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Abstract Polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFRs) are widely 
used as important flame retardants in electronic products such as copper laminates. In this study, a simple 
Bayesian model combined with the XGBoost algorithm was used to analyze the contamination characteristics of 
PBDEs (polybrominated diphenyl ethers) and NBFRs (novel brominated flame retardants) in the sorting residues of 
copper laminates. GC/MSD was applied to detect and analyze the residues from nine sampling sites. The results 
showed that BDE99 was detected at all monitoring sites with a detection frequency of 100%, and its concentration 
ranged from 0.158 to 0.498 ng/L, with the highest concentration of 1.657 ng/L at site H1. Among the eight PBDEs 
monomers detected, the detection rate of BDE47, BDE99, BDE100, and BDE209 was 100%, and the Σ7PBDEs 
the contents ranged from 9.166~88.326ng·g-1, and the median value was 29.092ng·g-1. Among the novel 
brominated flame retardants, the detection rate of BPA was 84.648%, and the detection rates of BPB and BPAF 
were both 61.548%. Correlation analysis showed that there was a significant positive correlation between BPA and 
BPAF (r=0.54, p=0.048<0.05). The time trend analysis showed that the ratio of Σ26PBDEs/Σ5NBFRs showed a 
decreasing trend from 4.233 in 2011 to 2.073 in 2021, which indicated that the new brominated flame retardants 
were gradually replacing the traditional PBDEs.The machine-learning based analysis method effectively identified 
the main controlling factors of the contamination characteristics, and provided scientific basis for the management 
of the contaminated sites and the control of risks. 
 
Index Terms Polybrominated diphenyl ethers (PBDEs), Novel brominated flame retardants, Machine learning, 
XGBoost, Simple Bayes, Pollution characterization 

I. Introduction 
Printed circuit board (PCB) is the most active industry in contemporary electronic components, according to the 
survey in 2003 China's production value of printed circuit boards has exceeded the United States, second to Japan, 
ranking second in the world. Although the PCB industry is not included in the heavy pollution industry, it deserves 
our attention as a relative water and energy consumption, and at the same time, it is an industry with more pollutant 
discharges [1], [2]. The pollution of PCB manufacturing enterprises is mainly generated in the drilling, etching, 
plating, metallization, de-filming, developing and other processes, and the pollutants discharged are mainly 
industrial wastewater, followed by solid wastes [3]-[5]. However, previous studies have paid more attention to the 
pollution problem of heavy metals in wastewater and fixed waste, and less attention to the pollution problem in the 
drilling and etching process [6]. 

Glass fibers and other reinforcing materials through the bonding material crosslinked to form a bonding sheet, 
and then in the laminating machine will be bonded sheet and copper box according to the design requirements of 
the laminated up, the bonding sheet and the copper box layer is firmly bonded into the substrate, and then in the 
substrate through the light candle engraving or chemical copper precipitation process to form a PCB circuit board. 
In the above copper lamination process produces a variety of waste categories, a wide range of pollutants [7]. 
Among them, bromine-based flame retardants, which are widely used in PCB products to ensure their fire rating, 
have the potential to migrate these residual substances from PCB products, causing environmental pollution 
[8]-[11]. Although in the large-scale, full-fledged facilities of the production enterprises, each production plant has 
the appropriate waste collection devices and treatment, such as etching solution, plating solution and other 
high-concentration waste liquids are categorized and collected in containers, and then entrusted to a company with 
the treatment of subsidies for the treatment of high-concentration waste liquids [12]-[14]. However, it is necessary 
to manage and categorize the physicochemical properties of these pollutants as well as the pollution 
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characteristics, so as to develop targeted pollution prevention and control means to contribute to the ecological 
environment management [15]. 

Brominated flame retardants (BFRs) in e-waste have become an environmental pollutant of global concern, 
especially the environmental risks caused by polybrominated diphenyl ethers (PBDEs) and new brominated flame 
retardants (NBFRs) in copper laminate sorting residues are becoming increasingly prominent. Epoxy resin-based 
copper-clad laminates, which account for a significant proportion of PCB materials, are widely used due to their 
excellent adhesion, electrical insulation and low-cost characteristics. However, epoxy resins are poor in heat and 
moisture absorption resistance, and need to be improved by the addition of flame retardants, which are released 
into the environment at the end of the product's life cycle. The use of resin matrix materials such as polyimide (PI), 
bismaleimide (BMI), cyanate ester resin (CE) and polyphenylene ether (PPE) has further increased the diversity of 
flame retardants, of which TBBPA, the largest brominated flame retardant in terms of production volume, with an 
annual production volume of about 120,000 tons, is mainly used for flame retardancy of printed wiring boards, but 
studies have confirmed that it releases TBBPA and its metabolites into the environment. The hot pressing process 
and the dip-drying step in the preparation of copper laminates affect the distribution and release of flame retardants, 
and the residues generated during the sorting process become important carriers of these contaminants. 
Traditional contamination characterization methods are often difficult to comprehensively identify the distribution 
patterns and interrelationships of multiple contaminants in complex matrices, especially in the face of the lack of 
effective means of downscaling and feature selection for high-dimensional feature data. Machine learning 
algorithms provide a new way to solve this problem, with the simple Bayesian model able to classify samples 
based on prior knowledge, and the XGBoost algorithm able to efficiently process high-dimensional data and 
calculate feature importance. By associating these two methods, a comprehensive analysis framework that can 
both classify and quantify pollution features can be constructed, which not only identifies the main controlling 
factors of pollution severity, but also quantifies the contribution of each feature to the pollution level through weight 
calculation. In this study, we combine the plain Bayes and XGBoost algorithms to construct a 
machine-learning-based pollution feature mining method to systematically analyze PBDEs and NBFRs in copper 
laminate sorting residues, assess the spatial distribution characteristics, concentration levels and substitution 
trends of the pollutants, and identify the key factors affecting the pollution degree, so as to provide scientific basis 
for the precise management and risk control of the contaminated sites. At the same time, it provides new technical 
means for the study of environmental behavior of brominated flame retardants in e-waste. 

