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Abstract Intelligent control technology is gradually becoming a key force to promote the performance improvement 
of electrical engineering systems. In this paper, for the nonlinear system with serious state time lag, vector Lyapunov 
function is constructed to relax the traditional single-function constraints and realize the flexible analysis of the 
stability of multiple subsystems. According to the current tracking requirement of MMMC converter, the Lyapunov 
controller is designed to realize the current stability control. Combined with the segmented linear approximation 
method, the complex nonlinear functions are decomposed into multi-domain linear combinations to reduce the 
complexity of controller design. The results show that the Lyapunov function can balance the convergence speed 
and convergence stability when the controller parameters α are taken as 0.95 and β is taken as 2. Under the 
influence of external event triggering mechanism, the nonlinear system equilibrium point of Lyapunov function 
controller remains asymptotically stable after 5s. Under the influence of faults, the trajectory of the system controlled 
based on the Lyapunov function controller can still return to the stability domain. 
 
Index Terms lyapunov function, nonlinear intelligent control, single function constraint, segmented linear 
approximation, electrical system 

I. Introduction 
With the rapid development of science and technology and the increasing demand for convenience and efficiency, 
intelligent control platforms play an increasingly important role in electrical engineering [1]. Intelligent control 
platform uses advanced technical means and intelligent algorithms to realize automated control and intelligent 
management of electrical systems. Specifically, compared with the traditional manual control, the intelligent control 
platform can quickly respond and accurately control the electrical system through real-time monitoring and intelligent 
algorithm operation, which can improve the control precision and efficiency and minimize human error [2]-[4]. In 
addition, the intelligent control platform has the characteristics of automation and intelligence, which can timely 
judge and warn the abnormal situation of the electrical system and take corresponding measures to protect it, 
improve the safety and stability of the electrical system, and reduce the potential safety hazards [5]-[7]. Moreover, 
the intelligent control platform realizes the effective use and saving of energy by optimizing the control algorithm 
and adjusting the operating parameters of the equipment, intelligently adjusts the switching state and power of the 
equipment according to the actual demand, and reduces the energy consumption and operating costs [8]-[10]. With 
the development of new power systems driven by renewable energy sources, their nonlinear problems are worthy 
of attention. The main performance is that, compared with the traditional power system, the nonlinear characteristics 
of generators and electronic power equipment cause the new type of power system to produce harmonics, voltage 
interruption, three-phase imbalance, low system inertia, and interference resistance, which affects the stability of 
the electrical intelligent control platform [11]-[14]. 

Lyapunov function is an important tool used to study the stability of the system, which can be used to test the 
ability of the system to withstand external disturbances, as well as the likelihood of the system oscillation 
phenomenon. Since the Lyapunov function measures the stability of a system's state points, it can be used to 
implement control strategies to prevent system oscillations [15], [16]. The Lyapunov function can be used as an 
important component in an intelligent control system, which is able to efficiently detect and correspond to external 
environmental factors, and then convert the external environmental factors into control commands in order to 
regulate the system's state [17], [18]. 

In this paper, Lyapunov function is introduced to realize the stability control of nonlinear system of electrical 
intelligent control platform. Focusing on the nonlinear dynamic characteristics of the electrical intelligent control 
platform, the vector Lyapunov function is integrated to optimize the system stability analysis capability. Design the 
Lyapunov function current controller, propose the switching control strategy based on the energy function, and 
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balance the convergence speed and stability through parameter optimization. Combining the segmented linear 
approximation method and the event triggering mechanism, the stability of the nonlinear system under the control 
of Lyapunov function controller is verified. 

II. Stability analysis of nonlinear systems based on Lyapunov functions 
This part analyzes how to combine Lyapunov functions to design controllers for stabilizing control of nonlinear 
systems in electrical intelligent control platforms. 
 
