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Abstract With the development of resource-saving and environment-friendly concepts, lightweight, high-strength, 
high-performance and low-consumption structures have become a design trend. Topology optimization, as an 
optimization design method, can achieve the optimal performance of structures under the satisfaction of constraints, 
and has been widely used and concerned in many fields. This paper discusses the application of topology 
optimization algorithms in landscape design and spatial layout planning. The optimal design of node structure is 
realized by establishing a multi-scale model and a topology optimization method applicable to spatial structure. The 
study adopts the SIMP interpolation model in the variable density method, takes the minimum structural strain 
energy as the optimization objective, and constrains the volume ratio before and after optimization. In the multi-
case analysis, the flexibility value of the optimized node under the 30% volume constraint is lower than that of the 
original node in most of the cases, and the final flexibility of Case 3 is 9.18 mm, which is improved by 28.8% 
compared with that of the original node; and in the case of the similar material usage (volume of the optimized node 
7,652 cm³, volume of the original node 7,450 cm³) In the case of similar material usage (optimized node volume 
7652cm³, original node volume 7450cm³), the optimized node reduces the flexibility value by 8.2% in Case 4, and 
the structural stiffness is significantly improved. The design scheme generated by topology optimization not only 
meets the engineering requirements, but also presents the characteristics of bionic organic structure and the 
aesthetics of flowing space, which provides new ideas and methods for landscape design and spatial layout 
planning. 
 
Index Terms topology optimization, spatial structure, multi-scale model, variable density method, node optimization, 
SIMP model 

I. Introduction 
Topology optimization algorithm is a mathematical model-based optimization method, which optimizes the topology 
of the design space to achieve the optimal design solution [1], [2]. This algorithm can help engineers to minimize 
material consumption and cost under the premise of guaranteeing product performance and quality, and is widely 
used in various network topologies, such as computer networks, communication networks, and logistics networks 
[3]-[6]. Its basic principle is to change the structure of the network by adjusting the connection relationship between 
network nodes, so as to achieve the purpose of optimizing network performance [7], [8]. And topology optimization 
algorithms also play an important role in landscape design and spatial layout planning [9]. 

In landscape design, topology optimization algorithms help designers to better understand the formation and 
operation of spatial structures, so that the needs and requirements of human activities can be better taken into 
account in the design and planning process [10]-[12]. In landscape design, space is divided into areas of various 
sizes, each of which has a specific function and use, and can also be interconnected by specific paths and 
sequences [13]-[15]. Landscape design emphasizes the wholeness and coherence of the spatial structure, and 
through careful layout and design, it enables people to travel freely through the landscape and linger [16], [17]. 
Moreover, the landscape usually contains several different landscape areas, such as lawn, woods, gardens, etc. By 
connecting these landscape areas, designers can create a good spatial layout [18]-[20]. 

Structural optimization design, as an important research direction in the field of engineering, has seen an 
increasing demand for lightweight, high-strength, high-performance and low-consumption structures in recent years, 
driven by the concepts of resource conservation, environmental friendliness and technological competitiveness 
enhancement. Among the three main methods of structural optimization (size optimization, shape optimization, and 
topology optimization), topology optimization shows unique advantages due to its feature of no limitation on the size 
of the input form. Topology optimization can be applied to a wide range of scales from macroscopic structures, such 
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as large bridges and buildings, to micro- and nanoscale structures, providing new technical support for spatial layout 
and landscape design. Based on the theory of topology optimization, this study explores its application value in 
landscape design and spatial layout planning. The study firstly combs through the main methods of topology 
optimization, including the homogenization method and the variable density method, and analyzes the advantages 
and disadvantages of each. The homogenization method calculates the macroscale stiffness matrix through the 
material density distribution at the microscale, but the computational complexity is high and there may be errors 
when dealing with nonlinear problems; the variable density method optimizes the structural performance by 
controlling the change of the material density, which is computationally efficient, but there may be noise and 
discontinuities. This study focuses on the SIMP model in the variable density method, which filters the intermediate 
density by a penalty function to approximate it to 0 or 1. In terms of mathematical modeling, the study establishes 
a hierarchical optimization method for spatial structures based on a multiscale model, which includes two main 
steps: structural multiscale modeling and node topology optimization. The multiscale modeling couples the overall 
model with the local fine model for collaborative computation, which solves the problems of fine model area and 
cross-scale interface connection for large-span spatial mesh and shell structures; while the node topology 
optimization takes the minimum strain energy of the overall structure as the primary optimization objective, and at 
the same time constrains the volume ratio before and after the optimization. In order to verify the effectiveness of 
the methodology, the study takes three 80m scaled-down models of K6 single-layer spherical mesh-shell structures 
as the objects of study, and conducts numerical simulations of multi-scale models and experiments of nodal topology 
optimization. The experimental results show that the optimized nodes exhibit different characteristics and 
performance under different volume constraints. In particular, under 30% volume constraint, the core region of the 
node presents a clearer feature of material separation between the upper and lower parts, and the surface thickness 
is uniform and smooth, with no obvious redundant structure, while the static stiffness is improved under most 
working conditions. This finding provides an important reference for space structure design. This study also explores 
the aesthetic characteristics of topology optimization, including the bionic organic structural features, the flowing 
spatial aesthetics, and the regular and rigorous logical aesthetics, which enriches the dimensions of the application 
of topology optimization in landscape design. By studying the application of topology optimization algorithms in 
landscape design and spatial layout planning, this paper aims to provide theoretical support and practical guidance 
for related fields and promote the application of topology optimization technology in a wider range of fields. 

