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Abstract Complex design tasks require the support of efficient intelligent optimization algorithms, and the traditional 
beluga optimization algorithm is defective in convergence speed and optimization stability. In this study, we propose 
a multi-strategy hybrid improved beluga whale algorithm (MHIBWO) that integrates the MTent population 
initialization strategy, the step-size adjustment strategy, and the longitudinal and transversal crossover strategy to 
address the limitations of the traditional beluga optimization algorithms for complex design tasks. The MTent 
mapping enhances the diversity of the initial populations through the introduction of random numbers; the step-size 
adjustment strategy optimizes the weight allocation by using the sine-cosine model to improve the global 
optimization ability; the vertical and horizontal crossover strategy maintains the population diversity through 
horizontal crossover and vertical crossover operations to prevent premature convergence. Numerical experiments 
show that the MHIBWO algorithm has significant advantages in single-peak and multi-peak function tests, and the 
average optimization accuracy and standard deviation of the three test functions under 80-dimensional conditions 
are 0. Compared with the standard BWO and the other five swarm intelligence optimization algorithms, the MHIBWO 
algorithm has a faster convergence speed and higher solving accuracy. Among the 18 multitask optimization 
benchmark tasks, the MHIBWO algorithm has significantly better solution quality than the existing algorithms in 14 
tasks, and achieves an accuracy of 2.21 × 10-² on task T2 of the CI+HS problem, which is close to the global 
optimum. The experimental results demonstrate that the MHIBWO algorithm has excellent global search capability, 
local development capability and stability in complex design tasks. 
 
Index Terms Moby Dick optimization algorithm, complex design task, MTent population initialization, step size 
adjustment strategy, vertical and horizontal crossover strategy, multi-task optimization 

I. Introduction 
Automated design tools based on intelligent algorithms are methods that can realize automated design based on 
intelligent algorithms and modular architecture [1], [2]. In the design field, the traditional design method mainly relies 
on manual and simple design tools to realize the design task, but with the expansion of the business scope, the 
design task is also gradually complex, the traditional design method is no longer applicable, and with the 
development of artificial intelligence, the application of intelligent algorithms has prompted the design field to 
develop in the direction of intelligence [3]-[6]. 

Compared with traditional design methods, automated design tools have several important implications in 
complex design tasks: (i) Improve design efficiency, automated design can complete multiple design tasks at one 
time by writing programs or scripts, which reduces the required manual operations and time and greatly improves 
the design efficiency [7]-[9]. (ii) Reducing design cost, automated design can reduce errors and repetitive work 
caused by manual operations, reducing the error rate and cost of the design process [10]-[12]. (iii) Improve design 
quality, automated design can avoid design errors caused by human negligence or fatigue, ensure the accuracy 
and consistency of the design, and improve the design quality [13], [14]. (iv) Accelerating the speed to market, 
automated design can quickly generate design solutions and product models, and perform simulation and analysis, 
which accelerates product development and speed to market [15]-[17]. 

Optimization algorithms play a crucial role in engineering design, resource scheduling, path planning and other 
fields. In recent years, swarm intelligence optimization algorithms inspired by biological behaviors in nature have 
become an important tool for solving complex optimization problems due to their simplicity and ease of 
implementation, adaptability and robustness. Existing swarm intelligence optimization algorithms include particle 
swarm algorithm, gray wolf algorithm and whale optimization algorithm, etc. Each of these algorithms has its own 
characteristics, but when dealing with high-dimensional complex problems, they still face the problems of slow 
convergence, easy to fall into the local optimal solution, and insufficient solution accuracy. The beluga optimization 
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algorithm is a novel meta-heuristic algorithm that performs global search and local exploitation by simulating the 
swimming, feeding and whale falling behaviors of beluga whales, which provides better optimization performance 
while maintaining a simple computational structure. However, the standard beluga algorithm still has deficiencies in 
initial population diversity, search strategy balance and local development capability, especially when facing high-
dimensional complex design tasks, its optimization ability and convergence performance are difficult to meet the 
practical needs. In order to improve the applicability and effectiveness of the algorithm, researchers have proposed 
a variety of improvement strategies, such as adaptive adjustment of parameters, initialization of chaotic mapping, 
and cross-variable operation, etc. These improvements enhance the performance of the algorithm to a certain extent, 
but most of the improvements are only aimed at a single aspect of the algorithm, and there is a lack of 
comprehensive consideration of the synergistic optimization of the algorithm in all phases. In complex design task 
scenarios, optimization algorithms need to have both strong global exploration capability and fine local development 
capability, as well as the ability to balance knowledge migration between different tasks. 

In this study, to address the shortcomings of the standard beluga algorithm, a multi-strategy hybrid improved 
beluga algorithm incorporating the MTent population initialization strategy, the step size adjustment strategy, and 
the vertical and horizontal crossover strategy is proposed, starting from the three key aspects of initialization, 
position update, and population evolution. The MTent population initialization strategy enhances the traversal of the 
chaotic mapping by introducing a random factor to improve the diversity of the initial population; the step size 
adjustment strategy adopts a nonlinear decreasing search factor to optimize the weight distribution and enhance 
the global optimization seeking ability; and the longitudinal and transversal crossing strategy maintains the diversity 
of the population and prevents the premature convergence through the knowledge sharing among the individuals 
of the population. Through the synergy of the three strategies, the balance of the algorithm in the exploration and 
development phases is realized, and the strategic performance of the algorithm in complex design tasks is 
enhanced. Multiple sets of numerical experiments and application tests are carried out based on the improved 
algorithm to verify the effectiveness and superiority of the algorithm. 