II. A. Asymptotic stabilization control of time-lagged nonlinear systems based on Lyapunov functions 
II. A. 1) Description of the problem 
In this section, the following nonlinear system model of an electrical intelligent control platform with state time lag is 
considered: 
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where 
1( ) [ ( ), , ( )]T i

i ix t x t x t R   denotes the state variables of the nonlinear system of the electrical intelligent 

control platform, u R  denotes the inputs to the functional controller, and for any 1, ,i n  , 2( , ) : i
iF R R    is a 

continuous nonlinear function where (0,0) 0iF  , ( )ic t  denotes the unknown time-varying control coefficients with 

a known control direction and there exists a known positive constant ,i ic c  to satisfy 0 ( )i i ic c t c   . Without loss 

of generality, it is assumed that ( )ic t  is positive for all 0t   times. 

This is explained below for the nonlinear function assumptions used. 
Assumption 1: For 1,i n  , there exists a known non-negative constant ,h   such that 

 
1 1

( ( ), ( ( )))
i i

i i i i j jd
j j

F x t x t d t h x x
 

     (2) 

where ,jd jx x R  , 1 j i  , ( ( ))i i idx t d t x   and ( ) [0, ]id t  . 

Note 1: System (1) is a lower triangular strict feedback system with state time lag, and many dynamical models 
of physics can be transformed into such structures by certain transformations, such as robotic arm systems, 
chemical reactor systems, and interconnected motor systems. In the current environment, the design of a simple 
controller for such systems and the selection of appropriate controller parameters are the focus of this section in 
order to further conserve energy and seek the minimum control energy. 

The control objective of this section is to design an asymptotically stabilizing controller for a nonlinear system with 
state time lags in the system to ensure that the various states and inputs of the closed-loop system converge 
asymptotically to the zero equilibrium point. 

 
II. A. 2) Main theorems and proofs 
In this section, an asymptotic stability theorem based on vector Lyapunov functions is presented, which provides a 
new approach to asymptotic stability analysis and lays the foundation for subsequent controller design and stability 
analysis. Consider the following time-lagged system: 
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t t C
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where 
dC   denotes the spatial domain of the continuous function [ , 0] nd R    and ( ) nt D R     denotes the 

instantaneous state vector. The definition of 
d
  is as follows: 

[ ,0]max ( )d d gamma  ‖ ‖ ‖ where 
dC  . 

t dC   

is denoted as the state of the time-lagged system at the moment of delay t , i.e., when there is [ ,0]d    for 

0d   and : n
dC R   is denoted as ( )t t    . The origin of the system is assumed to be its equilibrium, that 

is, for all 0t   there is (0,0) 0   and ( , )t   denotes the system solution of the initial function 
dC . Also, the 

following notations are used to denote the variables , : ( ( )), : ( ( ))tV V V t V V t      respectively. 
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Theorem 1: For the electrical intelligent control platform nonlinear system (3), there exists a continuously 
differentiable vector function 

1[ , , ]TnV V V  , where (0) 0V  , a positive definite scalar function ( ),TQ V D   , and 

positive vector 
0
nQ R . The function p K  satisfies ( )p m m  for all 0m  . 

  1
[ ,0]

max ( ) ( , ) ( ), , ( )
T

t t n
d

V
V p V W V V

    
 


  


  (4) 

Eq. n nW R   matrix is Hurwitz's. Moreover, it satisfies the property that the diagonal elements are negative and 

the other elements are non-negative, then the electrical intelligent control platform nonlinear system (3) is 
asymptotically stable at the origin. 

PROOF: The comparison system is given as follows: 

 
0( ) ( ), (0) , 0t W t t       (5) 

where 
0

nR  . In particular ( )W t  in Eq. (5) belongs to the set   and is strictly nonnegative, so that for any 

nonnegative initial condition Eq. (5) has a nonnegative solution. Since n nW R   is strictly nonnegative and Helvetic, 

there is a positive vector ˆ qQ R  and qRò  that satisfies the following equation 

 ˆ0 TW Q  ò  (6) 

Then, assuming that the Lyapunov function is ˆ( ) Tv Q  , nR  , the positive definite function ( )v   is chosen 

to satisfy (0) 0v   , nR    and radially unbounded. Let  min i  ò  ,  ˆmax iQ   , 1, ,i n    , where 
iò   and 

ˆ
iQ  are the i th component of qRò  and ˆ qQ R  respectively. 
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Eq. 