II. Preparation of copper laminates 
II. A. Structural characteristics and development of copper-clad laminates 
II. A. 1) Resin matrix 
Epoxy resin-based copper-cladding board in the PCB material occupies a considerable proportion, is also widely 
used in a matrix resin. This is mainly due to the epoxy resin has excellent adhesion, electrical insulation, excellent 
processability, easy modification and low cost and other characteristics. However, epoxy resin heat resistance, 
moisture absorption resistance is poor, can not adapt to the use of high-frequency high-performance PCB 
requirements, so it is necessary to carry out reasonable modification of epoxy resin. 

 
II. A. 2) Polyimide (PI) and bismaleimide (BMI) 
Polyimide resin (PI) has excellent dielectric, mechanical, radiation, corrosion, ablation and other properties, mainly 
due to the molecular main chain contains imide ring structure.PI is usually used as a flexible printed circuit boards, 
the peel strength is high, mainly due to the linear coefficient of expansion of the polyphthalimide and copper foil 
similar to that caused by the PI resin, although it has excellent performance, but the thermal expansion coefficient 
of the PI copper cladding board is much larger than the thermal expansion coefficient of electronic components, 
when used in circuits, due to the presence of internal stress in the product, cracks often occur, and even fracture, 
when applied in the circuit, due to the presence of internal stress in the product, often resulting in cracks, and even 
fracture, the thermal expansion coefficient of electronic components. Although PI resin has excellent performance, 
the coefficient of thermal expansion of PI laminate is much larger than that of electronic components, when applied 
to the circuit, due to the existence of internal stress in the product, cracking phenomenon often occurs, and even 
fracture, which seriously affects the performance of PI copper-clad laminates. Therefore, in order to broaden its 
application in the copper cladding industry, PI resin must be modified. 

 
II. A. 3) Cyanate ester resins (CE) 
CE resin has good dielectric properties and heat resistance, and began to be widely used in the 1980s. In fact, as 
early as the 1950s, some simple cyanate ester compounds were synthesized, but due to the constraints of the 
conditions at that time, the yields and purity of the products obtained were low, thus limiting their further 
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development. In 1976, Bayer of West Germany produced the first commercialized cyanate ester resin, known as 
triazine. At that time, it was only used as a substitute for polyimide high-temperature-resistant resins, although the 
resin also has good electrical properties, but due to high moisture absorption, poor chemical resistance, poor 
compatibility and other reasons, and ultimately withdrawn from the market in 1987. However, in the following year, 
Mitsubishi Gas Chemical Corporation of Japan developed and synthesized bismaleimide triazine resin (referred to 
as BT resin) by utilizing Bayer's technology. BT resin combines the excellent properties of BMI and CE resins with 
heat resistance, low dielectricity, and good mechanical properties and dimensional stability. At present, Mitsubishi 
Gas has been occupying this market. In the 1980s, various types of cyanate ester resins were developed and 
widely used. 

 
II. A. 4) Polyphenylene ether (PPE) 
Polyphenylene ethers are generally synthesized by two methods, one is obtained by oxidative coupling reaction of 
2,6-dimethylphenol [16]. The other is 2,6-dimethyl phenol etherification reaction polycondensation, polyphenylene 
ether resin has a low dielectric constant and low loss factor (er for 2.45, tand 0.0007), high glass transition 
temperature, dimensional stability, good and high mechanical strength, low water absorption (water absorption of 
0.05%), acid, alkali, salt resistance is good, there are good self-extinguishing, a little treatment can be up to 
UL94-V0 grade, etc., due to the PPE resin heat resistance, heat resistance of the PPE resin can be obtained. V0 
level and other advantages, due to the low heat resistance of PPE resin can not be directly applied to PCB 
substrate. 

 
II. B. Copper laminate material preparation 
II. B. 1) Main raw materials 
(1) Resin base 

PPESK (S/K=1:1, characteristic viscosity 0.42dL/g), PPENK (N/K=1:1, characteristic viscosity 0.43dL/g) are 
supplied by Dalian Baolimo New Material Co. 

During the production process of the resin, it is often accompanied by the presence of some metal ions (Nat, Cat, 
Mg2t, Fe3t, Fe2t), which have a great influence on the dielectric properties of the resin, as well as on the thermal 
and mechanical properties of the material [17]. Therefore, it is necessary to purify the resin to remove the metal 
ions in the system in order to achieve the best use. The polymer was dissolved in chloroform, filtered and 
precipitated in ethanol, filtered, dried and then boiled (1% water containing HCl), and replaced with deionized water 
for 5 times until the pH reaches 7, filtered, dried and set aside. 