II. Design of Moby Dick Optimization Algorithm Incorporating Multiple Improvement 
Strategies 

In order to realize the strategy enhancement of intelligent automated design tools in complex design tasks, this 
chapter improves the traditional beluga optimization algorithm by incorporating various improvement strategies such 
as MTent population initialization strategy, step size adjustment strategy, and vertical and horizontal crossover 
strategy. 
 
II. A. Moby Dick Algorithm (BWO) 
Beluga algorithm [18] is a new meta-heuristic algorithm inspired by the swimming, feeding and whale falling 
behavior of beluga whales. Meta-heuristic optimization algorithm is as an improvement of heuristic algorithms, which 
is based on the mechanism of computational intelligence to find the optimal or satisfactory solution of complex 
optimization problems, and the algorithm possesses a number of advantages, such as flexibility, high efficiency, 
stability and so on. 
 
II. A. 1) Content of the BWO algorithm 
The BWO algorithm mainly consists of the following phases: 

(1) Initialization phase: in the initial phase of the algorithm, a set of solutions are randomly generated as the initial 
positions of the beluga population. Each solution represents a possible solution of the problem and its position 
corresponds to the coordinates of the solution in the search space. 

(2) Exploration phase: in the exploration phase, the beluga group searches by simulating the swimming behavior 
of beluga whales. Specifically, each individual beluga whale adjusts its swimming speed and direction according to 
the distance between the current position and the target position in order to gradually approach the target position. 
This phase is mainly used to find possible optimal solution regions in the search space. 

(3) Exploitation phase: in the exploitation phase, the beluga group conducts local search by simulating the feeding 
behavior of beluga whales. Specifically, each individual beluga whale conducts a detailed search in the 
neighborhood of its current position to find a more optimal solution. This phase is mainly used to find a more optimal 
solution within the currently known optimal solution region. 

(4) Whale fall phase: the whale fall phase is one of the features of the BWO algorithm, which simulates the whale 
fall phenomenon that exists in the biological world. In this phase, the algorithm randomly selects a beluga individual 
and lets other beluga individuals search around it. This helps the algorithm to jump out of the local optimal solution 
and improve the global search capability. 
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(5) Iterative update phase: in each iterative step, the algorithm will be updated according to the position and 
fitness value of the current beluga group. Specifically, individual beluga whales with better fitness values will be 
given greater weights, thus influencing the search direction of the whole group. This process is carried out iteratively 
until termination conditions such as reaching the maximum iteration to find the fullness required solution are met. 

 
II. A. 2) BWO algorithm mechanism 
The exploration phase ensures global search capability in the design space by randomly selecting beluga whales, 
and the exploitation phase controls local search in the design space. To simulate the behavior, beluga whales are 
considered as search agents that move in the search space by changing the position vector. In addition, the 
probability of a whale fall, which changes the position of the beluga whale, is considered in the BWO. 

Due to the population-based mechanism of BWO, beluga whales are considered as search agents and each 
beluga whale is a candidate solution which is updated during the optimization process. The matrix to the position of 
the search agent is modeled as: 
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where n  is the population size of beluga whales and d  is the dimension of the design variable. For all belugas, 
the corresponding fitness values are stored as follows: 

 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

( , )

( , )

( , )

d

d
X

n n n d

f x x x

f x x x
F

f x x x

 
 
 
 
 
  









 (2) 

The BWO algorithm can move from exploration to development depending on the balance factor 
fB , which is 

mathematically modeled as: 
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where t  is the current iteration, T  is the maximum number of iterations, and 
0B  varies randomly between (0,1)  

at each iteration. The exploration phase occurs at the equilibrium factor 0.5fB  , while the exploitation phase 

occurs at 0.5fB   . As iteration T   increases, the range of fluctuation of 
fB   decreases from (0,1)   to (0,0.5)  , 

indicating that the probabilities of the exploitation and exploration phases change significantly, while the probability 
of the exploitation phase increases with increasing iteration T . 

The exploration phase of BWO is built by considering the swimming behavior of beluga whales. Beluga whales 
can perform social behaviors in different poses, e.g., two pairs of beluga whales swimming closely together in a 
synchronized or mirrored manner. Therefore, the position of the search agent is determined by the swimming of a 
pair of beluga whales, and the position of the beluga whales is updated as follows: 
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where t  is the current number of iterations, 1
,
T
i jX   is the new position of the i th beluga in the j th dimension, 

( 1, 2, , )jP j d   is randomly chosen from the d th dimension, and 
,
t
i jX  is the position of the i th beluga in the j

th dimension. 
, j

t
i pX  and 

1,
t
r pX  are the current positions of the i th and r th randomly selected beluga. 

1r  and 
2r  

are random numbers in the range (0,1)   used to augment the stochastic operator in the exploration phase. 