 . It can be seen that the second condition of Lyapunov-Razumikhin is fulfilled, i.e. 

  ( ) ( ( )) ( )v v V           (8) 

Immediately after equation (4) is transformed into the following inequality 

  
[ ,0]

max ( ) ( )t
d

V p V V
   

     (9) 

System (3) is asymptotically stable at the origin. The proof is complete. 
Note 2: For system (3), the theorem illustrates a new approach to asymptotic stability analysis, i.e., the asymptotic 

stability theorem based on the vector Lyapunov function method, which allows the use of multiple Lyapunov 
functions to analyze each sub-system during the stability analysis process, which, in turn, provides a flexible 
mechanism for relaxing the constraints, making the stability analysis process easier and more Efficient. 

 
II. B. Lyapunov function controller design for MMMC current 
Let the capacitor voltage of each bridge arm cascade submodule be stabilized at 

cU , then: 

 
1

K
c

xy xyi
i

U
u s

K 

   (10) 

where, 
xyu  is the voltage of each bridge arm; 

xyiS  is the switching function of sub-module i ; K  is the number 

of sub-modules in cascade of each bridge arm; , ,x a b c , , ,y r s t . 

It is obtained from the input 0  transformation process followed by dq  transformation: 
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where, 
mdu , 

mqu , 
mdi , 

mqi  are the input voltage currents 
mu  , 

mu  , 
mi  , 

mi   on the d , q  axes; 
dS , 

qS  are 

the components of the switching function in the d , q  axes, respectively; 
m  is the angular frequency of the 

three-phase power supply voltage on the input side  2 , 45 / 4m m mf f Hz   . 

According to the sub-switching function and the relationship between the sub-module current and the module 
capacitance voltage, it can be obtained: 
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K
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KidU
S
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   (12) 

where, C  is the value of sub-module capacitance; 
xyi  is the current flowing through the xy  bridge arm. 

There is no current loop between the center points n , and N  of the MMMC converter inputs and outputs, so 

0nNi  . The 0  transformation followed by the dq  transformation of Eq. (12) gives: 

  1
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can be obtained from Eqs. (11) and (13): 
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Among them: 

 * *, , 3d d q q eq m qbS S d S S q L L L         (15) 

where, 
dS , 

qS  are switching function d , q  axis components, respectively; *
dS , *

qS  are the 
dS , 

qS  steady-

state values of the d , q  axis components, respectively; d , q  are the 
dS , 

qS  fluctuation values of the d , 

q  axial components, respectively; and 
eqL  is the equivalent inductance. 

In order to generate the compensation voltage and reduce the input voltage unbalance, the current of the 
controller in this paper is required to track the given value of the input side current. Equation (16) should be satisfied 
when the input side current is stabilized at the given current. 
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where *
mdi , *

mqi , *
dS , and *

cU  are the command values of 
mdi , 

mqi , 
dS , and 

cU , respectively. 

To model the Lyapunov function, the state variable  [ ] 1, 2,3ix x i   of this system. 

 * * *
1 2 3, ,md md mq mq c cx i i x i i x U U       (17) 

where 
1x , 

2x , 
3x  are the three state variables of the system, respectively. 
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Then the Lyapunov function model of the system can be obtained from Eqs. (16) and (17) as: 
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According to the basic theory of Lyapunov function control, the system must have global asymptotic stability when 
the following four conditions are satisfied: 1) when 0x   , (0) 0V   ; 2) when 0x   , ( ) 0V x   ; 3) when 

0x  , ( ) 0V x  ; 4) when x  , ( )V x  . 