(2) Copper foil and surface treatment 
The viscosity of silane coupling agent is small, low surface tension, can be impregnated in the very small gaps 

on the surface of the object to be adhered. On the other hand, it can produce mutual coupling effect with the 
surface of the adherend, and thus can effectively improve the bonding strength. Analysis of the chemical structure 
of silane coupling agent shows that it can form chemical bonds with inorganic materials, metal surfaces and 
organic resins respectively, which effectively improves the bonding strength of the interface layer. According to 
these characteristics of silane coupling agent, it is often used in the bonding process. Surface treatment of copper 
foil: add the silane coupling agent to the resin glue, the dosage is 0.5-2% of the resin content (mass ratio), coated 
on the surface of clean metal copper foil, dry, standby. 

 
II. B. 2) Preparation of copper-clad laminates 
(1) Preparation of resin glue 

Resin glue preparation quality directly affects the quality of the dip glue, in which the resin glue concentration is 
the key. Resin glue concentration has two effects, one is to affect the fiber wettability, and the other is to affect the 
amount of adhesive bonding piece of glue. If the concentration of resin glue is big, the viscosity will be big and the 
wetting of fiber will be poor, if the concentration of resin glue is small, the viscosity will be small, which will lead to 
the insufficient hanging quantity of bonding sheet. Usually, the type of resin, molecular weight, concentration and 
temperature affect the viscosity of resin glue. 

Preparation: The polymer used is dissolved in a specific solvent or a mixture of solvents according to its intrinsic 
properties, stirring is used to accelerate its dissolution, and after the solution is formed into a homogeneous state, 
the stirring is stopped and it is sealed for backup. 

(2) Soak and dry 
Using a single solvent to formulate the glue, in the removal of solvents will leave a large number of holes in the 

bonded piece of the surface and the interior, ultimately resulting in a decline in the performance of the finished 
product. In order to avoid these defects of a single solvent, this paper applies a mixture of solvents to dissolve the 
resin, step by step temperature method to remove the solvent. 
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The high performance thermoplastic resin used in this experiment has a large molecular weight and is easy to 
form a film, so the temperature in the drying process can not be raised too quickly, if it is raised too quickly, it is 
easy to form a large number of bubbles on the surface, which ultimately affects the mechanical properties of the 
laminate. 

(3) Hot pressing process 
Copper laminates are generally prepared by hot pressing. The so-called hot pressing method is at a certain 

temperature and pressure, the dip material bonding sheet melting molding, and then cooling solidification, 
demolding, to get the required copper-clad laminate. Copper-clad laminate hot pressing schematic shown in Figure 
1 [18]. 

Heat engine heating plate
Buffer plate

Pressure plate

Electrolytic copper box

Outer bonding sheet

Inner layer bonding sheet

Outer bonding sheet

Electrolytic copper box

Pressure plate

Buffer plate
Heat engine heating plate  

Figure 1: Hot-pressing diagram of Copper Clad Laminate 

III. PBDEs and new brominated flame retardants in copper laminate residues 
III. A. Machine learning-based feature mining for residue contamination 
III. A. 1) Research methodology 
In accordance with the classification indicators of the Technical Provisions on Risk Screening and Risk Grading of 
Closed and Relocated Enterprise Sites [hereinafter referred to as “the Provisions”], the sampling data were divided 
into characteristic datasets, in which the main characteristics include the concentration of each type of pollutant 
exceeding the multiple times of the standard, the surface cover, the underground seepage control measures, the 
texture of the soil, the mode of land use, and the average sampling depth. Referring to the quantitative indicators in 
the Regulations, the pollutant characterization dataset was divided into two categories of medium concern and high 
concern according to the pollution severity. A Bayesian model was established to assess the probability of each 
sample belonging to high concern and medium concern, respectively. Figure 2 shows the technical route, using the 
XGBoost algorithm, calculating the feature importance of each feature, identifying the main control features of 
pollution severity, and using this quantification result as the weight to quantify the value of pollution features of each 
sample. Based on the ARCGIS platform, the pollution distribution map of the plant area is drawn to analyze the 
characteristics of pollutant distribution within the plant area, which provides a scientific reference for the 
management, remediation and control decision-making of the polluted site. 

Construct a data set 
of site characteristics

Input feature data

Gain attention to 
pollution

Construct the 
Bayesian model

Build the 
XGBOOST model

Calculate the importance of 
each feature in the severity 

of pollution

The pollution characteristic 
values of each sample 

obtained by linear weighting

Visualization of pollution 
characteristics

 

Figure 2: Technical research route 
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III. A. 2) Plain Bayesian modeling 
Plain Bayes is a model in Bayesian classifiers, training the model with data sets of known categories, so as to 
realize the category judgment of unknown category data, the theoretical basis is Bayesian decision theory, the core 
idea is to use the prior knowledge to calculate the probability of samples belonging to each category respectively, 
as a way to determine the category to which the sample belongs to, so it is necessary to introduce the Bayesian 
probability formula for calculating the sample probability [19]. 

The Bayesian formula is generally expressed as: 
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Assuming that a set of samples needs to be categorized into two categories, it is only necessary to calculate the 
probability that each sample belongs to category 1 and category 2, respectively, as shown in the following 
equation: 
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In polluted sites, the main idea of Bayesian method for data fusion is to use the Gaussian classifier in the plain 
Bayesian classifier to input each feature of the samples into the classifier and output the category corresponding to 
each sample, in order to achieve the purpose of data unification. Sample eigenvalues are mainly obtained by 
organizing the data from the detailed investigation of the polluted site (e.g., surface coverage, subsurface 
containment measures, sampling depth, pollutant concentration, etc.), which are classified by the Bayesian method 
to obtain the category to which the sample belongs. 