2sin(2 )r  and 
2cos(2 )r  are used to average the random numbers between fins. Depending on the dimensions 

chosen for odd and even numbers, the updated positions reflect the synchronized or mirrored behavior of beluga 
whales while swimming or diving. 
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The development phase of BWO was inspired by the feeding behavior of beluga whales. Belugas can forage and 
move cooperatively based on the location of neighboring belugas. Thus, beluga whales prey on each other by 
sharing information about each other's positions, considering the best candidate solution and other solutions. The 
strategy of Levy flight was introduced in the development phase of BWO to improve convergence. It is assumed 
that they can catch prey using the Levy flight strategy, which is represented by the mathematical model: 

 1
3 4 1 * *( )t t t t t

i best i F r iX r X r X C L X X      (5) 

where t  is denoted as the current number of iterations, t
rX  and t

iX  are the current positions of the i th beluga 

whale and a random beluga whale, 1t
iX   is the new position of the i th beluga whale, and t

bestX  is the best position 

of the beluga whale. 
3r  and 

4r  denote random numbers in the range  0,1 , and 
1 4 max2 (1 / )C r t T   is used to 

measure the strength of random jumps in the intensity of Levy flight. 
FL   is the Levy flight function, which is 

calculated as follows: 
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where u  and v  are normally distributed random numbers and   is the default constant 1.5. 
The whale-fall phase simulates small changes in the population, and to ensure that the population size remains 

constant, we use the position of the beluga whale and the step size of the whale's descent to establish the updated 
position. The mathematical model is represented as: 

 1
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where 
5r  , 

6r   and 
7r   are random numbers between (0,1)   and 

stepX   is the step size of the whale's fall, 

determined as: 
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where 
2C  is the step size factor  2 2 *fC W n  associated with the probability of whale descent and population 

size, and 
bu  and 

bl  are the upper and lower bounds of the variables, respectively. It can be seen that the step 

size is affected by the bounds on the design variables, the number of iterations and the maximum number of 
iterations. 

In this model, the probability of a whale fall  fW  is computed as a linear function: 

 0.1 0.005 /fW t T   (10) 

The probability of a whale fall decreased from 0.1 in the initial iteration to 0.05 in the last iteration, suggesting that 
the danger to beluga whales decreases as they move closer to the food source during the optimization process. 

 
II. B. Improving the Moby Dick Algorithm 
The computational complexity is high due to the mutual constraints and influence between the inner and outer 
objectives in the two-layer optimization model of demand solution. The beluga algorithm still has some defects in 
convergence speed and stability of optimization search. Therefore, in order to enhance the position diversity of the 
initial population, avoid local optimality and further improve the performance of the algorithm, this paper proposes 
a multi-strategy hybrid improvement method based on the MTent population initialization strategy, the step size 
adjustment strategy and the vertical and horizontal crossover strategy, and then obtains the improved Moby Dick 
algorithm MHIBWO. 
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II. B. 1) MTent population initialization strategy 
Chaotic mapping has the characteristics of randomness and ergodicity, and the use of chaotic mapping to generate 
the initial population can effectively improve the BWO initialization population ergodicity and randomness. The 
commonly used chaotic mappings are Tent mapping and Logistic mapping. 

By comparing the results of the two methods, it can be seen that the traversability and randomness of the 
population generated by Logistic mapping are poor. In contrast, the initial population generated by Tent mapping 
has stronger randomness. The Tent expression is as follows: 
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nX  denotes the initial value, (0,1)nX  , and 
1nX 
 is the value after one Tent mapping. To further enhance the 

traversal of the population, a MTent is proposed by introducing rand  random numbers in order to facilitate jumping 

into the periodic point and entering the chaotic state. The expression is shown in Eq. (12): 
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() [0,1]rand  . comparing the two methods reveals that the initial population derived from MTent exhibits better 

traversal and randomness, resulting in a more diverse population. 
 

II. B. 2) Step size adjustment strategy 
In order to avoid the problem of beluga whales falling into local extremes during predation and causing loss of 
diversity, a step-size adjustment strategy is adopted in the position update to utilize the oscillatory variation property 
of the positive cosine model to maintain the diversity of individual discoverers, and thus to improve the global 
searching ability of the BWO. Improvements are made for the basic step-size search factor 

max(1 / )ir rand t Iter  , 

and the new nonlinear decreasing search factor is shown in Eq. (13): 
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  is the moderating factor, A  is the random number rand , and (0,1)rand  . 

The weight allocation is optimized by improving the step factor. The improved search method shifts the weights' 
center of gravity forward, reduces the decreasing speed in the early stage, and thus enhances the global optimality 
searching ability. And the local search ability is enhanced in the late iteration to shorten the time to obtain the optimal 
solution and improve the convergence speed. 

 
II. B. 3) Cross-cutting strategies 
To balance the local search ability and global exploitation ability for BWO and prevent premature convergence. The 
vertical and horizontal crossover strategy is introduced in the exploration stage to correct the individual and global 
optimal solutions of the population and to improve the solution accuracy under the premise of ensuring the 
convergence speed. 

(1) Horizontal crossover strategy 
The lateral crossover operation is a crossover operation of two different beluga individuals in the population in 

the same dimension, which makes the different individuals learn from each other and thus improves the global 
optimization seeking ability. Assuming that lateral crossover is performed on the parent individuals 

ix  and 
jx , the 

child individuals T
iMx  and T

jMx  are generated as follows: 
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1m  and 
2m  are random numbers within [0,1]  and 

1N  and 
2N  are random numbers within [ 1,1] . 