II. Topology optimization design and mathematical modeling 
II. A. Overview of topology optimization design 
II. A. 1) Optimization methods 
In topology optimization, different optimization methods have their own advantages and disadvantages, and it is 
necessary to choose the appropriate method according to the characteristics of the specific problem. After obtaining 
the optimal material distribution, post-processing and computational optimization are also needed to achieve more 
accurate and practical results. 

The following lists several optimization methods most commonly used for topology optimization, as well as their 
respective advantages and disadvantages: 

Homogenization method: The method of designing an optimized material distribution by transforming the 
microscale material density distribution into the macroscale equivalent material density, and designing the optimized 
material distribution through the nature of the equivalent material. The basic idea is to calculate the macro-scale 
stiffness matrix through the micro-scale material density distribution, which in turn inverts the equivalent material 
density. On this basis, the equivalent material density is adjusted through the change of material density distribution, 
and then the optimization objective is minimized. However, due to the need to carry out the calculation of equivalent 
material density, its computational complexity is high, and at the same time, there may be errors and loss of accuracy 
when dealing with nonlinear problems. 

Variable density method: a method to optimize the structural performance by controlling the change of material 
density. This method optimizes the structural performance by setting different values of material density at different 
locations inside the structure. The variable density method is usually calculated using an optimization algorithm. 
The variable density method is widely used in the field of structural optimization, such as the optimal design of 
aircraft, automobile and other structures. The method has high computational efficiency and computational accuracy, 
and at the same time can flexibly control the variation of material density. However, its computational complexity is 
high due to the need to adjust the material density of each unit, while the results may have noise and discontinuity 
[21]. 

 
II. A. 2) Aesthetic analysis of topological optimization 
(1) The topology optimization method can generate forms with bionic organic structure by simulating gene mutation 
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and natural selection process in nature, which have similar forms of branches, grids, pores and so on with living 
organisms, so the forms generated by the topology optimization method often have the characteristics of bionic 
organic structure. 

(2) The beauty of flowing space refers to the natural, flowing and beautiful feeling in space. In interior design, the 
flowing spatial aesthetics can be achieved through a series of design techniques, such as the use of natural light, 
the flexibility of the spatial layout, smooth line design, soft color matching, appropriate green planting arrangements. 

Topology optimization can optimize the curves and forms of objects through automated algorithms to make them 
more smooth and natural. During topology optimization, the distribution of materials is adjusted according to the 
laws of stress transfer and energy distribution. This makes the optimized structure have a continuous and smooth 
spatial form, with a natural transition between lines and surfaces, giving people a beautiful visual experience. This 
flowing spatial aesthetics reflects the harmony and balance of the structure, which makes the topologically optimized 
structure have high aesthetic value while meeting the performance requirements. This aesthetic sense is especially 
obvious in the application of bridges, building s and other fields, which provide people with a beautiful living 
environment. 

(3) As an optimization method based on the principles of mathematics and mechanics, the aesthetic 
characteristics of topology optimization are also reflected in the aesthetics of regular and rigorous logic. The 
topology optimization process follows certain mathematical formulas and physical laws, which makes its results 
highly rational and scientific. This logical beauty reflects the rigor and precision of topology optimization technology 
in solving practical problems. 

 
II. B. Overview of topology optimization 
II. B. 1) Structural optimization 
The purpose of structural optimization is to achieve the optimal performance of a structure while meeting other 
constraints. The concepts of resource conservation, environmental friendliness and technological competitiveness 
have led to the development of lightweight, high-strength, high-performance and low-consumption structures, and 
thus structural optimization has gradually gained the attention of various sectors. 

Structural optimization can be divided into three categories: size optimization, shape optimization and topology 
optimization. 

In the case of continuum structures, optimization is achieved by determining the optimal location and shape of 
the cavities in the design domain. Unlike other optimization methods, topology optimization of continuum structures 
has no restriction on the size of the input form, and can be applied to both large-scale structures such as bridges 
and buildings, as well as micro- and nanoscale structures. 

The Asymptotic Structure Optimization (ESO) algorithm is one of the most widely adopted algorithms. Its basic 
concept is to gradually remove inefficient parts from a structure. In this process, the optimized structure gradually 
“evolves” towards the optimal shape and topology. 

 
II. B. 2) Topology optimization numerical solutions 
Taking the ESO method as an example, the following describes the computation process of the topology 
optimization algorithm based on stress level and based on structural stiffness, respectively. 