Assuming that the Lyapunov energy function of this system is chosen ( )V x  for: 

 2 2 2
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Derivation of Eq. (19) yields: 
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This can be obtained by substituting Eq. (18) into Eq. (20) and simplifying: 
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Taking the components of the right part of Eq. (21), i.e., the ratio of the switching function fluctuations to the 
number of submodules is: 
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where  ,   are the control parameters of the Lyapunov function controller for the d , q  axis. 

Then the switching function of Lyapunov function control can be finally obtained as: 
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Fig. 1 shows the Lyapunov function control box for the input side of the MMMC. Where, figure 1(a) shows the 
input side control frame; figure 1(b) shows the detailed control frame of Lyapunov function control. In Fig. 1(a), 

cnNu  

is the average capacitance voltage of all the MMMC sub-modules, 
dcU   is the capacitance stabilized value of 

MMMC sub-modules, 
mrefP  is the reference value of the output active power, and the output reactive power is zero. 
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(a) Input side control block diagram
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(b) Lyapunov function control block diagram
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Figure 1: Control block diagram of MMMC current at input side 

II. C. Segmented linear approximation methods 
Give a nonlinear function of the following form ( )ig z : 

 
1

( )
l

ii
g z c


  (24) 

where c  is a constant. For the above nonlinear function ( )ig z , it is proposed to approximate it by the segmented 

linear function method given in the following equation, which splits it into two parts: the linear function ˆ ( )ig z  and 

the error ( )ig z  : by using a series of linear approximations with definite vertices, the nonlinear function is 

approximated. According to the idea of the above method, the nonlinear function can be described in the following 
form: 

 
1 11

2 2

1 1 1 1
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r p pp
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where, ( )
rri k rv z   denotes the normalized degree of affiliation function and satisfies property 0 ( ) 1

rri k rv z   , 

1

2 2

1 1 1 1
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ri k rk i i r
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    , 1 2 1 2( ) / ( )

r r r rri k r ri k ri k ri kv z z z z      , 2 11
r rri k ri kv v   ; 

rz  is the r th antecedent 

variable, 1,2ri   are the vertices corresponding to the antecedent variable 
rz  in each subdomain, k  denotes 

the the k th subdomain on the space of antecedent variables, and q  is the total number of subdomains. The 

1
( )

pi i i kg z    is the estimation error of the k  th subdomain satisfying 
1 1 1

( ) ( ) ( )
p p pi i k i i i k i i kii

g z g z g z      
 , the 

constants 
1

( )
pi i kig z 

 and 
1

( )
pi i ki

g z   denote the upper and lower bounds of 
1

( )
pi i i kg z  , respectively. 

A function 
1( )h x   with 

1x   as the independent variable is given here, i.e., 2
1 1( ) (1 sin ( )) / 4h x x   . Linear 

approximation methods are applied to approximate the function 
1( )h x . 

III. Simulation experiment on control stability of nonlinear system based on Lyapunov 
function 

In this chapter, the optimal parameters of the system controller based on Lyapunov function are determined through 
simulation experiments, and the event-triggered mechanism and fault scenarios are introduced to study the system 
control stability. 
 
III. A. Comparison of numerical simulation of the control system with different parameters 
In order to determine the optimal control parameters of the Lyapunov function controller and to improve the stability 
of the nonlinear system of the electrical intelligent control platform, simulation experiments are set up for two-by-
two combinations between parameters α and β in different control capacitance voltages U, and the required 
convergence time is recorded. Table 1 summarizes the simulation results of the nonlinear system of the electrical 
intelligent control platform for the parameters α and β in different control U. There is a big difference in the 
convergence time of the Lyapunov function in the two systems X1 and X2 when α is taken as 0.95, 0.70, 0.45, 0.05, 
and β is taken as 9, 4, 2, and 1, respectively. After comparison, it can be found that the Lyapunov function has the 
shortest convergence time in the two systems when α is taken as 0.95 and β is taken as 9, 4, 2, and 1, respectively, 
and the convergence time is 2.91s-3.39s in the X1 system and 4.35s-6.16s in the X2 system. 
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Table 1: Summary of Simulation Results 

