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Abstract Aiming at the rehabilitation needs of patients with wrist dysfunction, this study proposes a digital wrist 
rehabilitation device based on multi-sensor fusion technology. A multimodal data acquisition and fusion framework 
was constructed by combining surface electromyographic signals and joint motion angle information. The improved 
WVPSO algorithm is used to optimize the LSSVM hyperparameters to achieve high-precision classification and 
recognition of finger-wrist movement intentions. Based on ADAMS simulation platform, a virtual prototype model of 
the device is established to verify its kinematic consistency and human-computer interaction adaptability. The 
clinical effect of the device was evaluated through a randomized controlled trial of 50 patients with chronic wrist 
dysfunction. After treatment, the pain, grip strength, function, and dorsal extension/palmar flexion mobility scores of 
the two groups improved compared with those before treatment, and the mean values of the experimental group 
were higher than those of the control group by 3.09, 2.41, 4.01, and 3.84 points, respectively. Physical, somatic, 
and emotional-social scores of the two groups improved compared with the pre-treatment, and the mean values of 
the experimental group were higher than those of the control group by 8.71, 9.01, 9.83, and 9.32 points, respectively, 
and the differences were statistically significant (P<0.05). 
 
Index Terms wrist rehabilitation, surface EMG signal, WVPSO algorithm, LSSVM algorithm 

I. Introduction 
Multi-sensor fusion is a technology that synthesizes data from several different types of sensors [1], [2]. Sensor 
fusion technology, in simple terms, is to combine many different types of sensors together, so that they work together 
and give play to their respective advantages, so as to obtain more comprehensive and accurate information [3]-[5]. 
In real life, multi-sensor fusion technology has many application scenarios, such as the field of intelligent security, 
self-driving cars, etc. With the further development and application of multi-sensor fusion technology, it also plays 
an important role in healthcare [6]-[9]. 

In the medical field, multi-sensor fusion technology can be used for the diagnosis and treatment of diseases [10]. 
For example, in cardiac monitoring, combining data from ECG sensors, blood pressure sensors, heart rate sensors, 
etc., can provide a more comprehensive understanding of a patient's heart health and provide a more accurate 
diagnosis basis for doctors [11]-[13]. Injuries to the wrist joint are very common in medical treatment [14]. As an 
important joint on the human body, the wrist joint is responsible for many movements in daily life [15], [16]. However, 
due to various reasons, the wrist joint may be injured or otherwise restricted, requiring rehabilitation to restore 
function [17], [18]. And by applying digital rehabilitation equipment incorporating multi-sensor fusion technology, it 
can contribute to a better recovery of the wrist joint, based on diversified sensors and intelligent algorithms, which 
can take the movement data of the wrist injured person at the time and make an accurate feedback through analysis 
in order to take follow up recovery measures [19]-[22]. 

This paper firstly introduces the specific structure of the digital wrist rehabilitation equipment, focusing on 
analyzing the hardware structure of the control system and the software design of the two modules. The relevant 
action muscle tissue is selected and the EMG signal is preprocessed, and the LSSVM classifier is used to classify 
and recognize the finger-wrist action. The WVPSO-LSSVM algorithm is proposed to realize the optimization of 
hyperparameters and provide technical support for wrist rehabilitation equipment. Taking 50 patients with chronic 
wrist dysfunction in the rehabilitation department as experimental subjects, signal synchronous acquisition and 
signal pre-processing were carried out. The simulation model of the wrist joint rehabilitation equipment was 
established based on ADAMS simulation software, and the effectiveness of the design was explored through virtual 
prototype simulation. The application effect of the wrist rehabilitation equipment was evaluated through a 6-week 
controlled experimental validation. 
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II. Design of digital wrist rehabilitation equipment 
II. A. Structural design 
The wrist joint, which serves as a bridge between the hand and the forearm, is a complex multicompartmental joint. 
The wrist joint is composed of the navicular, lunate, triangular, bean, major polygonal, minor polygonal, capitate and 
hook bones, which together form the radial carpal, intercarpal and metacarpal carpometacarpal joints. 

The wrist joint is a composite joint with two degrees of freedom, and its movements can be broken down into two 
groups: palmar flexion/posterior extension and radial flexion/ulnar flexion. In people's daily life, the palmar 
flexion/posterior extension degree of freedom of the wrist joint is often used, so this paper takes this degree of 
freedom as a representative for research. 