Computational process of ESO topology optimization based on stress level: 
Firstly, the concept of stress level is introduced, which is a reliable indicator for assessing the efficiency of material 

use in a particular part of the structure, and the stress level in any part of the structure can be solved by the finite 
element method. Ideally, the stresses in each part of the structure should be close to the same value, i.e., the safe 
stress level. This concept leads to a negative criterion based on localized stress levels: material sections with low 
stress levels are not used and they are removed. This can be achieved by removing elements in a finite element 
model. Stress levels are determined by comparison. For example by comparing the vonMises stress vm

e  of an 

element with the maximum vonMises stress max
vm  of the entire structure. After each element has been analyzed, 

elements that satisfy the following conditions are removed from the finite element model. i.e: 

 
max

vm
e

ivm
RR




  (1) 

where iRR  is the current rejection rate. This finite element analysis and element deletion loop is repeated using 

the same rejection rate iRR  until a steady state is reached. 

That is, no more elements can be deleted using the current rejection rate iRR . At this stage the evolution rate 

E  will be added to the rejection rate. I.e: 
 1i iRR RR ER    (2) 
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With progressively increasing rejection rates, the iteration will continue until a new steady state is reached. This 
progressive optimization process will continue until an optimized solution that satisfies the requirements is obtained. 
For example, when there is no material cell stress level in the structure below 25% of the maximum value. The 
above topology optimization calculation process can be summarized in the following 5 steps: 

Step 1: Discretize the structure using a good quality finite element mesh. 
Step 2: Finite element analysis of the structure. 
Step 3: Remove the elements that satisfy the conditions in (1). 
Step 4: If a steady state is reached, increase the rejection rate according to equation (2). 
Step 5: Repeat steps 2 to 4 until the desired topology optimization design result is obtained. 
Structural stiffness is a key parameter in the design of building or bridge structures. This parameter is usually 

considered through its inverse measure-mean flexibility. The mean flexibility can be defined as the total strain energy 
generated by the external loads acting on the structure: 

 
1

2
TC f u  (3) 

where f  is the external force vector and u  is the displacement vector. 
In finite element structural analysis, the static equilibrium equation can be described as: 
 Ku f  (4) 

where K  is the global stiffness matrix. 
When the i th element is removed from the structure, its stiffness matrix changes to: 
 *

iK K K K      (5) 
where *K  is the stiffness matrix of the structure after the material unit is removed and iK  is the stiffness matrix 
of the i th material unit. From this, the amount of change in the displacement vector can be obtained: 

 iu K Ku     (6) 
It follows from Eqs. (5) and (6): 

 11 1 1

2 2 2
T T T

i i iC f u f K Ku u K u       (7) 

where iu  is the displacement vector of the i th cell. 
Therefore, the sensitivity coefficient of the average flexibility value can be defined as: 

 
1

2
e T
i i i iu K u   (8) 

The above equation shows that the increase in average flexibility due to the removal of the i th cell is equal to its 
cell strain energy. In order to minimize the average flexibility (i.e., maximize the stiffness) when removing cells, the 
most efficient way is to eliminate the cell with the smallest value of i . The number of removed cells is determined 
by the cell removal ratio. The cell removal ratio is defined as the ratio of the number of cells removed in each 
iteration to the total number of cells in the current finite element model. The above optimization process can be 
summarized as follows: 

Step 1: Discretize the structure using a finite element mesh. 
Step 2: Finite element analysis of the structure. 
Step 3: Calculate the sensitivity factor for each element. 
Step 4: Remove a certain number of elements with low sensitivity coefficients based on a predetermined unit 

removal ratio (ERR). 
Step 5: Repeat steps 2 through 4 until the average flexibility value (or maximum displacement) reaches a preset 

limit value. 
 

II. C. Topology optimization analysis 
II. C. 1) Computational Principles of Topology Optimization 
Topology optimization is performed to ensure that the objective function and constraints are perfectly recognized by 
the optimization algorithm. Continuously varying density variables are introduced in the design domain, usually 
ranging from 0 to 1. The constraints aim to optimize the material distribution to achieve the objective function 
optimization. 

The main formulation for topology optimization can usually be expressed in the following form: 
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 (9) 

where v  denotes the relative density of the v th cell. *V  denotes the fluid region volume fraction. ( )if   denotes 

the i th constraint, and the constraints are mostly expressed as inequalities. ( )f   denotes the objective function 
of the design object, and the size of the objective function depends on   and its related formula. 

During the optimization process, multiple such constraints can be set to ensure the rationality and feasibility of 
the design. Overall, the goal of topology optimization is to satisfy specified performance requirements by searching 
for the optimal material distribution in the design space and to satisfy various constraints and boundary conditions 
in the process. 
II. C. 2) Generalized model for material interpolation 
In the variable density method, SIMP and RAMP interpolation models are usually used, which are used to establish 
the relationship between density and material properties and play a key role in topology optimization. 

(The (Brinkman) model is used to simulate the frictional resistance with the expression: 
 *F u   (10) 

where *  denotes the pore reverse permeability of a porous medium. 

where *  reflects the permeability of the fluid. When the value of *  is 0, it means that the fluid is not hindered in 

the porous medium and can pass freely. On the contrary, when *  is infinite, it means that the fluid cannot be 

distributed in the medium and the resistance becomes infinite. Therefore, by adjusting the value of *  , the 
distribution of fluid and solid regions in topology optimization can be effectively controlled. 

