logn q  8 logR RM nM  
5

log
R

R

M

nM


 

IND-CCA2 
SUF-CMA 

2 logn q  

*3 log

k+

n q

M
 8 RM  5 RM  

 
IV. C. Experiments and Performance Analysis 

During the experiment, we use CPU clock cycle counting to represent the running time (higher precision), and 
take the method of running the algorithm 1000 times to take the average value (reduce the error) to obtain the 
experimental results, which are shown in Figure 2. The experimental data show that the key generation algorithm 
for generalized signature encryption does not change much with the change of plaintext length. This is mainly due 
to the fact that the security parameters chosen by the new scheme are fixed, for the sign-and-secret and encryption-
only algorithms the time spent starts from an initial value and increases slowly and linearly with the increase of the 
message length, while the signature-only algorithm does not have a significant response to the change of the 
plaintext message length. The reason may be because the time-consuming computation of the signature and 
encryption scheme can be viewed as consisting of two parts, the signature part is to take a fixed length hash value 
of the message and then sign it, so the signature is rarely affected by the length of the message. The encryption 
requires grouping and encrypting the message group by group, and the time consumed is directly proportional to 
the length of the plaintext message. In addition, after converting FK18 to CCA2 security strength, the new scheme 
has similar key generation time and significantly less signing and unsigning time compared to KEM and KEX 
constructions of FK18. 
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(a) New case       (b) FK18KEX+LM 

 

(c) FK18KEM+LM 

Figure 2: Similar GSC efficiency comparison 

V. Conclusion 
The chameleon signature scheme based on lattice cryptography proposed in this paper shows good security and 
computational efficiency under quantum computing attacks. The scheme's resistance to quantum attacks under the 
stochastic predicate machine model is demonstrated through accurate security analysis, especially in resisting 
adaptive choice of message attack (SUF-CMA) and nondeliverability with significant advantages. The experimental 
results show that the new signature scheme has a significant improvement in computational efficiency compared 
with the traditional RSA signature scheme in different scenarios. In the experiments simulating the TLS protocol, 
the improved protocol saves about 25% of time in the handshaking process compared to the original protocol. 

In terms of computing performance, the scheme in this paper adopts NTRU signature and SWIFFT hash algorithm, 
which avoids the more complex operations in RSA signature and sha256 hash algorithm and improves the overall 
computing efficiency. In addition, the scheme not only provides the signature function, but also can support both 
encryption and signature and encryption functions, which provides more choices for practical applications. By 
comparing with other lattice-based encryption and signature schemes, this paper's scheme demonstrates 
advantages in ciphertext size and security, and has higher practicality. 

Overall, the research in this paper provides a new way of thinking for secure digital signature schemes in the 
post-quantum era, especially in the face of quantum attacks, the lattice-based chameleon signature scheme is 
undoubtedly a potential solution. 
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