Based on the above biological characteristics of the human wrist joint, this paper designs a wrist rehabilitation 
device. The device adopts a rotating joint 

6J , which can realize the palmar flexion/posterior extension movement 
around 

6J  to complete the wrist joint movement. The sliding handle structure can facilitate the immobilization of 
the patient's palm, and the combination of different components can ensure a better fit of the patient's wrist module 
wear. 

 
II. B. Control systems 
In order to realize the automation and standardization of this equipment in the process of rehabilitation therapy, 
there is an urgent need to design a suitable and efficient control system. This paper focuses on the analysis of the 
hardware structure of the control system and software design of the two modules. 

(1) Control system hardware design 
In this paper, the master-slave control system with separate control and centralized management is selected, and 

the modularization concept of this system responds to the demand for diversified equipment performance. Among 
them, the master controller executes the task decision-making commands, and the slave controller controls 
according to the commands. Its hardware structure is shown in Figure 1. 
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Figure 1: Hardware structure of the control system 

The hardware structure of the device can be divided into three parts, which are upper hardware PC, CAN bus 
and lower hardware device body. Among them, the upper hardware PC manipulates the motion mode of the device; 
the lower hardware device body is mainly composed of six groups of servo systems, each servo system is composed 
of brushless DC motors and actuators, and supports communication such as USB, RS232 and CAN bus; because 
of the anti-interference and real-time characteristics of CAN bus communication, the upper and lower layers of the 
hardware structure choose to use this communication method. Because of the anti-interference and real-time 
characteristics of CAN bus communication, the upper and lower layers of this hardware structure choose to use this 
communication method, using the CANopen protocol of the OSI application layer. The upper layer of the PC and 
the CAN bus also add a USB to CAN expansion card, the role of which is used to expand the communication 
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capacity, the expansion card can minimize the delay and low power consumption to achieve high speed, no loss of 
message transmission. 

(2) Control system software design 
In view of the modularity of the control system of the device and the characteristics of high portability, this paper 

selects the ROS-based operating system platform that contains many function library functions. This platform is 
built on a PC by the ubuntu16.04 and ROS unified composition, its software design framework shown in Figure 2. 
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Figure 2: Control system software framework 

The software framework of the device can also be decomposed into three parts: GUI layer, Controller layer and 
Driver layer. Among them, the first GUI layer mainly uses Rviz and QT libraries to develop a visual human-computer 
interaction interface; the designed interface can be passed to the second Controller layer by manually inputting 
commands, and the Reha_node and ros_canopen nodes contained in the Controller layer are mainly responsible 
for driving the reconfigurable robot to realize the selected trajectory and motion. The Reha_node and ros_canopen 
nodes in the Controller layer are mainly responsible for driving the reconfigurable robot to realize the selected 
trajectory, and the ros_canopen node realizes the communication between ROS and the driver under the CANopen 
protocol; in the third layer, Driver layer, we use the USB to CAN communication card to set up the CAN 
communication network with the driver. In the Robot hardware layer, the encoder of the motor provides real-time 
feedback of the joint motion information, so that the current state of the model can be observed in the interactive 
interface in real time. 

III. SEMG-based motion intention recognition 
Muscle force and joint moment can reflect the specific physiological information of the muscles and joints of the 
patient during the rehabilitation process, which can make a quantitative assessment of the rehabilitation status of 
the patient and also provide an effective amount of interaction control to the wrist rehabilitation equipment. In order 
to ensure the accuracy of elbow and wrist multi-joint motion intention recognition, the signal characteristics of sEMG 
signals are fully integrated, and the recognition and analysis work of elbow and wrist joint motion intentions are 
carried out at the muscle and skeletal joint levels respectively. 

 
III. A. Acquisition and pre-processing of surface EMG signals 
III. A. 1) Signal pre-processing 
In general, the acquisition process of raw EMG signals tends to mix some impurity signals, in order to be more 
effective in the subsequent analysis of the acquired data, it is necessary to first preprocess the raw signal of sEMG 
to filter out the noise. The processing steps are described below: 

(1) In order to eliminate motion artifacts and baseline offsets in the signal, a 4th order Butterworth high-pass filter 
is adopted for high-pass filtering, in which the cutoff frequency is selected to be 25 Hz; 
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(2) In this paper, a non-negative matrix decomposition algorithm is planned to be used for data extraction, and 
since the algorithm demands that the matrix possesses non-negative properties, full-wave rectification of the sEMG 
is required so that the signal satisfies the non-negative provision and meets the muscular activity level in physiology; 

(3) In order to effectively reduce the potential impact of the amplitude difference of sEMG among different 
individuals on the analysis of muscle coordination, the sEMG also needs to be normalized; 

(4) In order to eliminate the effects caused by high-frequency noise, a 4th-order Butterworth low-pass filter was 
selected to accomplish the envelope extraction of the signal, where the cutoff frequency was chosen to be 3 Hz. 