SIMP and RAMP interpolation models are respectively: 
SIMP [22]: 
 max( ) (1 ) p      (11) 

RAMP: 

 min max min

(1 )
( ) ( )

q

q

    



  


 (12) 

where p  , q   denote the interpolation parameters. max   denotes the maximum value of reverse permeability, 

denoted as solid phase. min  denotes the minimum value of reverse permeability, denoted as liquid phase. 

From the above equation, when   is taken as 0, ( )   is equal to max , which indicates that the fluid flow is 
extremely restricted and no fluid passes through the design domain, which is then embodied as a solid material. 
When   is taken as 1, ( )   is equal to min , which indicates that at this time, the fluid is not restricted, and the 
fluid is allowed to flow freely within the design domain, and therefore represents a fluid state. In scholarly studies, 

max  depends mainly on the Darcy number and the magnitude of the viscous force, expressed as: 

 max 2Da L

 


 (13) 

where Da  represents the Darcy number, which indicates the relationship between friction and viscous forces in 
porous media. In porous media, the larger the Darcy number, the greater the permeability, the permeability of the 
media used in this paper is small, so the smaller Darcy number is selected. 

 
II. C. 3) Numerical instability and treatment 

When the phenomenon of numerical instability occurs in topology optimization design, it is not only difficult to 
process and manufacture, but also more difficult to meet the practical applications. To solve this kind of problem, 
the main application of filtering method, filtering method has the advantages of simplicity, convenience and reliability. 
Filtering method can be specifically divided into sensitivity filtering and density filtering. Currently, density filtering 
and projection methods are often used to solve the phenomenon of numerical instability in topology optimization. 
The expression of density filtering is: 
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where iv  denotes the cell volume, iX  denotes the center of cell i , and ( )iw X  denotes the weighting function. 
The linear or exponential decay with increasing distance can be expressed as: 

  i filter i ew X r X X    (15) 

where filterr  is the filtration radius. Ne  is the set of filter ranges in the center of the cell, i.e: 

  i e filterNe i X X r    (16) 

Topology optimization often uses filtering techniques to obtain information about neighboring cells, but it is not 
easy to apply this method for some special designs, especially when the design domain is divided into multiple non-
overlapping regions. Density filters are usually defined as solutions of Helmholtz-type partial differential equations, 
i.e., density filtering is achieved by solving Helmholtz-type partial differential equations: 

 2 2r         (17) 

where r  denotes the reference length.  ,   denote unfiltered and filtered design variables. 
Finally, applying the projection at the filter can be good to reduce the gray units. In the variable density method, 

the hyperbolic tangent function is applied to control the degree of projection. Namely: 

 
   
   

1 1 1 1

1 1 1 1

tanh tanh

tanh 1.0 tanh
i    


   

     
     

 (18) 

where   denotes the projection point, 1  denotes the projection slope, and 1  denotes the projection threshold, 
with values from 0 to 1. If the final density value is greater than 1  the curve is projected in the direction of 1, and 
vice versa for 0. 

III. Topology optimization-based hierarchical optimization method for spatial structures 
III. A. Structural multiscale modeling 
The purpose of structural multiscale modeling calculation is to couple the overall model with the local fine model for 
collaborative calculation in order to obtain the overall response of the structure while obtaining the local response 
information of the structure. Different multi-scale models can be established according to different purposes, for 
example, in order to obtain the results of the stress response of the local units, the response analysis of the local 
details is modeled using shell units to establish a fine model. The rest of the structure is modeled using beam units. 
Therefore, the first step in multiscale modeling should be to determine the analysis objectives, and according to the 
different analysis objectives, the components of the structure are divided into multiple regions. Different scale 
models are established in different regions according to the needs of analysis, and finally the multi-scale unit models 
are coupled and analyzed collaboratively in order to obtain the overall and local responses of the structure at the 
same time. The large-span space mesh-shell structure belongs to large engineering structures with a huge number 
of bars and nodes, and the two basic problems of the refined modeling region of the structure and the connection 
of the cross-scale interface need to be considered in the establishment of the multiscale model of the structure. 

(1) Determination of macroscopic units 
In the establishment of structural multiscale model, the overall structure is firstly analyzed for dynamic response 

to determine the key parts of the structure. The key position of the structure is simulated by the fine-scale unit, and 
the non-critical position is simulated by the macroscopic unit. Generally, the microscopic unit is the shell unit and 
the macroscopic unit is the beam unit. The structure is modeled by the consistent unit method, and the amplitude 
of the input seismic acceleration is gradually increased, and the relationship curve between the proportion of 
structural plastic rods and the amplitude of the acceleration is obtained. According to the distribution of plastic rods 
at the corresponding acceleration of the curve, the weak parts of the structure are determined. And a fine-scale 
multi-scale model is established. 