,
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children generated by the crossover of 
ix  and 

jx  in the d th dimension, respectively. Individuals of the generated 
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offspring compete with their parents to retain the better adapted individuals. As a result, the number of children in 
the outer edge space will gradually and linearly decrease, promoting the algorithm to continuously converge to the 
optimal solution, so as to improve the convergence efficiency and balance the exploration and development ability 
of the algorithm. 

(2) Vertical crossover strategy 
Different from the horizontal crossover operation, the vertical crossover operation performs crossover operations 

on two different dimensions of the global optimal solution T
ix . Only one of the dimensions is updated at a time, 

which can help to jump out of the local optimum while not destroying the information contained in the other normal 
dimension as much as possible. The process of crossing the 

1d  and 
2d  dimensions of T

ix  is as follows: 
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The 
,

T
i dMx  are the offspring individuals generated by longitudinal crossover from the 

1d  and 
2d  dimensions of 

individuals 
1,

T
i dx  and 

2,
T
i dx , [0,1]m . Similarly, the generated offspring individuals compete with their parents to 

retain the better adapted individuals. 
 

II. C. Improvement of Moby Dick Algorithm Flow 
The MHIBWO algorithm optimization process is shown in Figure 1, and its specific steps are as follows: 

Step 1: Initialization parameters: initialize the algorithm parameters, set the population size n , the maximum 
number of iterations 

maxT . Randomize the distribution of the initial positions of individual beluga whales to generate 

the corresponding fitness values. 
Step 2: Population initialization: MTent mapping is used to initialize the beluga population and randomly generate 

the individual beluga population, and update the position of beluga whales according to equation (12). 
Step 3: Fitness calculation: initial fitness values of beluga populations and individuals are calculated and 

compared to find the best individual. 
Step 4: Update on exploration and exploitation phases: decide whether the beluga whale enters the exploration 

or exploitation phase based on the equilibrium factor 
fB . Make the search factor in Eq. (13) with an improved step 

size. 
(1) If 0.5fB  , the update mechanism enters the exploration phase, which is then improved using the vertical 

and horizontal crossover strategy and the position of the beluga whale is updated by equations (14)~(15). 
(2) If 0.5fB  , then update the exploitation phase. 

Calculate and order the fitness values of the new position to find the best result in the current iteration. 
Step 5: Update of whale fall phase: calculate the probability 

fW  of whale fall in each iteration and update the 

mechanism to enter the whale fall phase. 
Step 6: Determination: set the termination check condition. If 

maxT T , stop the loop. Otherwise, jump back to 

step 4. 

III. Algorithm application experiments and analysis of results 
To test the effectiveness of the proposed MHIBWO algorithm in complex design tasks, numerical experiments and 
performance evaluation experiments are conducted in this chapter. 
 
III. A. Numerical experiments with the MHIBWO algorithm 
III. A. 1) Experimental design and parameterization 
In order to verify the excellence of the MHIBWO algorithm's solving ability, three sets of experiments are designed 
in this section: 

(1) Experiment 1 is the effectiveness analysis of three different strategies improvement of MHIBWO algorithm. 
(2) Experiment 2 compares the MHIBWO algorithm with five other swarm intelligence optimization algorithms 

particle PSO [19], GWO, SSA [20], WOA [21] and two BWO improvement algorithms, A1BWO and A2BWO, for the 
comparative analysis of the solution accuracy in different dimensions. 

(3) Experiment 3 shows the iterative trend of the above 8 algorithms in low dimensions. 
The BWO optimization algorithm using the MTent population initialization strategy is abbreviated as MBWO, the 

BWO optimization algorithm using the step size adjustment strategy is abbreviated as IBWO, and the BWO 
optimization algorithm using the longitudinal and transversal crossover strategy is abbreviated as HBWO. 
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The six test functions used are shown in Table 1, where 
1 2~f f  is a single-peak test function, which is usually 

used to test the algorithm's local mining ability. 
3 4~f f   is a multi-peak test function, which is used to test the 

algorithm's ability to balance the global search and to jump out of local optima. 
5 6~f f  is a fixed-dimensional multi-

peak test function used to compare the performance of different algorithms. 

(a) BWO optimisation method(b) Multi-strategy 
improvement method

Start

Parameter initialisation

Population initialisation

Calculate fitness values

Main loop

Calculate Wf and Bf

Bf > 0.5?

Calculation of boundary and 
adaptation degree value

Y N

End

Output optimisation 
results

T≤Tmax?

Find the current 
optimal contention

Bf < Wf?

Calculate the 
fitness value

Whale fall phase 

T=T+1

Y

N
Y

Population 
initialisation formula 

(12)

Step length 
adjustment strategy 

formula (13)

Vertical and 
horizontal crossing 

strategy formula
 (14)~ (15)

Exploration 
phase

Development 
stage

 

Figure 1: MHIBWO algorithm flowchart 

Table 1: Benchmark test functions 

Function Function name Dimension Range Optimal value 

f1 Sphere 50/80/200/800 [-150,150] 0 

f2 Schwefel2.22 50/80/200/800 [-15,15] 0 

f3 Schwefel2.26 50/80/200/800 [-800,800] -12478.5 

f4 Rastrigin 50/80/200/800 [-6.24,6.24] 0 

f5 Shekel 3 [-64.428,64.428] 1 

f6 Kowalik 5 [-8,8] 0.004 

 
III. A. 2) Analysis of the effectiveness of improvement strategies 
In order to test the effectiveness of different improvement strategies, the MHIBWO and IBWO, QBWO algorithms 
and PBWO algorithms are compared and analyzed with the original BWO algorithm under the conditions of single-
peak multiple-peak test function dimensions and fixed-dimension test function, respectively, and the algorithms are 
analyzed in terms of their superiority with the mean, standard deviation and optimal value as the measurement 
indexes, and the five algorithms are tested using the benchmark test function in order to prove the effectiveness of 
each improvement strategy, and the solution results of different improvement strategies are shown in Table 2. 