α β X1 Convergence time (s) X2 Convergence time (s) 

0.95 9 3.36 6.16 

0.95 4 3.39 5.21 

0.95 2 3.15 5.03 

0.95 1 2.91 4.35 

0.70 9 3.79 6.98 

0.70 4 3.36 5.83 

0.70 2 3.25 5.05 

0.70 1 2.84 4.41 

0.45 9 4.57 8.63 

0.45 4 4.34 7.44 

0.45 2 4.00 6.96 

0.45 1 3.91 6.05 

0.05 9 5.66 13.07 

0.05 4 5.54 11.21 

0.05 2 5.32 10.20 

0.05 1 4.85 8.92 

 
Figure 2 demonstrates the simulation process of Lyapunov function in 2 nonlinear systems when α is taken as 

0.95 and β is taken as 9, 4, 2 and 1 respectively. From the numerical simulation process with different parameters, 
it can be seen that when α is taken 0.95 and β is taken 2, the convergence time of the function in the 2 nonlinear 
systems is 3.15s and 5.03s; when α is taken 0.95 and β is taken 1, the convergence time of the function in the 2 
nonlinear systems is 2.91s and 4.35s. Although the function converges the fastest when α is taken as 0.95 and β is 
taken as 1, the fluctuation of the convergence process is synthesized, and it is found that the fluctuation of the 
function convergence curve is the most gentle when α is taken as 0.95 and β is taken as 2. Therefore, in order to 
ensure the stable state of function convergence, this paper sets the control parameters of the Lyapunov function 
controller to α = 0.95, β = 2. 

 

(a) α=0.95, β=9     (b) α=0.95, β=4 

 

(c) α=0.95, β=2    (d) α=0.95, β=1 
Figure 2: Simulation process 
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III. B. Verification of robust stability of nonlinear system based on event-triggered mechanism 
In the application of electrical intelligent control platforms, nonlinear systems are easily affected by uncertainties 
such as environmental perturbations and data errors, which lead to fluctuations in the parameters of the determined 
function controllers, resulting in a more complex dynamical behavior of the nonlinear system. In this section, based 
on the event-triggered sampled data control method, we verify the control stability of nonlinear systems under the 
control of Lyapunov-based functional controllers. 

Two numerical simulation examples are designed to verify the feasibility and validity of the obtained results 
through the segmented linear approximation method. 

Example 1: Consider the following parameter-determined nonlinear system X1 based on event-triggered control: 

 
0

( )x( ) x( ) (x( )) ( ), 0C c
t t t A t Bf t u t t    D  (26) 

where ( ) 1* ( 0.98) 1* ( 0.15)c          , 
1 2( , x( )) (tanh(x ( )), tanh(x ( )))Tf t t t t  , 

1 2x( ) ( ( ), ( ))Tt x t x t  . The     

denotes the Dirac function. 
If the system (26) has no event-triggered control inputs, i.e., the event-triggered controller ( ) 0u t  , the following 

parameter-determined nonlinear system can be obtained: 

 
0

( ) ( ) ( ) ( ( )), 0C c
t t x t Ax t Bf x t t   D  (27) 

The coefficient matrix is shown below: 

 
3 14

32 2

2
,

5
A B

    
        

 (28) 

Figure 3 shows the time response of the trajectory of the system state (27) without the event-triggered controller. 
Through numerical simulation using MATLAB mathematical software, it can be seen that the parameters of the 
control inputs without event triggering determine that the equilibrium point of the nonlinear system (27) fluctuates 
back and forth between -15-15 and is not asymptotically stable. 

