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Abstract Accurate tracking of vehicle steering trajectories is crucial to the safety of traveling in tunnels. In this paper, 
a multi-vehicle steering trajectory tracking method based on improved residual network is proposed for tunnel 
scenarios, which combines the attention mechanism and model predictive control technology to realize accurate 
tracking. Aiming at the problem that the traditional twin network tracking algorithm is not satisfactory enough in 
tunnel scenarios, the ECA channel attention mechanism is introduced to improve the structure of the residual 
network and enhance the feature extraction capability; the feature fusion module is designed to effectively integrate 
different levels of feature information; and the model predictive controller based on the spatial deviation model is 
constructed to realize accurate tracking. The experimental results show that in the simple occlusion scenario, the 
algorithm in this paper improves the tracking accuracy MOTA by 3.6% to 83.42% compared with SiamCAR algorithm, 
and the tracking precision MOTP improves by 3% to 88.19%, and the number of identity switching is reduced to 5 
times; in the complex traffic scenario, the tracking accuracy improves by 2.4% to 78.77%, and the tracking precision 
improves by 4.2% to 85.69%. The active steering experiment based on data recharge verifies the effectiveness of 
the control method, and the system is able to adjust the trajectory deviation to ensure the smooth driving of the 
vehicle. The method can realize accurate tracking of multi-vehicle steering trajectories in tunnel scenarios and 
improve driving safety. 
 
Index Terms Vehicle trajectory tracking, Attention mechanism, Residual network, Model predictive control, Spatial 
deviation model, Twin network 

I. Introduction 
With the improvement of people's daily life standard demand, automobile industry technology is also developing 
rapidly [1]. Among them, automatic driving technology is one of the main core technologies researched in recent 
years, and the ability of vehicles to travel under various extreme working conditions has been widely concerned [2]-
[4]. 

In recent years, self-driving vehicles, as a new subject area of technology and cutting-edge applications, can 
reduce the occurrence of traffic accidents and greatly improve the efficiency of transportation travel [5], [6]. 
Autonomous driving technology is the development of vehicles as an intelligent mobile transportation system to the 
future and the development of road intelligence of the general trend [7], [8]. And the realization of vehicle driving 
intelligent system is to realize the most effective method to improve the driving safety of driving road, improve the 
efficiency of passenger transport travel is crucial way, but to fully realize the commercialization of self-driving cars, 
there are many other practical technical difficulties need to be solved [9]-[12]. In fact, there are various types of 
steering interferences in the driving process of self-driving vehicles, and these steering interferences will have a 
certain impact on the steering system of the vehicle, which in turn will affect the trajectory tracking accuracy of the 
vehicle [13]-[15]. Especially in the tunnel scenario, due to the weak GPS signal in the tunnel, and the existence of 
other obstacles and insufficient light lead to the vehicle in the process of driving by the steering impact interference, 
the vehicle's steering system is affected, which will affect the vehicle's ability to drive stably to a greater extent, so 
the study of tunnel scenarios of multi-vehicle steering trajectory tracking is of great significance [16]-[19]. 

Vehicle trajectory tracking is a key technology in the intelligent transportation system, which is of great significance 
in ensuring road traffic safety. Especially in special scenes such as tunnels, traditional tracking algorithms are often 
difficult to cope with complex environmental changes due to factors such as insufficient light, dense vehicles, and 
restricted view angles. In recent years, deep learning technology has made significant progress in the field of 
computer vision, providing new ideas for solving the vehicle trajectory tracking problem. Among them, the target 
tracking algorithm based on deep residual network shows good performance, which is able to effectively extract 
image features and realize the precise positioning of the target. However, in practical applications, the traditional 
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residual network still faces the problems of insufficient feature extraction, easy to lose targets, and frequent identity 
switching in tunnel scenarios. This is mainly due to the drastic changes in lighting conditions in tunnel environments, 
the frequent occurrence of vehicle occlusion, and the high similarity of vehicle appearance features, which increases 
the tracking difficulty. Meanwhile, the steering trajectory tracking of vehicles in tunnels requires higher accuracy to 
ensure driving safety. Although existing twin network tracking algorithms perform well in general scenarios, for deep 
networks with a large number of channels, not all feature channels are valuable for the tracking task, which leads 
to inefficient feature extraction. In addition, traditional tracking control methods are often difficult to balance tracking 
accuracy and control smoothness when dealing with vehicle steering trajectories, which affects the driving 
experience and safety. Therefore, how to design a high-precision multi-vehicle steering trajectory tracking method 
for tunnel scenarios has become a key issue in current research. 