 
III. B. XGBoost 
XGBoost, also known as Extreme Gradient Boosting Tree, is a further improvement on the gradient boosting 
algorithm [20]. The XGBoost algorithm uses Newton's method in solving the loss function by Taylor expanding the 
loss function to the second order and adding L1 and L2 regularization terms. 

The XGBoost model is defined as: in a given dataset including N  samples and m  feature variables 

 , (| | , , )i i i m iD x y D N x R y R    , and the predicted output of its integrated model can be expressed as: 
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where 
kf  is denoted as the regression tree and K  is the number of regression trees. When the XGBoost model 

gets an input 
ix , its output value is the sum of the predicted values of K  regression trees. 

The objective function at the t th moment of XGBoost is defined as: 
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In the above equation, l  is the loss function indicating the deviation of the predicted value from the true value, 

which is generally a convex function, ( )i if x  is the predicted value of the t th decision tree for the sample i , and 

1
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t
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f
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  is the sum of complexity of all t threes and it can effectively reduce the complexity of the model and 

prevent overfitting. 
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According to the second-order form of Taylor's expansion, the following formula is obtained by second-order 
expansion of the objective function l  at the moment t : 
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where 
ig  is the first order derivative and 

ih  is the second order derivative: 
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At this point, ( 1)ˆ( , )t
i il y y   is the difference between all the previous trees and is a constant that has no effect on 

the optimization of the function. Therefore, removing all constant terms, the objective function is obtained as: 
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The complexity   of the tree consists of the number of leaves T  and the regular term of the objective function 
can be expressed as: 
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Then, all the samples 
ix  of the j th leaf node are delimited into a collection of samples 

jI  of a leaf node, 

according to the sample-to-leaf node mapping relation q : 
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where   is the weight of the leaf node. At this point, the objective function can be expressed as: 
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To simplify the expression, define jj I i
i

G e g  and 
jj i I iH e h   to denote the cumulative sum of first-order 

partial derivatives of all samples at leaf node i  and the sum of second-order partial derivatives of all samples at 
leaf node j , respectively. Then the final objective function is simplified as: 
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The weight   of leaf node j  is solved as * i
j

i

G

H



 


 using the quadratic quadratic function solution 

formula. So the objective function is updated as: 
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XGBoost model training speed is faster, the advantages are obvious: in the processing of the loss function using 
Taylor's second-order expansion, which improves the error accuracy at the same time is conducive to the gradient 
descent process faster and more accurate, adding regularization, reduces the variance of the model, effectively 
preventing the model from overfitting, and support for column sampling can reduce the computation and reduce 
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overfitting. However, the XGBoost model occupies a large amount of memory and takes a long time when the data 
volume is large. 

 
III. C. Analysis of polybrominated diphenyl ethers and new brominated flame retardants 
III. C. 1) PBDES Analysis 
The analyzing instrument was GC/MSD (Agilent, 7890/5975C) with NCI source and selective ion scanning mode 
(SIM). A total of 45 monomers of mono- and nonabromodiphenyl ethers of PBDEs congeners (except BDE-209) 
were separated and determined on a column (DB-XLB, 30 m×0.25 mm×0.25 µm). Temperature increase program: 
110 ℃ (1 min) 8 ℃-min-1→180 ℃ (1 min) 2 ℃-min-1→240 ℃ (5 min) 2 ℃-min -1→280 ℃(2 min)10 ℃
-min-1→310 ℃(35 min). The temperature of the injection port was 260 ℃ and the temperature of the ion source 
was 250 ℃. The determination of decabromodiphenyl ether (BDE-209) was carried out on a column (DB-5HT, 15 
m×0.25 mm×0.1 µm) with the following heating program: 110 ℃ (2 min) 15 ℃-min-1→320 ℃ (2 min) 10 ℃
-min-1→340 ℃ (5 min), 10 ℃-min-1→280 ℃ (2 min) 10 ℃-min-1→310 ℃ (35 min). The heating program was 
110 ℃ (2 min) 15 ℃-min-1→320 ℃ (2 min) 10 ℃-min-1→340 ℃ (5 min), the inlet temperature was 260 ℃, 
and the temperature of ion source was 250 ℃. 

The 46 PBDEs monomers analyzed were: decabromodiphenyl ether (Deca-BDEs: BDE-209), 
nonabromodiphenyl ether (Nona-BDEs: BDE-208), octabromodiphenyl ether (Octa-BDEs: BDE-204, -203,-198, 
-197, -196), heptabromodiphenyl ether (Hepta-BDEs:BDE -190, -183, -181), hexabromodiphenyl ethers 
(Hexa-BDEs: BDE-166, -155, -154, -153, -138), pentabromodiphenyl ethers (Penta-BDEs: BDE-126, -119, -118, 
-116, -100, -99,-85), tetrabromodiphenyl ethers (Tetra-BDEs: BDE-77), and hexabromodiphenyl ethers 
(Hepta-BDEs: BDE-120, -203, -198, -197, -196). BDEs: BDE-77, -75, -66,-47, -49+71), tribromodiphenyl ethers 
(Tri-BDEs: BDE-37, -35,-33, -32, -30, -28, -25, -17), dibromodiphenyl ethers (Di-BDEs: BDE-15, -13, -12, -11, -10, 
-8, -7) and mono-bromodiphenyl ethers (Mono-BDEs: BDE-15, -12, -11, -10, -8, -7). BDEs (Di-BDEs: BDE-15, -13, 
-12, -11, -10, -8, -7) and Mono-BDEs (Mono-BDEs: BDE-3, -2, -1). 