For the single-peak function 
1 2~f f  , the IBWO and HBWO algorithms have obvious advantages, and their 

accuracies are several tens of orders of magnitude ahead of the initial algorithm, in which the effect of the IBWO 
algorithm is more advantageous compared to the HBWO algorithm. The experimental results show that these two 
improved strategies enhance the local mining ability of the original algorithm. 

For the multi-peak function 
3 4~f f , MBWO's shortcomings in the single-peak test function are transformed into 

advantages here, effectively enhancing the algorithm's solution accuracy, and the MBWO algorithm is still able to 
show a superior solution ability even in the function which is prone to fall into the local optimum test. The test results 
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show that the nonlinear convergence factor increases with the number of iterations, which effectively improves the 
ability of the algorithm to jump out of the local area while guaranteeing the search range; at the same time, by 
adjusting the crossover strategy, the vertical and horizontal crossover strategy is adopted to avoid the algorithm 
falling into the local optimum at the later stage, which effectively strengthens the algorithm's global search ability. 

For the fixed-dimensional multi-peak function 
5 6~f f , MBWO, IBWO, HBWO algorithms have good robustness, 

but their advantages are not significant, and their solving accuracy is similar to that of BWO, but the fusion of the 
improved MIBWO has a significant superiority, and the optimal solutions are all close or equal to the theoretical 
optimal value. 

In summary, the MHIBWO algorithm with the integration of the three improvement strategies can well realize the 
strong global search ability in the early stage of the search, while in the later stage, it has the better ability to jump 
out of the local optimum, and at the same time, it realizes iterative balance, which strengthens the comprehensive 
algorithm's ability of searching for the optimal value. 

Table 2: Comparison results of different improvement strategies 

Function Algorithm Mean value Standard deviation Optimal value 

f1 

BWO -2.26E-15 3.16E-14 -6.95E-15 

MBWO -8.27E-29 3.05E-28 -2.44E-29 

IBWO 9.61E-20 6.09E-19 -1.35E-19 

HBWO 2.76E-52 0.00E+00 2.76E-52 

MHIBWO 0.00E+00 0.00E+00 0.00E+00 

f2 

BWO -2.35E-18 3.42E-17 -5.49E-17 

MBWO -1.27E-33 3.78E-33 -1.16E-34 

IBWO 1.66E-21 3.78E-33 -1.49E-19 

HBWO 4.23E-27 0.00E+00 4.23E-27 

MHIBWO 0.00E+00 0.00E+00 0.00E+00 

f3 

BWO 4.37E+02 7.54E+00 4.37E+02 

MBWO 4.26E+02 7.44E+00 4.41E+02 

IBWO 4.35E+02 2.25E+00 4.32E+02 

HBWO -1.38E+04 0.00E+00 -1.38E+04 

MHIBWO -1.25E+04 0.00E+00 -1.25E+04 

f4 

BWO 2.64E-10 1.38E-9 6.45E-10 

MBWO -3.41E-10 2.44E-9 -1.83E-10 

IBWO -8.92E-10 2.56E-9 -6.15E-10 

HBWO 0.00E+00 0.00E+00 0.00E+00 

MHIBWO 0.00E+00 0.00E+00 0.00E+00 

f5 

BWO -3.26E+01 2.88E-01 -3.30E+01 

MBWO -1.72E+01 2.38E+01 -3.34E+01 

IBWO -2.47E+01 1.14E+01 -3.25E+01 

HBWO 1.36E+01 0.00E+00 1.36E+01 

MHIBWO 0.00E+00 0.00E+00 0.00E+00 

f6 

BWO 2.11E-01 1.54E-02 2.17E-01 

MBWO 3.35E-01 2.43E-01 3.24E-01 

IBWO 1.85E-01 2.84E-02 1.50E-01 

HBWO 6.55E-04 0.00E+00 6.55E-04 

MHIBWO 0.00E+00 0.00E+00 0.00E+00 

 
III. A. 3) Comparative analysis of convergence curves 
The convergence curves can visualize the optimization process of each algorithm, and also observe the global 
convergence speed of the algorithms and their ability to jump out of the local extreme points. Setting up the 
comparison experiment in the dimension D = 80, the maximum number of iterations T = 800, the convergence curve 
images of the single-peak test function, the multi-peak test function and the multi-peak fixed-dimension test function 
are plotted as shown in Figs. 2~4, respectively. Among them, Figs. 2(a), 2(b), 3(a), 3(b), 4(a), 4(b) represent the 
convergence curves of function 

1 6~f f , respectively. 
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(a) f1        (b) f2 

Figure 2: Comparison of convergence curves of unimodal test functions 

  

(a) f3        (b) f4 

Figure 3 Comparison of convergence curves of multimodal test functions 

  