(2) Cross-scale connection 
Reasonable and scientific establishment of multi-scale model connection interface is the key to multi-scale model 

calculation. According to the physical continuity of multi-scale interface units and nodes, the deformation-based 
physical connection equations are established to realize the connection between cross-scale units. In fact, the 
connection between cross-scale can be roughly categorized into three major types: the connection between beam 
unit and shell unit, the connection between shell unit and solid unit, and the connection between beam unit and 
solid unit, and the basic principles of these three types are the same in essence. In this paper, the MPC method is 
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applied to illustrate the connection between beam unit and shell unit as an example of cross-scale connection. Both 
are usually rigid connections. 

At the cross-scale interface, different types of unit nodes can be connected through the displacement constraint 
equations of the nodes, so as to realize the displacement coordination at different scales. The constraint equations 
are adopted in the form of: 

 (1) (2)

1

n

n i m
i

u X u


  (19) 

where (1)
nu  and (2)

mu  are the number of node degrees of freedom in the large-scale domain (beam unit) and small-

scale domain (shell unit), respectively, and n  is the total number of nodes. iX  is the constraint coefficient of node 
i  at the connection interface. 

The simplified multipoint constraint equation is in polynomial form: 
 (1) (2) (2) (2)

1 1 2 2n m mu c u c u c u C      (20) 
where ic  is the weight coefficient. C  is a constant. 

 
III. B. Node topology optimization based on multi-scale model optimization results 
III. B. 1) Spatial structure optimization based on multi-scale theory 
In order to accurately extract the force conditions in the node design domain as the boundary conditions for node 
topology optimization, the hollow ball nodes and the rods connected to the ball nodes with 0.9 times of the outer 
diameter of the rods are taken as the areas to be modeled in a refined way. 

With the angle between the rods connected to the nodes, the nodes can be roughly divided into the following 
three categories. 

The first category: nodes intersected by radial rods, the angle between the rods is 45°. 
The second category: nodes intersected by ring, radial and diagonal rods, with rod angles of 65°, 70° and 45°. 
The third category: the node intersected by inclined rod and ring rod, the angle of the rod is 40°, 60°, 80°. 
This multiscale model is optimized for sizing under multiple operating conditions. In the optimized model because 

of the introduction of hollow ball nodes. One more constraint to be considered here is the determination of the outer 
diameter and wall thickness of the welded hollow ball. The specification states that the wall thickness of the single-
layer mesh shell hollow sphere should not be less than 4mm. It is appropriate to take 2.4~3.0 for the outer 
diameter/wall thickness of hollow ball nodes. Ball node wall thickness/maximum pipe wall thickness should be 
1.5~2.0. The following constraint equation can be established: 

 min 1( 2 ) /n sD d a d     (21) 

 min
min max( ,4)

3

D
t   (22) 

where 1d  is the maximum outer diameter (mm) of the two neighboring steel pipes. sd  is the smaller outer diameter 
(mm) of the two neighboring steel pipes. na  is the clear distance between two adjacent steel pipes, taken as 10 
mm.   is the angle between the axes of two adjacent bars, and minD  is the minimum outer diameter of hollow ball 
node. mint  is the minimum wall thickness of the hollow sphere node. 

Since the single-layer mesh shell does not have enough bending stiffness provided by the inner web in space, 
and the connection between the members is mostly a rigid connection with welded hollow sphere nodes. Therefore, 
the axial force and bending moment in the node design domain need to be extracted as the boundary conditions 
for the next step of node topology optimization. In this paper, the axial force and bending moment envelope values 
obtained from the multi-scale model under multiple working conditions are used as the boundary conditions. 

 
III. B. 2) Node Optimization Design 
The topology optimization method used in this paper is the variable density method commonly used in optimal 
design, and its mathematical model can be expressed as: 

 ( ) PG G   (23) 
where G  represents the penalty function of the cell, G  represents the solid filled cell stiffness of the cell,   is 
the cell density, and P  is a penalty coefficient that takes a value greater than 1. 

Through the sensitivity analysis, the sensitivity of each cell corresponding to the optimization objective function is 
obtained. By processing the results of the sensitivity analysis and iterating using the optimization criterion method 
(OC), the density distribution of the next result can be obtained, i.e.: 

 1 ( )k kOC G    (24) 
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where 1k    and k   are the structural unit densities at the k  th generation optimization step and the 1k   th 
optimization step, respectively. 

The SIMP method is one of the most commonly used variable density methods. It realizes the filtering of the 
intermediate density by using the method of penalty function, which makes it approach to 0 or 1 until it finally 
becomes 0 or 1. The correspondence between the relative density of the material unit and the elastic modulus of 
the material for the SIMP method in the variable density method is as follows: 

 min min( ) ( ) ( )pE x E x E E    (25) 

where E  is the elastic modulus of the solid filled cell. minE  is the elastic modulus of the null cell (low strength cell). 

( )x  takes any value between min[ ,1] . The value of min  is taken to be a very small and non-zero value with the 
aim of making the equation hold. 