 

Figure 3: No event-triggered state trajectory time response of the controller 

Subsequently, we consider the system (26) with an event-triggered control mechanism, and we consider the 
event-triggered controller to be ( ) ( )ku t Kq t . Finally, under the event-triggered mechanism, the following nonlinear 

system under the control of the controller of the Lyapunov function with event-triggered control can be obtained: 

 
0

( ) ( ) ( ) ( ) ( ( )) ( ), 0C c
t t x t A K x t Bf x t Ke t t     D  (29) 

where ( ) ( ) ( )ke t x t x t  . The matrix of its coefficients is shown below 

 
3 14

32 2

2
,

5
A B

    
        

 (30) 

Figure 4 shows the time response results of the state trajectory of the system (29) with an event-triggered 
controller. Numerical simulation using MATLAB mathematical software yields the equilibrium point of the nonlinear 
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system (29) with event-triggered Lyapunov function controller based on the event-triggered mechanism, which is 
asymptotically stable after 5s. 

 

Figure 4: The state trajectory time response with an event-triggered controller 

Furthermore, under the condition that Assumption 1 and Theorem 1 hold, a scalar 26.8581   can be found 
such that the system can exclude Zeno behavior in the event-triggered strategy. Figure 5 shows the time series of 
event triggering for the system. During the event triggering time of 0-15s, the Lyapunov function controller is always 
outputting multiple control results. This reflects the effectiveness of the event triggering mechanism proposed in this 
paper, and also verifies that the design of the Lyapunov function controller of the MMMC current fully takes into 
account the nonlinear system disturbed by events, which can make the nonlinear system of the electrical intelligent 
control platform maintain good control stability. 

 

Figure 5: The instance of trigger time caused by the event-triggering mechanism 

III. C. Stability analysis of system control under the influence of faults based on Lyapunov function 
Fig. 6 shows the two-dimensional projections of the stability domain and the trajectory of the system state quantities 
on the plane (x1, x2) after the inverter-side fault is cleared for 2.5s. Fig. 7 shows the public Lyapunov function value 
curves after 2.5s clearing of the fault on the inverter side. Where the green circle is the position of the state vector 
in the space at the instant of fault clearing, the light green curve is the system motion trajectory on the state space 
after fault clearing, and the dark green curve is the boundary of the stabilization domain estimated by the Lyapunov 
function V(x) obtained iteratively. It can be clearly seen that after the inverter-side fault located at (-0.32026,-0.25566) 
is cleared, the system motion trajectory is able to return from the deviation position of (1.17427,3) to the vicinity of 
the stability domain where the dark-green curve is located, and can eventually return to the stability domain. 
Meanwhile, the value of the common Lyapunov function after the inverter-side fault is cleared in 2.5 s is steadily 
increased from the speed close to 0 to about 450.The electrical intelligent control nonlinear system under the control 
of the Lyapunov function controller is able to maintain stable operation even when the faults appear, and satisfies 
the Lyapunov stability condition, which can be well realized for the intelligent control of the electrical line. 
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Figure 6: Two-dimensional projection 

 

Figure 7: Public Lyapunov function value curve 

IV. Conclusion 
In this paper, a nonlinear system stability control method based on Lyapunov function is proposed to verify its 
practical effect in electrical intelligent control platform. Through simulation experiments, it is determined that the 
system convergence time is shorter (3.15s and 5.03s) and the convergence process is smooth when the function 
parameters α are taken as 0.95 and β is taken as 2. Under the event triggering mechanism, the system stabilization 
time using the Lyapunov function controller is around 5 seconds. Under the fault scenario, the system motion 
trajectory can return to the stabilization domain from the deviation position of (1.17427,3), and the value of the 
Lyapunov function can be steadily increased to about 450 after the fault is cleared, which provides a good 
stabilization control performance. In the future, the adaptive parameter adjustment mechanism can be deeply 
explored to improve the control effect of the nonlinear system based on Lyapunov function. 
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