(a) f5        (b) f6 

Figure 4: Comparison of convergence curves of fixed-dimensional multimodal test functions 

The summary analysis of the six convergence curves shows that the optimal algorithm, suboptimal algorithm and 
the third excellent algorithm appear only between A1BWO, A2BWO and MHIBWO, and at this time, the final scoring 
system is applied to score the three functions, and the optimal algorithm frequency and its final score can be 
obtained as shown in Table 3. Among them, K1, K2 and K3 represent the optimal frequency, the second best 
frequency and the third best frequency, respectively, and the final comprehensive score can be expressed as 
formula (16): 

 
1 2 30.6 0.3 0.1K K K K   (16) 

In this case, the higher score proves that the algorithm performs better. 
Observing the data, it can be seen that although the MHIBWO algorithm does not show convergence advantages 

in all the six test functions, its final score is higher than that of A1BWO and A2BWO, so it can be concluded that the 
MHIBWO algorithm maintains a certain degree of robustness under the premise of having more excellent 
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convergence ability. For the three types of test functions, the MHIBWO algorithm shows excellent convergence 
ability with good iteration speed and convergence accuracy. 

Table 3: Optimal algorithm frequency 

Algorithm K1 K2 K3 K 

A1BWO 3 15 6 6.9 

A2BWO 2 6 17 4.7 

MHIBWO 18 4 0 12 

Table 4: Comparison results of unimodal and multimodal functions in different dimensions 

Function Algorithm 
D=80 D=200 

Mean SD Optimal value Mean SD Optimal value 

f1 

PSO -1.67E-01 8.32E-01 -9.75E-01 6.46E-02 1.51E+00 -1.44E+00 

GWO 1.70E-12 2.13E-11 -2.04E-11 -3.63E-10 6.02E-08 5.95E-08 

SSA -3.84E-37 2.58E-37 -5.53E-37 -1.24E-44 7.19E-44 -3.66E-44 

WOA -5.97E-39 1.82E-38 8.54E-39 1.15E-39 3.73E-39 1.75E-41 

BWO 1.42E-132 1.81E-131 1.92E-131 -4.51E-134 6.30E-133 6.64E-135 

A1GWO 7.35E-163 0.00E+00 7.74E-163 2.47E-163 0.00E+00 9.49E-165 

A2GWO -1.16E-164 0.00E+00 -3.12E-164 7.06E-165 0.00E+00 -6.77E-164 

MHIBWO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

f2 

PSO 3.41E-02 5.96E-01 -1.82E-01 1.61E-01 3.04E+00 4.45E+00 

GWO -8.05E-15 2.92E-14 -2.34E-14 -6.74E-11 7.50E-10 5.36E-10 

SSA -4.52E-35 2.34E-34 6.83E-35 -9.81E-32 4.84E-29 -1.18E-28 

WOA -1.18E-54 4.93E-54 -2.41E-59 -2.45E-55 2.48E-54 2.27E-58 

BWO 1.64E-132 2.82E-131 5.41E-132 -3.36E-132 1.63E-131 -1.15E-131 

A1GWO -1.64E-221 0.00E+00 -1.87E-221 -9.72E-301 0.00E+00 -1.15E-302 

A2GWO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

MHIBWO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

f3 

PSO -3.37E+01 2.64E+02 -2.93E+01 -6.04E+01 2.74E+02 -3.11E+01 

GWO 2.62E+01 2.40E+02 -3.59E+01 1.53E+01 2.34E+02 4.33E+02 

SSA 1.50E+01 3.75E+02 -3.10E+02 -7.74E+01 3.93E+02 -5.14E+02 

WOA -3.08E+02 2.52E+01 -3.13E+02 4.14E+02 6.86E+02 4.35E+02 

BWO 4.35E+02 7.76E-06 4.35E+02 4.35E+02 3.92E-05 4.35E+02 

A1GWO 5.28E+02 8.54E-06 5.31E+02 5.36E+02 4.52E-05 5.31E+02 

A2GWO 4.35E+02 5.56E-06 4.35E+02 4.35E+02 7.42E-06 4.35E+02 

MHIBWO -2.16E+04 0.00E+00 -2.16E+04 -4.07E+00 0.00E+00 -4.07E+04 

f4 

PSO 1.74E-01 2.01E+00 1.13E+00 3.34E-02 2.86E+00 1.25E+00 

GWO 2.13E-02 2.53E-01 5.41E-03 2.57E-08 2.96E-07 3.35E-07 

SSA 2.21E-09 8.96E-10 2.04E-09 -7.15E-10 7.83E-13 -7.15E-10 

WOA 6.61E-10 1.26E-09 2.41E-10 -1.66E-09 3.72E-09 -5.94E-12 

BWO 9.88E-10 2.33E-09 -7.92E-10 -1.25E-11 1.24E-09 1.56E-09 

A1GWO -3.23E-10 1.14E-09 -6.95E-10 -5.53E-09 1.22E-10 1.44E-11 

A2GWO -1.17E-10 2.72E-09 5.86E-10 8.04E-09 6.12E-10 10.16E-11 

MHIBWO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 
III. A. 4) Comparative Analysis of Optimization Accuracy 
In order to verify the superiority of the MHIBWO algorithm in terms of optimization seeking ability, six benchmark 
test functions are selected for experimentation, and the test dimensions are set to 80 and 200, respectively. 8 
algorithms with different dimensions of the single-peak function and multi-peak function comparison results are 
shown in Table 4, and the fixed-dimension function comparison results are shown in Table 5. 