In this paper, the overall structural strain energy minimization (stiffness maximization) is adopted as the primary 
optimization objective, and at the same time, in order to achieve the lightness of the node mass, the volume ratio 
before and after the optimization is constrained not to exceed a certain limit value, then this optimization model can 
be expressed: 
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where C   is the overall flexibility of the structure. K   is the structural stiffness matrix and U   is the overall 
deflection matrix. F  is the external load. V  is the original structural volume and *V  is the optimized structural 
volume. 

The original node is a conventional welded hollow ball node. Because all the rod end forces converge to the node 
core, the node core is most likely to be damaged, and the deformation of the node core is most significant, and the 
stiffness of the node core has a particular impact on the mechanical properties of the node. In this paper, TOSCA 
is used to optimize the topology of the nodal core, and the optimization interpolation model used is SIMP method, 
in which the size of the nodal core is determined by the original hollow sphere node outer diameter and height. No 
material nonlinearity is involved in the topology optimization problem and all the optimizations are within the elastic 
phase. In order to find the optimal distribution of the material, the constrained volume fraction of the model is set to 
be only 30% of the pre-optimization one, and the penalty factor is taken as 3.0. while the objective function is the 
minimum overall strain energy of the structure. The optimization model can be expressed as: 
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where   is the nodal core displacement, maxA  is the displacement limit value of 196mm,   is the nodal core 
stress, and max  is the nodal core stress limit value. 

The density projection technique based on Heaviside function is considered to be an effective method to realize 
the minimum size constraint in the constraints of additive manufacturing process, and this method can effectively 
realize the design threshold for increasing the minimum size of the optimized structure, avoiding the appearance of 
fine rods and holes in the structure that are difficult to print, and guaranteeing the applicability of the printing results. 

The size filtering equation based on Heaviside function can be expressed as: 
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where   is the cell density filtering threshold.   is the Heaviside function smoothing standardized coefficient. x  
is the relative density of material units before processing. x  is the relative density of material units after processing. 
When 0  , its principle is equivalent to mapping into a threshold penalty function, below the threshold of the 
relative density of the material unit to penalize, so that it is enlarged to the specified value, in order to achieve the 
optimization process of the minimum size of the control. 

IV. Optimized design of the topology of the nodes of the space structure 
IV. A. Numerical Simulation of Multiscale Models 
The test models are three 80m scaled-down models of the K6 single-layer spherical mesh shell structure. The 
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dimensions of the rods in model 1 were uniform, and the overall stiffness was evenly distributed. Under the strong 
seismic action, there is a “symptomatic” strength damage, accompanied by some of the rods going into plasticity. 
Model 2 has weak zones in the six radial main ribs, and local dynamic instability damage occurs “without signs”. 
Model 3 has the same geometrical topology as Model 2, with no weak zones, and a strength-damaged collapse 
mode occurs. 

The vector-to-span ratio of all three models was 0.5, and 24 fixed supports were arranged at intervals along the 
perimeter of the ground floor. According to the test conditions, the geometric similarity coefficients between the test 
models and the structural prototypes were all 1:10. In order to maximize the similarity of the stress performance 
between the two, the number of ball nodes and bars of the prototypes were not simplified, i.e., the test models and 
the structural prototypes had the same topological relationship. On the basis of satisfying the geometrical similarity, 
the model also needs to satisfy the requirements of load similarity, mass similarity, stiffness similarity and boundary 
and initial conditions similarity. 

In order to compare with the test model, the test model is modeled at multiple scales based on the multi-point 
constraint method. 

Considering that there are many uncertainties in the test (human factors, material factors, environmental factors, 
etc.), and each model has different configurations and materials, which are prone to local deformations in the 
process of ground shaking, the multiscale model can only be made as close as possible to the test model in the 
numerical simulation. In order to visualize the displacement changes of the nodes, the horizontal displacements of 
eight measurement points are extracted and fitted with peak-displacement curves for analysis. The maximum 
relative displacements of the nodes of the three multiscale models for each condition are shown below. 

The simulated values of model 1 are shown in Table 1, (unit: mm). 
In Case 1, the PGA(gal) is 50 and the Dmax is 1.787. In Case 6, the PGA(gal) is 1990 and the Dmax is 34.859. 

The Dmax of Case 6 is significantly higher than that of Case 1. 

Table 1: Model 1 simulation value/(mm) 

Operating condition 
PGA 

(gal) 
D1 D2 D3 D4 D6 D7 D8 Dmax 

1 50 1.529 1.231 1.204 1.787 1.296 1.024 1.525 1.787 

2 401.6 3.257 2.751 2.529 3.251 3.524 2.891 3.215 3.524 

3 842 8.206 9.805 9.215 8.997 7.263 7.523 6.896 9.805 

4 1321 11.336 10.216 8.691 9.859 11.596 10.036 10.143 11.596 

5 1550 9.583 10.093 12.663 10.263 9.506 9.787 10.209 12.663 

6 1990 24.501 34.159 29.421 20.629 34.859 26.554 23.117 34.859 

 
Comparison of the displacement response values of Model 2 with the simulated values is shown in Table 2, (in 

mm). 
In Case 3, the Dmax is 4.127 and 11.526 with an error of 35.81%. Combining all the conditions, the maximum 