Given that future work will involve the need for real-time signal processing, in order to simplify the computational 
process and improve efficiency, this study adopts an intuitive and simple numerical normalization method. This is 
done by performing the normalization by dividing each data point in the sample by the maximum absolute value of 
all the values in that sample data set: 

 
max

x
data   (1) 

where max  is the maximum value and x  is the sample data. 
 

III. A. 2) Calculation of muscle activation 
During joint movement, the variable indicating muscle activity is actually a non-negative number in the range of 0-
1, where the number 0 means that the muscle is in an inactive state, and the number 1 means that the muscle is in 
a state of complete activation. The normalized EMG signal does not directly label the degree of muscle activity, and 
it is necessary to first calculate the intensity of neural activity  u t  based on the normalized EMG signal, as in Eq: 

 
1 2( ) ( ) ( 1) ( 2)j j j ju t e t d u t u t         (2) 

Eq,   - gain coefficient, d  - time delay of electrodes, 
1 , 

2  - recurrence coefficients. 
And the three coefficients  , 

1  and 
2  in the above equation must also satisfy the following conditions: 
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In this recursive model, 
1 21, 1C C   . A given neural activation strength  u t   is not only related to its 

performance at the current moment, but also closely related to the neural activation strengths  1u t  ,  2u t   at 
the previous two time points. In order to accurately simulate and predict the dynamics of neural activation, this 
model also takes into account the natural delay time of the electrode detection signal, and usually, the electrode 
delay time d  is generally taken as 10ms. 

After obtaining the nerve activation strength  u t , the more commonly used nonlinear model is chosen to be 
used to solve the muscle activation  a t , as shown in equation (4): 
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where A  indicates the degree of nonlinearity, its range of values is generally restricted to -3 to 0. When the value 
of A  tends to 0, it indicates the existence of a strong nonlinear connection; conversely, if the value approaches -
3, it indicates that these interactions are closer to a linear relationship. The actual value of A  is usually determined 
by the adjustment process. In this paper, the value of A  is set to -1.2. 

With the above settings and processing, it was possible to complete the entire process of analyzing the raw EMG 
signals collected from the sEMG and then solving the muscle activation degree. 

 
III. B.  LSSVM-based finger-wrist motion intention recognition 
III. B. 1) Basic calculation process 
LSSVM is different from the classification method of traditional SVM, which adopts the least squares linear system 
as the loss function instead of the traditional quadratic programming method, which reduces the computational 
complexity and improves the processing speed, and at the same time, it also has a high recognition rate and a good 
generalization ability, and the computing speed is significantly better than other SVM methods. The basic 
computational process is as follows, optimizing the problem as an equation constraint: 
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Construct the Lagrange function to transform the original problem into a problem of finding the maximum value 
of  : 
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obtained by taking the partial derivatives of the four variables and equating them all to zero: 
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From the above a system of linear equations is presented: 
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where   is called the kernel matrix: 
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By solving the above system of equations, a set of a   and b   can be obtained. the LSSVM classification 
expression is: 
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During the design process, the penalty factor   and the parameter   in the kernel function play a decisive role 
in the prediction performance. 

 
III. B. 2) Hyperparameter optimization strategy 
The two hyperparameters   and   in LSSVM are empirically pre-set fixed values, which are determined at the 
beginning of the design of the algorithm, but since the hyperparameters   and   play a decisive role in the 
prediction performance, the use of the fixed pre-set values may reduce the generalization ability of the classifier, 
which in turn affects the recognition accuracy, especially in the finger-wrist movement intention recognition. In order 
to improve the adaptability to different individuals and optimize the classification effect, an optimization algorithm is 
used to optimize the two hyperparameters in LSSVM. 

In this paper, the weighted variate particle swarm algorithm (WVPSO) is used to optimize the hyperparameters 
in LSSVM to further improve the recognition accuracy and generalization ability of LSSVM. The traditional particle 
swarm algorithm (PSO) belongs to intelligent optimization algorithms, and its core concept is to find the optimal 
solution through the cooperation and information exchange among individuals in the group, but there are some 
shortcomings, such as easy to fall into premature maturity, low convergence accuracy, slow convergence speed in 
the later stage, and so on, and the WVPSO algorithm is optimized on this basis, and it shows superior performances 
in terms of the solution accuracy and convergence speed. WVPSO algorithm is optimized on the basis of this 
algorithm, which shows superior performance in terms of solution accuracy and convergence speed. 