In order to solve the above problems, this study proposes a multi-vehicle steering trajectory tracking method 
based on improved residual network for tunnel scenarios. Firstly, the traditional residual network structure is 
improved by introducing the ECA channel attention mechanism, which enhances the network's ability to extract key 
features and enables the model to adaptively adjust the weights of different feature channels. Second, the feature 
fusion module is designed to effectively integrate the feature information at different levels by adopting a two-branch 
structure, so as to improve the model's adaptive ability to target changes. Then, a spatial-based deviation model is 
established to convert the vehicle motion to be analyzed under the Freightliner coordinate system, which reduces 
the dimensionality of the vehicle model and better understands the motion relationship of different objects on the 
road. Finally, a model prediction controller is designed based on this model to achieve accurate tracking of the 
vehicle steering trajectory by optimizing the objective function. In order to verify the effectiveness of the method, the 
appearance feature extraction network is trained on the vehicle re-identification dataset, and comparative 
experiments are carried out in different scenarios, and the reliability of the control method is further verified by the 
double-shifted line data backfeeding experiment. 

II. Multi-vehicle steering trajectory tracking methods 
II. A. Deep residual network model 
Resnet consists of multiple convolutional layers, batch normalization layers and pooling layers.Resnet50 has 50 
convolutional layers with an initial layer of ordinary convolutional structure which is responsible for initial feature 
extraction of the input image. Layer1 contains three Residual Blocks, each of which internally consists of multiple 
convolutional layers and jump connections used to capture low-level patterns of input features. layer2 contains 4 
Residual Blocks, which gradually extract higher level features by deepening layer by layer. layer3 contains 6 
Residual Blocks that continue to deepen the network and capture more abstract and complex features. layer4 
contains 3 Residual Blocks to further increase the depth of the network, allowing the network to learn more complex 
image features. With the addition of a 5-category output layer after the last fully connected layer, the network ends 
up outputting 5-category predictions. 
 
II. B. Attention mechanisms 
II. B. 1) SE Attention Mechanism 
SENet learns the importance of each channel, enabling the network to better understand the relationship between 
different channels and adaptively adjust the weights of each channel. Specifically, the Squeeze operation reduces 
redundant information between channels, while the Exciation operation reinforces useful information, thus improving 
the performance and generalization of the model. In this way, the neural network is able to focus its attention on 
specific channels and ignore those that do not play much of a role in the classification effort. It is just like a human 
being will only notice his own target in his own field of vision and will not pay attention to other targets. 

In SE attention mechanism, the input feature maps are first pooled in pooling operation and then fed into the fully 
connected layer (FC), which is then fed into the next FC layer learning using the ReLU function, and then outputted 
through the Sigmoid function denoted as S. The formula is denoted as, 
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denote the weight matrices of the two fully connected layers, respectively. weight matrices.R denotes the number 
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of hidden nodes in the intermediate layer. z  is the output in Eq. (1), ( , )W H  is the dimension of the image, and 

c  is the number of image channels. 
 
II. B. 2) CBAM Attention Mechanism 
CBAM consists of two parts, except for the addition of the maximum pooling parallel operation in the SENet module. 
The channel attention module generates weight coefficients by fusing the feature maps after average and maximum 
pooling, and then multiplies the weight parameters by the input features to enhance the representation of useful 
features. 