For both single-peaked functions 
1 2~f f   and multi-peaked functions 

3 4~f f  , MHIBWO has the best 
optimization ability and solution accuracy, and its solution performance is overall better than that of the comparative 
swarm intelligent optimization algorithms, the standard BWO algorithm, and the literature improved BWO algorithm. 
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In the 80-dimensional test, the average optimization accuracy, optimal value and standard deviation of MHIBWO 
on 

1 2 4, ,f f f  three test functions are 0, which proves that the MHIBWO algorithm has better solving performance in 
the process of this kind of function, and improves the speed of the solution under the premise of guaranteeing the 
accuracy of the solution. The 

3f   function is also close to the theoretical optimal value, which proves that the 
MHIBWO algorithm has certain applicability. In the 200-dimensional test, the MHIBWO accuracy increases with the 
increase of dimension, and the solution results are all 0 except for 

3f , which proves that the elevated dimension 
has not weakened MHIBWO's ability of global exploration and local risk avoidance. 

Comparing the test results of fixed-dimensional multi-peak functions of different algorithms, it can be seen that 
the average and optimal values of MHIBWO algorithm are approximately equal to the theoretical optimal value of 
the test function, and its standard deviation reaches 0. Compared with the MHIBWO algorithm, the AIBWO algorithm 
and A2BWO algorithm are not able to converge to the theoretical optimal value, and they do not have a significant 
advantage over the other swarm intelligent optimization algorithms, thus this proves that the MHIBWO algorithm 
has good optimization ability and excellent stability for fixed-dimensional multi-peak functions. 

Table 5: Comparison results of fixed-dimension functions 

Function Algorithm Mean SD Optimal value 

f5 

PSO -2.53E+01 1.24E+01 -3.34E+02 

GWO -1.71E+01 2.35E+02 2.34E-02 

SSA -3.34E+01 3.34E-07 -3.34E+01 

WOA -1.71E+01 2.35E+01 4.23E-02 

BWO -3.34E+01 4.05E-02 -3.34E+01 

A1GWO -3.34E+01 7.48E-07 -3.34E+01 

A2GWO -3.34E+01 2.34E-03 -3.34E+01 

MHIBWO 0.00E+00 0.00E+00 0.00E+00 

f6 

PSO 6.92E+00 8.82E+01 3.20E+00 

GWO 2.37E-01 4.24E+00 -3.98E-01 

SSA 1.72E-01 3.75E-02 1.48E-01 

WOA 1.23E-01 6.99E-02 6.72E-02 

BWO 2.91E-01 1.28E-01 2.63E-01 

A1GWO 1.72E-01 3.75E-02 1.48E-01 

A2GWO 1.68E-01 3.92E-02 1.15E-01 

MHIBWO 0.00E+00 0.00E+00 0.00E+00 

 
III. B. Performance Evaluation Experiments in Complex Design Tasks 
This section analyzes the quality of the solutions obtained using the MHIBWO algorithm and evaluates the 
performance of the algorithm in complex design tasks. 
 
III. B. 1) Quality of solutions 
The average objective values and standard deviations obtained from 30 independent runs of the MHIBWO algorithm, 
MFEA, GA and DE algorithms on all Multi-task Optimization (MTO) benchmarks in this paper are shown in Table 6. 
In the table, the better results are highlighted in bold, and the experimental results are tested using the Wilcoxon 
rank sum test with a confidence level of 95%, and are denoted by “+” and “-” to indicate, respectively, that the 
MHIBWO algorithm of this paper is significantly better and significantly worse than the MFEA. 

On all benchmark tasks of MTO, the average objective values of the MHIBWO algorithm using the fusion of 
multiple improvement strategies are significantly better than the average objective values of GA and DE for a single 
task, which proves that the MHIBWO algorithm of this paper can improve the optimization performance through 
better experimental results. Compared with MFEA, the solution quality of this paper's MHIBWO algorithm is 
significantly better than that of MFEA in 14 out of 18 tasks in terms of average objective value. In task T2 on the 
CI+HS problem and two tasks on PI+LS, the solution of this paper's MHIBWO algorithm is close to the global 
optimum 0, while the MFEA only converges to the local optimum. The MFEA and the single-task GA use the same 
search mechanism and cross-task knowledge migration through probabilistic genetic crossover, so the experimental 
comparison results further indirectly verify the effectiveness of the MHIBWO algorithm proposed in this paper. 
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Table 6: Average target values and standard deviations 