 
III. C. 2) New Brominated Flame Retardants (NBFRS) 
In the 21st century, with the development of new industries and changes in people's lifestyles, some new types of 
pollutants have emerged: brominated flame retardants such as polybrominated diphenyl ethers (PBDES), 
pharmaceuticals (including various types of veterinary medicines and antibiotics) and personal care products 
(PPCPs/PCPS), ammonium perfluorozincate (PFZ), and pollutants of the aromatic sulfonate group (PFOS/PFOA), 
and phytotoxic substances. These pollutants are new to the environment and are generally found in low 
concentrations in the environment, but with high ecosystem hazards and human health impacts. Most of the 
brominated flame retardants have been reported to be highly persistent in the soil environment, capable of 
accumulating in the human body through the food chain and other pathways, impeding the development of the 
brain and skeleton through prolonged exposure, and possibly carcinogenic. 

Among the five brominated flame retardants, TBBPA is the most widely used and widely produced, with an 
annual output of about 120,000 tons. It is mainly used as a reactive flame retardant for the flame retardancy of 
printed wiring boards and the production of brominated epoxy intermediates and brominated polycarbonate, but it 
is also used as an additive flame retardant for the flame retardancy of ABS, HIPS, epoxy resins, phenolic resins, 
and unsaturated polyoxides, etc. Although TBBPA has a covalent binding capacity, it can accumulate in the body 
through other channels. Although TBBPA has covalent binding properties, studies have confirmed that both 
reactive and additive products release TBBPA and its metabolites into the environment. 

IV. Pollution characterization of polybrominated diphenyl ethers and new brominated 
flame retardants 

IV. A. Sample collection of PBDEs and new brominated flame retardants 
The linear weighting method was used to obtain the pollution eigenvalues of the samples to quantitatively assess 
the comprehensive pollution of copper laminates by associating Park's Bayes and XGBoost algorithms, obtaining 
the characteristic importance of the pollution severity caused by each indicator in each sample and using this as 
the weight of each indicator. 

The detailed information of BPs and BFRs determined in this analysis is shown in Table 1. 12 kinds of BPs 
single-label and 8 kinds of PBDEs mixed-label were purchased from AccuStandard Company in the U.S.A., and 13 
kinds of NBFRs single-label were purchased from Alta Scientific Company in Tianjin, China. BPS), C12-bisphenol 
AF (C12-BPAF)] and BFRs internal standard [2,3′,4,4′,5-pentabromodiphenyl ether (BDE118), 1,2,3-tribromo-4- 
(2,3,4-tribromophenoxy)benzene (BDE128)] were purchased from Cambridge Isotope Laboratorie, USA. 
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Table 1: Basic information of the target compounds 

/ Chinese full name For short CAS  

The water 
distribution 

coefficient of the 
octanolLogKow1 

Parent ion 
mass (m/z) 

Subionic 
mass (m/z) 

Collision 
voltage /eV 

Bisphenol 
compounds 

(BPs) 

Bisphenol A BPA 80-05-7 3.648 228 134 -26 

Bisphenol B BPB 77-40-7 4.185 240 210 -26 

4,4‘- vinylene Bisphenol BPE 2081-08-5 3.198 212 199 -26 

Bisphenol F BPF 620-92-8 2.785 200 100 -26 

Bisphenol P BPP 2167-51-3 6.158 348 135 -69 

Bisphenol S BPS 80-09-1 2.164 250 93 -56 

Bisphenol Z BPZ 843-55-0 5.798 268 150 -56 

Bisphenol AF BPAF 1478-61-1 3.984 337 263 -38 

Bisphenol AP BPAP 1571-75-1 4.348 290 275 -30 

Bisphenol BP BPBP 1844-01-5 5.626 350 275 -20 

Bisphenol M BPM 13595-25-0 -2 365 135 -38 

Bisphenol G BPG 127-54-8 6.348 310 300 -38 

Polybrominated 
diphenyl 

ether(PBDEs) 

2,4,4′- Tribromodiphenyl 
ether 

BDE28 41318-75-6 5.848 - 80(82) - 

2,2′,4,4′- Tetrabromobenzyl 
ether 

BDE47 5436-43-1 6.788 - 
80(82) 

- 

2,2′,4,4′,5- 
Pentabromodiphenyl ether 

BDE99 60348-60-9 6.869 - 
80(82) 

- 

2,2′,4,4′,6- 
Pentabromodiphenyl ether 

BDE100 
189084-64-

8 
6.565 - 

80(82) 
- 

2,2,4,4,5,5- 
Hexabromodiphenyl ether 

BDE153 68631-49-2 7.165 - 
80(82) 

- 

2,2′,4,4′,5,6′- 
Hexabromodiphenyl ether 

BDE154 
207122-15-

4 
7.348 - 

80(82) 
- 

2,2′,3,4,4′,5,6- 
Heptabromodiphenyl ether 

BDE183 
207122-16-

5 
7.134 - 

80(82) 
- 

Decabromodiphenyl ether BDE209 1163-19-5 12.488 - 490(488) - 

New brominated 
flame 

retardant(NBFR
s) 