The standard PSO algorithm begins by initializing to a population of random particles, each of which symbolizes 
a potential solution to a given problem, i.e., the 2 hyperparameters   and   in the LSSVM are used as random 
particles. We envision a population of N  particles together in a search space with D  dimensions, where the i th 
particle is denoted as a D -dimensional vector: 

 
1 2( , , , ), 1,2, ,i i i iDX x x x i N     (11) 

The hyperparameters   and   are preferred for the LSSVM in this optimization, so that the value of D  is 2 
and N  is set to 20. The velocity of the i th particle is denoted as: 

 
1 2( , , , ), 1,2, ,i i i iDV v v v i N     (12) 

The optimal position currently searched by the i th particle is called the individual optimum: 
 

1 2( , , , ), 1,2, ,best i i iDP p p p i N     (13) 

The optimal position currently searched by the entire population is called the population optimum: 
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The i th particle can update its velocity and position according to the following equation: 

 1 1 2 2( ) ( )id id id id gd id

id id id
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where   is the inertia weight, 
1c  and 

2c  are the learning factors, and 
1r  and 

2r  are random numbers between 
0 and 1. 

The WVPSO optimization algorithm is tuned by adjusting the weights  , learning factors 
1c  and 

2c  in order to 
ensure that the algorithm maintains a strong global search capability while balancing the local search capability in 
pursuing the optimization strategy: 
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 (16) 

where, it  is the current iteration number, MaxIt  is the maximum iteration number; rand  is a random number 

between 0-1; 
1upc , 

1lowc  are upper and lower bounds of the self-learning factor, respectively; 
2upc , 

2lowc  are upper 

and lower bounds of the group learning factor, for this optimization. ] are the upper and lower bounds of the 
population learning factor, respectively. For this optimization, here, MaxIt  is set to 20, 

1upc  and 
1lowc  are set to 

2.5 and 0.5, respectively; 
2upc  and 

2lowc  are set to 3.5 and 0.8, respectively. 

In order to enrich the diversity of the particle population and improve the search accuracy of the algorithm, the 
WVPSO algorithm dynamically adjusts the positions and velocities of the particles by introducing a weighted 
mutation strategy that combines the arithmetic crossover and the natural selection mechanism after each evaluation 
of the fitness. Regarding the proportion of mutated particles, they are selected in the following way: 
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 (18) 

The absolute values of the adaptation values of all particles are first arranged in order from smallest to largest by 
Eq. (17) and subsequently partitioned by Eq. (18). The arithmetic crossover formula is as follows: 
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where 
2

x   and 
3

x   are the positions of the particles at 
2   and 

3   in Eq. (18); and 
2

v   and 
3

v   are the 

velocities of the particles at 
2  and 

3  in Eq. (18); and rand  is a random number between 0 and 1. The natural 

selection process is as follows: 
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where 
1

x   and 
4

x   are the positions of the particles at 
1   and 

4   in Eq. (17), and 
4

v   and 
4

v   are the 

velocities of the particles at 
1  and 

4  in equation (18). Finally, in order to solve the problem that the algorithm 

tends to converge to the local optimal solution too early, Gaussian perturbation is introduced when the algorithm 
falls into premature maturity, which prompts the particles to jump out of the current local optimal region, thus 
increasing the possibility of global search. 

IV. Analysis of the effect of digital wrist rehabilitation equipment based on multi-sensor 
fusion technology 

In this paper, 50 cases of chronic wrist dysfunction patients (disease duration ≥6 months) in the rehabilitation 
department of cooperative hospitals were selected as research subjects, and they were divided into the control 
group (n=25) and the experimental group (n=25) according to the random number table method. The general 
information of the two groups was comparable, and the difference was not statistically significant (P>0.05). The 
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study was approved by the Medical Ethics Committee, and the patients and their families gave informed consent 
and signed the informed consent form. 