error rate is 101.60%, which occurs in condition 11 with PGA(gal) of 1194. 
Model 3 displacement response values are compared with the simulated values (in mm) as shown in Table 3. 
The three models before entering plasticity (PGA is small), the difference between the experimental and simulated 

values of the measured point displacements is large, which is due to the fact that the multiscale model did not 
consider the effect of the initial defects. In the elastic phase, although some rods will be deformed, the deformation 
is not obvious, and the motion form of the model is basically rigid-body displacement, so the relative displacement 
between nodes is generally small relative to the bottom measurement point D5. With the increase of PGA, when 
the model enters plasticity, the displacement of the multiscale model grows faster than that of the experimental 
model, which offsets part of the error caused by the initial defects, and at this time, the displacement deviation is 
significantly reduced. 
IV. B. Topology optimization of nodes 
IV. B. 1) Multi-case optimization analysis results 
Integrate the optimization results of single working condition, and further analyze and study the comparison of 
multiple working conditions. The objective function is a compromise planning expression, and several working 
conditions are regarded as equally important, taking the same weighting coefficients, i.e., 0.3( 1,2,3, 4)iw k  , and 
the compromise planning penalty coefficient 2.0q  . Set the overall checkerboard lattice control and take the SIMP 
method density interpolation penalty coefficient 2.0p  . In order to avoid excessive accumulation of materials in 
the local or too small redundant structures appear, change the minimum and maximum member size of the 
optimization region and carry out trial calculations, a comprehensive comparison of the geometric expression of the 
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results obtained as well as the computational resources consumed, determined to set the topology optimization of 
the process manufacturing constraints for the following: the minimum member size of 10mm, the maximum member 
size of 20mm, do not add symmetry constraints, the conditions can be obtained a more Clear topology optimization 
results can be obtained under this condition. 

Table 2: The model 2 displacement response value is compared to the simulated value 

Operating condition 

Categories 

3 4 6 7 10 11 17 

PGA 

(gal) 
245 381 633 828 1082 1194 1433 

D1 
Numerical value 3.098 7.256 11.919 19.782 15.896 21.334 20.253 

Test 4.423 5.943 7.846 7.501 7.829 9.521 10.809 

D2 
Numerical value 3.897 6.895 12.203 17.413 21.663 17.914 18.454 

Test 4.991 4.787 8.426 7.609 7.895 9.207 12.965 

D3 
Numerical value 3.996 9.215 11.021 17.251 21.536 22.351 21.223 

Test 6.879 8.745 10.326 12.334 12.238 14.004 12.704 

D4 
Numerical value 3.335 9.321 17.099 16.877 21.004 21.331 21.821 

Test 5.475 6.809 9.801 9.859 11.452 14.526 12.552 

D6 
Numerical value 4.127 8.012 10.336 17.253 17.596 26.845 23.936 

Test 11.526 16.784 18.956 22.007 24.351 26.421 24.232 

D7 
Numerical value 3.898 8.795 12.902 20.135 21.895 20.754 24.101 

Test 4.754 5.428 6.040 6.859 7.569 9.486 9.565 

D8 
Numerical value 3.212 6.454 13.284 17.578 23.895 19.521 19.254 

Test 6.829 8.501 12.993 11.604 15.632 12.324 11.027 

Dmax 
Numerical value 4.127 9.321 17.099 20.135 23.895 26.845 24.101 

Test 11.526 16.784 18.956 22.007 24.351 26.421 24.232 

Error/% 35.81 55.54 90.20 91.49 98.13 101.60 99.46 

 

Table 3: The model 3 displacement response value is compared to the simulated value 

Operating condition 

Categories 

3 11 14 16 19 23 24 

PGA 

(gal) 
246 1232 1597 1922 2105 2180 2290 

D1 
Numerical value 3.01 19.35 37.15 51.57 69.57 98.04 102.55 

Test 12.32 17.89 27.30 50.13 54.24 95.13 103.48 

D2 
Numerical value 3.01 20.72 35.42 52.89 70.54 96.52 96.25 

Test 10.15 17.23 28.75 49.76 56.58 86.04 82.13 

D3 
Numerical value 3.36 19.12 38.75 54.25 75.69 97.55 98.75 

Test 14.25 12.36 21.45 44.63 49.22 66.04 24.07 

D4 
Numerical value 3.25 22.23 37.84 53.75 76.42 98.96 97.31 

Test 14.96 14.39 20.72 44.28 48.56 67.12 24.15 

D6 
Numerical value 2.96 19.52 40.25 59.12 80.42 96.15 107.21 

Test 9.75 15.36 25.36 52.36 65.76 84.62 89.33 

D7 
Numerical value 3.11 21.22 38.79 52.43 73.45 95.89 111.05 

Test 12.36 15.689 26.34 53.46 60.19 78.53 25.43 

D8 
Numerical value 3.15 20.34 40.52 56.32 83.57 90.42 116.09 

Test 11.79 26.25 38.91 49.85 76.10 84.79 60.72 

Dmax 
Numerical value 3.36 22.23 40.52 59.12 83.57 98.96 116.09 

Test 14.96 26.25 38.91 53.46 76.10 95.13 103.48 

Error/% 22.46 84.69 104.14 110.59 109.82 104.03 112.19 

 
The results of the flexibility optimization for different conditions under different volume constraints are shown in 

Table 4. 40% volume constraints, the overall geometric characteristics of the optimized nodes are similar to the 
optimization results under single condition, while the difference is that the optimized nodes under single condition 
have load sensitivity, i.e., there are some cases of large differences in the material stacking characteristics or even 
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holes on the surface of the results under different conditions. The situation is improved after the multi-case 
compromise objective optimization, but there are some more obvious redundant structures. 