2,4,6- Tribromophenyl allyl 
ether 

ATE 3278-89-5 - - 80(82) - 

1,2- Dibromine -4-(1,2- 
Mono-dibromoethyl) 

Cyclohexane 
TBECH 3322-93-8 5.248 - 

80(82) 
- 

1,2,5,6- Tetrabromocycloctane TBCO 3194-57-8 5.248 - 80(82) - 

2,3,4,5,6- 
Pentabromoethylbenzene 

PBEB 99717-56-3 7.487 - 
80(82) 

- 

2- Bromoallyl -2,4,6- 
Tribromophenyl ether 

BATE 85-22-3 - - 80(82) - 

Hexabromobenzene HBB 87-82-1 7.348 - 80(82) - 

(2,3- Dibromopropyl) (2,4,6- 
Tribromophenyl )ether 

DPTE 35109-60-5 6.348 - 
80(82) 

- 

1,2,3,4,5- 
Pentabromobenzene 

PBBZ 23488-38-2 6.464 - 
80(82) 

- 

2,3,5,6- Tetrabromop-xylene p-TBX 87-83-2 6.648 - 80(82) - 

Pentabromotoluene PBT 608-90-2 6.987 - 80(82) - 

Hexachlorodibromooctane 
HCDBC

O  
51936-55-1 7.948 - 

80(82) 
- 

1, 2-bis (2,4, 
6-tribromophenoxy) ethane 

BTBPE 37853-59-1 9.148 - 
80(82) 

- 

Tetrabromoo-chlorotoluene TBCT 39569-21-6 7.384 - 80(82) - 

 
The organic reagents used in the experiments: dichloromethane, methanol, hexane, acetone, iso-octane, formic 

acid, acetonitrile, toluene, and ethyl acetate were all chromatographically pure and purchased from Shanghai 
Amperexperiment Technology Co. Ethylenediamine-N-propylsilylated silica adsorbent (PSA), anhydrous sodium 
sulfate (≥99%), disodium ethylenediaminetetraacetic acid (Na2EDTA, ≥99%), sodium citrate (≥99%), sodium 
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chloride (≥99%), and reversed-phase silica chromatography packing C18 were purchased from Guangzhou 
Ruixin Biochemistry and Technology Co. 

The parent ion mass-to-charge ratios, daughter ion mass-to-charge ratios, and collision voltages of bisphenolic 
compounds (BPs) ranged from [200,365], [93,300], [-69,-20], and among the polybrominated diphenyl ethers 
(PBDEs) and new brominated flame retardants (NBFRs), except for decabromodiphenyl ether (DBDE) with a 
daughter ion mass-to-charge ratio of 490 (488), the daughter ion mass-to-charge ratio for the other ones were all 
80 (82). 
 
IV. B. Pollution characterization of PBDEs 
IV. B. 1) Concentration distribution of PBDEs 
The monitoring results of PBDEs in sorting residues of copper laminates are shown in Table 2.The PBDEs 
monomer with the highest detection frequency in the nine sampling points of copper laminates was BDE99, which 
was detected in all the monitoring points, followed by BDE47 and BDE153, and BDE154, BDE183, and BDE209 
were not detected in all the monitoring points.The concentration of BDE99 was 0.158~0.498ng/L, and the 
concentration of pollutants detected in June and October was 1.088 ng/L, 1.657 ng/L, respectively. 0.498 ng/L, 
copper laminate sorting residue H1 point has the highest concentration, June and October detected pollutant 
concentration of 1.088 ng / L, 1.657 ng / L. BDE47 detected concentration in the range of 0.158~0.549 ng / L, is 
also the highest concentration of H1 point. The range of ΣPBDEs in the copper laminate residue was 
0.158~1.657ng/L, the highest concentration at point H1 was 1.657 ng/L, followed by point H3 of the copper 
laminate with a concentration of 1.115 ng/L, and the lowest detected concentration was at point H7 of the copper 
laminate, with a concentration of 0.158 ng/L. From the above data, it can be seen that there is a higher 
concentration of PBDEs aggregated at the inlet. The concentrations at points H5, H6 and H7 in the east copper 
laminate were significantly lower than those at points H1, H2, H3 and H4 in the west copper laminate.ΣThe 
concentration of PBDEs in October was greater than that in June, which may be related to the fact that June is the 
season with the most precipitation of the year in the country. The main PBDEs detected in the copper laminates 
were BDE47 and BDE99, which were also the most highly detected monomers in other copper laminates around 
the world. The results of the study were in general agreement with the level of PBDEs contamination in the sorting 
residues of the copper laminates. 