 
IV. A. Synchronized Signal Acquisition and Signal Preprocessing 
According to the theory of skeletal and muscular anatomy of the upper limb, the subjects use the wrist rehabilitation 
equipment for rehabilitation training mainly for flexion/extension of the shoulder, elbow and wrist joints, in which 
shoulder flexion/extension is mainly accomplished by contraction/relaxation of the deltoid and other muscles. Elbow 
flexion/extension is dependent on the triceps and biceps muscles. Wrist flexion/extension is mainly accomplished 
by the cooperation of synergistic muscles such as radial wrist extensor and radial wrist flexor. Therefore, this 
experiment mainly collects the surface electromyographic signals of upper limb deltoid anterior fasciculus, deltoid 
posterior fasciculus, triceps brachii, biceps brachii, radial wrist extensors, and radial wrist flexors, as well as 
information on the angle of joint motion during shoulder, elbow, and wrist flexion/extension. According to the data 
acquisition step, electrode sheets were sequentially pasted on the surface of the relevant muscles along the 
direction of the muscle fibers, with a distance of 2-3 cm between each pair of electrode sheets, and the surface 
EMG signals of the multiple muscles and the joint motion information were synchronously acquired using the 
BIOPAC physiological signal acquisition system and the inertial sensor. 

In surface EMG signal acquisition, the signal will inevitably be interfered by noise, thus affecting the accuracy of 
motion intention recognition. According to the surface EMG signal processing technique in section 3.1, the 6-channel 
surface EMG signal was preprocessed, and the surface EMG signals of a certain subject before and after 
preprocessing were shown in Fig. 3 (a~c), and the digital filter filtered out the high-frequency unwanted signals as 
well as the low-frequency interferences, and preserved the energy of the EMG signal. The digital filter filtered out 
high-frequency useless signals and low-frequency interferences, and retained the energy of EMG signals. At the 
same time, the full-wave rectification technique was utilized to ensure data smoothing and reduce data oscillation. 
It can be clearly seen that the subject's muscles contracted/relaxed periodically as the human upper limb moved at 
a uniform speed, and the amplitude of the surface EMG signals increased/decreased in a cyclical manner. During 
the upper limb flexion/extension movement, the collected muscles are active and antagonist muscles, therefore, 
with the joint flexion/extension, the active muscles contract/relax and the antagonist muscles relax/contract, and the 
surface EMG signals are in a complementary state. 

 

(a)Shoulder joint      (b)Elbow joint 

 

(c)Wrist joint 

Figure 3: Surface electromyography signals before and after pretreatment 
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IV. B. Analysis of simulation results 
In order to verify the correctness of the theoretical model and the reasonableness of the design scheme, the 
designed digital wrist rehabilitation equipment is further studied. The simulation model of the wrist rehabilitation 
equipment is established based on ADAMS simulation software, and virtual prototype simulation is carried out. After 
the simulation is completed, the simulation curves obtained are compared and analyzed in detail with the theoretical 
numerical curves to verify the accuracy and reliability of the theoretical model. 

The torque variation curves of the torsion spring at the elbow and wrist joints in the wrist rehabilitation device in 
one cycle are shown in Fig. 4. It is known that the torque of the torsion spring is mainly related to its own stiffness 
and rotation angle, and the torsion spring has a certain stiffness, the curve has a high degree of consistency with 
the trend of the curve obtained based on the theoretical model of kinematics, which further verifies that the wrist 
rehabilitation device is consistent with the movement of the human upper limb during the movement of the upper 
limb of the human body, i.e., it can be perfectly adapted to the human body, and it does not cause any interference 
in the human body's movement. 

 

Figure 4: Torque variation curve 

The height change curve of the model end point relative to the bottom end obtained from the simulation model of 
the wrist rehabilitation equipment is shown in Figure 5. Comparing the simulation curve with the height change 
curve of the end point of the model obtained based on the kinematic theory model, the two curves are basically the 
same in terms of numerical size and the change trend is basically the same. It can be observed that the end height 
first decreases and then increases, and there is a certain deformation, in line with the kinematic theory model of the 
law of motion. Since the two curves are smooth and gentle with no sudden changes, it can be further proved that 
the wrist rehabilitation equipment does not interfere with the movement of the human upper limb after wearing. 