Problem Task 
Average target value and standard deviation 

MHIBWO MFEA GA DE 

CI+HS 

T1 
1.32×10-5±4.64×10-5 

+ 
3.73×10-1±6.85×10-2 1.75×10-1±4.49×10-2 - 

T2 
2.21×10-2±8.46×10-2 

+ 
1.94×102±4.75×101 - 1.97×102±5.51×101 

CI+MS 

T1 
2.85×10-1±5.07×10-1 

+ 
4.55×100±6.85×10-1 3.24×100±2.81×10-1 - 

T2 
1.49×101±2.38×101 

+ 
2.23×102±5.96×101 - 1.85×102±5.24×101 

CI+LS 

T1 
2.21×101±4.07×10-1 

- 

2.13×101±5.34×10-2 

 
2.23×101±4.04×10-2 - 

T2 
3.76×103±6.09×102 

- 
6.82×103±9.08×102 - 6.94×103±8.41×102 

PI+HS 

T1 
3.24×101±5.45×100 

+ 
5.61×102±9.32×101 4.42×102±6.44×101 - 

T2 
1.85×102±1.93×102 

- 
8.44×100±1.89×100 - 3.15×102±2.25×102 

PI+MS 

T1 
1.69×100±4.78×10-1 

+ 
3.73×100±9.04×10-1 4.25×100±3.07×100 - 

T2 
1.49×102±5.32×101 

+ 
6.91×102±3.52×102 - 3.45×105±3.64×105 

PI+LS 

T1 
2.27×10-5±4.73×10-5 

+ 
2.12×101±9.40×10-2 3.63×100±5.92×10-1 - 

T2 
2.29×10-3±3.81×10-3 

+ 
2.18×101±3.04×100 - 2.38×100±1.16×100 

NI+HS 

T1 
6.11×101±2.88×101 

+ 
9.94×102±6.93×102 1.81×103±1.44×103 - 

T2 
2.92×101±2.17×101 

+ 
2.64×102±6.75×101 - 2.02×102±4.81×101 

NI+MS 

T1 
8.14×10-1±7.08×10-2 

+ 
4.28×10-1±6.09×10-2 8.73×103±8.21×103 - 

T2 
2.71×100±5.09×10-1 

+ 
2.75×101±3.54×100 - 1.36×101±1.95×100 

NI+LS 

T1 
3.36×101±5.75×100 

+ 
6.25×102±1.26×102 4.26×102±9.04×101 - 

T2 
7.14×103±9.78×102 

+ 
3.74×103±4.64×102 - 6.67×103±7.58×102 

 
III. B. 2) Performance in complex design tasks 
Complex design tasks are usually combined by multiple tasks, in order to further verify the superiority of the 
performance of the proposed MHIBWO algorithm, this section evaluates the performance of the MHIBWO algorithm 
in multi-tasking. The six functions in the MTO benchmark are used as the six tasks from task 1 to 6 respectively, 
and they are optimized simultaneously using this paper's MHIBWO algorithm with GA, DE and PSO as single-task 
optimizers. At this time, the multi-task optimization problem is more complex compared to the two-task optimization 
problem, where the cross-task solution migration interval parameter 6g    is reset to increase the cross-task 
knowledge-sharing frequency, and a comparison of the weighted task selection, random task selection, and single-
task optimization of this paper's MHIBWO algorithm is shown in Fig. 5. Where, (a)~(c) denote the single-task 
optimizer based on GA, DE and PSO, respectively. 

It can be seen that the multitasking optimization algorithm using knowledge migration has significantly better 
optimization performance for all tasks than the three single-tasking optimization algorithms, while the single-tasking 
optimization algorithm and the multitasking optimization algorithm use the same basic search mechanism, the 
reason why the multitasking optimization algorithm achieves a better optimization performance lies in the useful 
information migrated between its tasks and optimization algorithms, and in the early stages of the optimization 
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process, the paper of weighted task selection In the early stage of the optimization process, the difference in 
optimization performance between the MHIBWO algorithm with weighted task selection and the MHIBWO algorithm 
with stochastic task selection is not obvious, but as the number of generations increases, the MHIBWO algorithm 
with weighted task selection is able to select the appropriate tasks for knowledge sharing, so it has a better 
performance in terms of searching speed and finding high quality solutions. 

  

(a) GA (T1)        (b) DE (T2) 

 

(c) PSO (T3) 

Figure 5: The comparison results of the MHIBWO algorithm 

IV. Conclusion 
The multi-strategy hybrid improved beluga whale algorithm (MHIBWO) effectively enhances the algorithm's 
optimization-seeking performance in complex design tasks by incorporating the MTent population initialization 
strategy, the step-size adjustment strategy, and the longitudinal and transverse crossover strategies. The 
benchmark function test results show that the MHIBWO algorithm has excellent performance in solving single-peak 
function, multi-peak function and fixed-dimension multi-peak function, and the average optimization accuracy of the 
three test functions (f1, f2, f4) in the 80-dimension test reaches 0, with a standard deviation of 0, which is significantly 
better than that of the comparison algorithm. Algorithm score analysis shows that the final comprehensive score of 
MHIBWO algorithm reaches 12, which is higher than that of A1BWO (6.9) and A2BWO (4.7), indicating that it has 
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more superior convergence ability and robustness. In the multi-task optimization experiments, the MHIBWO 
algorithm significantly outperforms the Multifactor Evolutionary Algorithm (MFEA) in terms of solution quality in 14 
out of the 18 benchmark tasks, and is close to the globally optimal solution in both tasks of the PI+LS problem, with 
accuracies of 2.27 × 10-⁵ and 2.29 × 10 -³. The knowledge migration analysis proves that the MHIBWO algorithm 
for weighted task selection can efficiently share the knowledge between suitable tasks and improve the overall 
optimality finding ability. The comprehensive experimental results show that the MHIBWO algorithm achieves a 
balance between the powerful global search capability in the pre-search stage and the fine local development 
capability in the post-search stage, providing an efficient and reliable intelligent optimization tool for solving complex 
design tasks. 
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