Table 2: The concentration of PBDEs in the residue of copper laminate(ng/L) 

Compound Time H1 H2 H3 H4 H5 H6 H7 H8 H9 

BDE28 
June 0.156 ND ND ND ND ND ND ND ND 

October 0.164 ND ND ND ND ND ND ND ND 

BDE47 
June 0.348 0.348 0.125 0.136 ND ND ND 0.198 0.248 

October 0.549 0.364 0.269 0.284 ND ND ND 0.428 0.462 

BDE99 
June 0.436 0.248 0.214 0.175 0.248 0.234 0.158 0.406 0.248 

October 0.487 0.324 0.498 0.396 0.279 0.289 0.289 0.459 0.348 

BDE100 
June ND ND ND ND ND ND ND ND ND 

October 0.159 ND ND ND ND ND ND ND ND 

BDE153 
June 0.148 0.105 0.125 ND ND ND ND ND 0.125 

October 0.298 ND 0.348 ND ND ND ND ND 0.264 

BDE154 
June ND ND ND ND ND ND ND ND ND 

October ND ND ND ND ND ND ND ND ND 

BDE183 
June ND ND ND ND ND ND ND ND ND 

October ND ND ND ND ND ND ND ND ND 

BDE209 
June ND ND ND ND ND ND ND ND ND 

October ND ND ND ND ND ND ND ND ND 

∑PBDEs 
June 1.088 0.701 0.464 0.311 0.248 0.234 0.158 0.604 0.621 

October 1.657 0.688 1.115 0.68 0.279 0.289 0.289 0.887 1.074 

 
IV. B. 2) Production potential 
The above results show that the hydrogen supply capacity of the copper laminate is extremely weak, and once the 
PBDEs are photolysed in water to generate neighboring bromine radicals, there is a risk that most of them will be 
converted to PBDFs. lg(R/RBDE-1) is calculated as shown in Fig. 3, and different structures show different 
potentials for the generation of PBDFs, with negative values indicating that the potential for the generation of 
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PBDFs is greater than that of BDE1, and positive values are less than that of BDE1, the smaller the values, the 
greater the potential for the generation of PBDFs. BDE1, the smaller the value, the larger the PBDFs generation 
potential, when the Br position at 2',3',4',5',6', the value is -2.848, indicating that the PBDFs generation potential is 
the largest.Structures with PBDFs generation potentials smaller than BDE1 almost always contain at least three 
neighboring bromines, because the rate constants for the cycloadditions of the carbons substituted by free radical 
attacking the neighboring bromines are low. Although the calculations show little difference in the cyclization ratios 
of different PBDEs in the copper laminate sorting residue due to the very weak hydrogen supply capacity of the 
copper laminate, the difference in lg(R/RBDE-1) is more pronounced, and thus this parameter can be used as a 
reference to assess the potential of PBDEs for generating PBDFs when they are in other hydrogen supplying 
media. 

 

Figure 3: The relative PBDFs formation potential of PBDEs compared with BDE1 

IV. B. 3) Statistics of PBDEs in residues 
Table 3 shows the levels of PBDEs congeners and Σ8 PBDEs. Among the eight PBDEs monomers tested, the 
detection rates of BDE47, BDE99, BDE100 and BDE209 were all 100%, while the detection rates of BDE28, 
BDE153, BDE154 and BDE183 were 85%, 98%, 90% and 79%, respectively, which were also above 78%, which 
indicated that PBDEs have been the residues of copper laminate sorting The contents of Σ7PBDEs ranged from 
9.166 to 88.326 ng·g-1, with median and mean values of 29.092 ng·g-1 and 34.377 ng·g-1, respectively. 

Table 3: PBDEs isophysical and the level of Σ8PBDEs 

Item Median(ng·g-1) Mean(ng·g-1) SD(ng·g-1) Min(ng·g-1) Max(ng·g-1) Detection rate/% 

BDE28 1.648 2.549 2.248 ND 8.825 85 

BDE47 8.485 9.785 5.358 2.545 21.266 100 

BDE99 8.648 9.845 5.596 2.569 22.236 100 

BDE100 3.215 3.945 2.655 4.052 10.296 100 

BDE153 2.596 3.048 2.152 ND 8.623 98 

BDE154 2.015 2.569 2.148 ND 8.515 90 

BDE183 2.485 2.636 2.266 ND 8.565 79 

∑7PBDEs 29.092 34.377 22.423 9.166 88.326 100 

BDE209 47.483 64.488 53.788 8.266 292.265 100 

∑8PBDEs 76.575 98.865 76.211 17.432 380.591 100 

 
IV. C. Pollution characteristics of new brominated flame retardants 
IV. C. 1) Mass concentrations of BPs, BFRs in sediments 
Table 4 shows the mass concentrations of BPs and BFRs in the residues. 5 BPs were detected in the copper 
laminate deposits, among which the detection rates of BPA, BPB, and BPAF were >50%, which were 84.648%, 
61.548%, and 61.548%, respectively. The total mass concentration of BPs was <LOD-44.021 ng∙g−1 (median 
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7.684 ng∙g−1). Referring to the studies of other scholars, the mass concentrations of BPs in the residues of copper 
laminates were 3.92-151 ng∙g−1 before sorting and 2.16-59.0 g∙g−1 after sorting, which were higher than the 
residues in this study, and the present concentration was higher. After the sorting operation of copper laminates, 
BPs were easy to enter the water body and enriched in the residue, while after the long-term protection and 
treatment work, all kinds of pollution sources around the Taihu Lake Basin were more strictly controlled, which 
made the concentration of BPs in the residue at a lower level. 