The core area of the node under the 30% volume constraint shows clearer material separation between the upper 
and lower parts, and the surface thickness is more uniform and smooth compared to that in the single case, with no 
obvious redundant structures. The final flexibility for Case 3 is 9.18

510 mm. 
There are still more holes on the surface under the 20% volume constraint, and the surface of the material 

surrounding the holes is rough and non-uniform, because most of the material around the holes is in the state of 
“half-have, half-have-not” to be removed. The optimized results for the four conditions are 4.75

510 , 3.96
510 , 

1.94
510 , 2.71

510 , and 2.71
510 , respectively. 

Table 4: The flexibility of each condition is optimized by different volume constraints 

Operating condition 
40% 30% 20% 

Initial flexibility Final flexibility Initial flexibility Final flexibility Initial flexibility Final flexibility 

1 3.62 510  1.52 510  6.35 510  2.37 510  1.47 510  4.75 510  

2 2.98 510  1.30 510  5.32 510  2.04 510  1.23 510  3.96 510  

3 1.64 510  5.65 510  2.79 510  9.18 510  6.24 510  1.94 510  

4 2.55 510  8.73 510  4.36 510  1.46 510  9.73 510  2.71 510  

 
IV. B. 2) Finite element analysis of optimized nodes 
The average flexibility values of the original nodes with the optimized results under different volume constraints for 
each operating condition and the volumetric comparisons are shown in Table 5. 

It is obvious that the optimized node with 20% volume constraint has the highest flexibility, i.e., the lowest stiffness 
for each condition. The optimized node with 40% volume constraint has the lowest flexibility, i.e., the highest stiffness, 
while the optimized node with 30% volume constraint has a similar volume to the original design node, and although 
the optimized node for Case 3 has a slightly higher flexibility than the original node, the flexibility values for the other 
three cases are lower than the original design node through the compromise planning, which means that for most 
of the cases the static stiffness of the optimized node has been increased to some extent for a given amount of 
material. The stiffness is improved to some extent. 

So far, it can be concluded that the optimized results of the multi-case compromise with 30% volume constraints 
in the design region have better geometric topology characteristics and good load carrying capacity for the given 
initial design region. However, it is worth noting that the optimization results only represent the optimal conceptual 
expression under this particular combination of conditions, not the final design results, and subsequent optimization 
work such as shape optimization and size optimization is beyond the scope of this paper. 

Table 5: Average flexibility and volume comparison 

Node form 

Mean flexibility/  N mm  
Volume/

3cm  Operating 

condition 1 

Operating 

condition 2 

Operating 

condition 3 

Operating 

condition 4 

Original design node 2.59 510  2.47 510  7.13 510  1.59 510  7450 

40% volume constraint optimization 

node 
1.52 510  1.30 510  5.65 510  8.73 510  10240 

30% volume constraint optimization 

node 
2.37 510  2.04 510  9.18 510  1.46 510  7652 

20% volume constraint optimization 

node 
4.75 510  3.96 510  1.94 510  2.71 510  5050 

 

V. Conclusion 
This study explores the application of topology optimization algorithms in landscape design and spatial layout 
planning through multi-scale model building and node topology optimization design. The study shows that the 
topology optimization technique can effectively improve the performance of spatial structures. The optimized node 
with 30% volume constraint shows clear features of material separation between the upper and lower parts and a 
uniform and smooth surface without obvious redundant structure under the multi-case trade-off optimization. 
Compared with the original node, this optimized node shows improved static stiffness under most working conditions 
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with similar material usage (optimized node volume of 7652 cm³, original node volume of 7450 cm³), especially in 
Case 2, the optimized node flexibility value is reduced by 17.4%. Through the comparative analysis of different 
volume constraints, it is found that the optimized node under 20% volume constraint has the least amount of material, 
but the stiffness is obviously insufficient; while the optimized node under 40% volume constraint has the greatest 
stiffness, but the amount of material is too much, which is not in line with the requirements of lightweight design. 
The study also shows that the structure generated by topology optimization not only has good mechanical properties, 
but also presents the characteristics of bionic organic structure and the aesthetics of flowing space, which reflects 
the advantages of topology optimization in meeting the engineering needs and aesthetic value at the same time. 
These findings provide new design ideas and methods for landscape design and spatial layout planning, and are of 
great significance in promoting technological innovation in related fields. Future research can further explore the 
subsequent design work such as shape optimization and size optimization to obtain more perfect design solutions. 
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