 

Figure 5: Simulation curves of torque changes in elbow and wrist joints 

The moment change curves of the elbow and wrist joints obtained by the simulation model of the wrist 
rehabilitation equipment are shown in Figure 6. Through observation, the comparison between the simulation curve 
and the moment change curve obtained from the theoretical model can be found that the two curves are basically 
the same in numerical magnitude, and the change trend is highly consistent, which further verifies the 
reasonableness of the design of the wrist joint rehabilitation equipment. 
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Figure 6: The torque variation curves of the elbow and wrist joints 

IV. C. Analysis of application effects 
The experimental group used the equipment proposed in this paper to carry out rehabilitation training after 
completing the treatment, and the control group carried out conventional rehabilitation training after completing the 
treatment, and the course of both groups was 6 weeks. At the end of the experiment, the follow-up was 3 months 
to evaluate the treatment effect of the two groups. Wrist function was evaluated from four aspects, namely, pain grip 
strength, function, dorsal extension/palmar flexion mobility, with scores ranging from 0 to 25, and the scores were 
positively correlated with the function. Quality of life was evaluated in both groups using the short form of health 
survey (SF-36), only 4 aspects of physical, somatic, emotional, and social were selected, and the scores were 
0~100, and the scores were positively correlated with the quality of life. 

SPSS25.0 software was used to statistically analyze the obtained data. Measurement data were expressed as 
(M±SD), and independent sample t-test was used for inter-group comparison, and paired t-test was used for intra-
group comparison. Count data were expressed as rate (%), and χ² test was used for comparison, and the difference 
was statistically significant at P<0.05. 

The results of the comparison of wrist joint function before and after treatment between the two groups are shown 
in Table 1. Before treatment, there was no statistically significant difference between the two groups in terms of wrist 
joint function (P>0.05). After treatment, the pain, grip strength, function, and dorsal extension/palmar flexion mobility 
scores of the two groups were improved compared with those before treatment, and the mean values of the 
experimental group were higher than those of the control group by 3.09, 2.41, 4.01, and 3.84 points, respectively, 
and the differences were statistically significant (P<0.05). 

Table 1: Results of comparison of wrist function(M±SD) 

 Experimental group Control group t value P value 

Pain 
Before 10.34±1.08 10.32±1.12 0.099 0.836 

After 20.57±1.11* 17.48±1.42* 11.873 <0.001 

Grip strength 
Before 11.47±1.39 11.46±1.08 0.077 0.873 

After 19.66±1.47* 17.25±1.73* 9.376 <0.001 

Function 
Before 10.86±1.13 10.85±1.15 0.028 0.902 

After 20.83±1.03* 16.82±1.38* 15.422 <0.001 

Dorsiflexion/Flexion range of motion 
Before 10.47±1.08 10.45±1.12 0.086 0.917 

After 20.63±1.03* 16.79±1.35* 15.386 <0.001 

 
The results of the comparison of quality of life between the two groups before and after treatment are shown in 

Table 2. Before treatment, there was no statistically significant difference in the quality of life between the two groups 
(P>0.05). After treatment, the physical, somatic, and emotional-social scores of the two groups were improved 
compared with those before treatment, and the mean values of the experimental group were higher than those of 
the control group by 8.71, 9.01, 9.83, and 9.32 points, respectively, and the differences were statistically significant 
(P<0.05). 
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Table 2: Comparative quality of life results(M±SD) 

 Experimental group Control group t value P value 

Physiology 
Before 60.29±2.97 60.28±2.74 0.074 0.849 

After 89.37±2.18* 80.66±2.56* 12.684 <0.001 

Body 
Before 58.38±2.52 58.38±2.54 0.038 0.938 

After 90.17±2.33* 81.16±2.23* 14.973 <0.001 

Emotion 
Before 59.91±2.28 59.89±2.31 0.096 0.882 

After 89.94±2.37* 80.11±2.75* 15.992 <0.001 

Society 
Before 60.37±2.16 60.35±2.35 0.091 0.917 

After 90.38±2.64* 81.06±2.47* 15.275 <0.001 

 

V. Conclusion 
In this paper, a wrist rehabilitation device based on multi-sensor fusion technology is designed to explore its practical 
effect by combining simulation experiments and practical verification. 

The simulation curves obtained from the simulation model are highly consistent with the theoretical numerical 
curves, proving the correctness of the design of this paper. Putting the equipment into use, after treatment, the pain, 
grip strength, function, dorsal extension/palmar flexion mobility scores of the experimental group and the control 
group were improved compared with those before treatment, and the mean values of the experimental group were 
higher than those of the control group by 3.09, 2.41, 4.01, and 3.84 points, respectively, and the differences were 
statistically significant (P<0.05). Physical, somatic and emotional-social scores of the two groups were improved 
compared with the pre-treatment, and the mean values of the experimental group were higher than those of the 
control group by 8.71, 9.01, 9.83 and 9.32 points, respectively, and the difference was statistically significant 
(P<0.05). The experiment proved the rationality of the design of the wrist rehabilitation equipment, which can 
effectively help patients to complete the rehabilitation training. 
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