Table 4: The quality of BPs, BFRs in the residue 

Compound 
Residual concentration of medium matter/(ng·g-1) 

Detection rate /% Median Range 

BPA 84.648 3.245 <LOD-4.488 

BPB 61.548 4.415 <LOD-12.896 

BPE 46.236 <LOD <LOD-25.783 

BPS 15.485 <LOD <LOD-0.136 

BPAF 61.548 0.024 <LOD-0.718 

∑BPs / 7.684 <LOD-44.021 

BDE28 15.469 <LOD <LOD-0.478 

BDE47 61.536 0.245 <LOD-2.299 

BDE99 100 0.655 0.306-2.756 

BDE153 100 0.096 0.029-0.971 

BDE183 53.845 0.248 <LOD -1.415 

BDE209 100 0.398 0.086-10.455 

∑PBDEs / 1.642 0.421-18.374 

TBCT 38.569 <LOD <LOD-0.053 

PBT 23.133 <LOD <LOD-0.615 

DPTE 30.946 <LOD <LOD-0.752 

HBB 38.569 <LOD <LOD-0.766 

HCDBCO 7.748 <LOD <LOD-1.548 

∑NBFRs / / <LOD-3.734 

 
IV. C. 2) Correlation analysis between different pollutants in residues 
Spearman rank correlation analysis was performed for compounds with ≥50% detection rate in the sediments, 
and the results of Spearman rank correlation analysis between different contaminants in the residues are shown in 
Fig. 4. There was a significant positive correlation between BPA and BPAF (r=0.54, p=0.048<0.05), which suggests 
that BPA and BPAF may share the same source of contamination, such as copper laminate sorting residues. 

 

Figure 4: The spearman rank correlation analysis between different pollutants in the residue 
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*:p≤0.05,**:≤0.01,***:p≤0.001. 
 

IV. C. 3) Temporal Trends in Substitution of NBFRs 
The ratio of Σ26PBDEs to Σ5NBFRs was used to initially determine the substitution of new brominated flame 
retardants over time. Figure 5 shows the temporal trend of the ratio of traditional and new brominated flame 
retardants. Σ26PBDEs and Σ5NBFRs are shown in Figure 5. (a) is the ratio of Σ26PBDEs to Σ5NBFRs, (b) is the 
ratio of decabromodiphenyl ether (DDE) and its alternatives, (c) is the ratio of octabromodiphenyl ether (OBE) and 
its alternatives, and (d) is the ratio of pentabromodiphenyl ether (PentaBDE) and its alternatives. 
Σ26PBDE/Σ5NBFRs show a generally decreasing trend The average value of Σ26PBDE/Σ5NBFR was 4.233 in 
2011, which was significantly higher than that of 2.302 in 2013 and 2.073 in 2021 (p<0.01), indicating that the 
newer brominated flame retardants are gradually replacing the traditional brominated flame retardants. The ratios 
of penta-, octa- and decaBDE and their alternatives (BDE47,99,100)/(TBB,TBPH), (BDE154,153,183)/ BTBPE, 
BDE209/DBDPE were further analyzed separately. The ratios of decabromodiphenyl ether and its alternatives 
showed a decreasing trend over time, with one-way ANOVA results indicating that the ratio in 2011 was 
significantly higher than that in 2013 and 2021 (both p < 0.05). No significant differences in the ratios of octa- and 
pentaBDE to their alternatives were observed between years. The small change in the ratio of octaBDE and its 
alternatives over time could be attributed to the fact that octaBDE is produced and used in a small amount in China, 
and therefore its change is less fluctuating. The ratio of PentaBDE and its alternatives increased between 2016 
and 2021, mainly due to the increase in the monomer content of PentaBDE, which, combined with the previous 
analysis, is presumed to come from the debromination degradation of BDE209 and other highly brominated 
congeners. 

  

(a) The ratio of Σ26PBDEs and Σ5NBFRs (b) BDE209/DBDPE 

  

(c) BDE154,153,183/BTBPE (d) (BDE47,99,100)/(TBB,TBPH) 

Figure 5: The time of the traditional and new brominated flame retardant content ratio 
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V. Conclusion 
The contamination characteristics of PBDEs and new brominated flame retardants (BFRs) in the sorting residues 
of copper laminates were successfully identified based on the associative analysis of the plain Bayes and XGBoost 
algorithms. The spatial distribution of the contaminants showed obvious regional differences, and the 
contamination concentrations at the western measuring points H1, H2, H3 and H4 were significantly higher than 
those at the eastern measuring points H5, H6 and H7, among which the concentration of ΣPBDEs at point H1 
reached 1.657 ng/L, which was the highest among all the measuring points.The detection patterns of the eight 
PBDEs singles were significantly different, and the detection rates of BDE47, BDE99, BDE100 and BDE209 were 
all detected at 100%, indicating that these compounds have become the main pollutants in the residues, while 
BDE154 and BDE183 were not detected in all the monitoring points, reflecting the differences in the environmental 
behaviors of different brominated number compounds. The substitution process of new brominated flame 
retardants is obvious, with the ratio of Σ26PBDEs/Σ5NBFRs decreasing continuously from 4.233 in 2011 to 2.073 in 
2021, and the substitution of decabromodiphenyl ether is the most significant, with the ratio of BDE209/DBDPE in 
2011 significantly higher than that in 2013 and 2021. The machine learning method effectively reveals the main 
controlling factors of the pollution features, the XGBoost algorithm provides a quantitative basis for weight setting 
by evaluating the importance of the features, and the results of the plain Bayesian classification are highly 
consistent with the actual pollution level. Correlation analysis revealed a significant positive correlation between 
BPA and BPAF, indicating that they may have the same pollution source. These results provide an important 
reference for the development of targeted pollution management strategies and demonstrate the value of machine 
learning in environmental pollution characterization. 
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