If the initial feature input is H W CF R    and the number of network channels is C , the output features c
avgF  

and c
maxF  are obtained through the maximum pooling layer and the global average pooling layer, and on this basis, 

the dimensionality reduction, ReLU activation and dimensionality enhancement are carried out on the feature 

,c c
avg maxF F . Two new feature maps are obtained. The two graphs are added and activated with the Sigmoid function, 

as shown in Eq. (3). 
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where 0

c
C

rw R


 , represents the process of dimensionality reduction; 1

c
C

rw R


 , represents the process of 

dimensionality enhancement, and r  stands for the multiplicity of the dimensionality reduction or enhancement;   
represents the Sigmoid activation operation. After obtaining the weight information ( )cM F , it is multiplied by the 

input feature F  to obtain the output feature 1F  of the channel dimension. 
After being processed by the spatial attention module, 1F  undergoes two pooling operations and merges to 2, 

and then undergoes a convolution operation to compute the weighting coefficients using the Sigmoid function, which 
is used to generate the output of the spatial attention module; finally, the weighting coefficients ( 1)cM F  are 

multiplied by the features 1F  supplied to the module to obtain the new feature map 2F . The specific process is 
expressed in Equation (4). 
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Here, 7 7f   denotes a two-dimensional convolution operation with a convolution kernel size of 7 × 7, and   
denotes the Sigmoid activation function. 

 
II. B. 3) ECA Attention Mechanism 
ECANet has been shown that channel feature dimensionality reduction can affect how the attention mechanism 
learns [20]. Therefore, ECANet avoids multi-channel dimensionality reduction by using one-dimensional convolution 
in multi-channel dimensionality interactions, which helps to reduce complexity. 

Assuming the input features H W CF R   , the input features will be compressed through the pooling layer to get 
1 1 C

avgF R   ; secondly, one-dimensional convolution is applied to the interactions between each channel and k

some of the neighboring channels. Here k  represents the coverage of the cross channels and the size of the 1D 

convolution core, the value of k  can be customized, if 3k  , then we can obtain 1 1 C
convF R   ; secondly, the 

Sigmoid function is used to convF  for activation operation to obtain the weight coefficient ( )cM F , denoted as 
1 1( ) C

cM F R   , with the formula (5), 

 ( ) ( ( ( ))) ( ( ))k k c
c avgM F f AvgPool F f F    (5) 

Here, kf  denotes the convolution operation with convolution kernel size k , c
avgF  denotes the average pooling 

operation, and   denotes the Sigmoid activation function. 
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Equation (6) describes the feature extraction process of a one-dimensional convolutional neural network. The 
weight coefficients ( )cM F  are multiplied with the input features F  element by element to obtain the new output 

features 1F . 

 1 ( )cF M F F   (6) 

II. C. Tracking algorithm based on attentional residual networks 
II. C. 1) General framework of the algorithm 
The current twin network based tracking algorithm uses the picture pair matching idea, if two pictures have their 
features close together, then the Siamese network thinks that the gap between them is very small, and the two 
pictures are very close together.The Siamese network extracts the features of the tracked target from the given 
labeled box, and the feature extraction network it adopts is generally a deeper residual network, and as the 
deepening of the feature extraction network, the network's The number of channels also increases, but not all 
feature channels play a positive role in the tracking task, and some feature channels are worthless for tracking, so 
the tracking model needs to learn different channels biasedly, and the channel attention mechanism can help the 
twin network learn the template features better and enhance the discriminative ability of the model. 

In order to adapt the algorithm to the tracking scenarios under different challenges, this paper is based on the 
twin network structure, firstly, the channel attention mechanism is introduced in the feature extraction module to 
improve the quality of the extracted features, secondly, the attention fusion is performed on the multi-layer features, 
which fuses the spatial information of the lower layers with the semantic information of the higher layers, making 
the model adaptable to the changes of the target.In this section, based on the SiamCAR algorithm, the proposed 
tracking algorithm with channel attention feature fusion mechanism. 

 
II. C. 2) Attention residual networks 
Since visual single-target tracking algorithms all learn the target to be tracked in the first frame, the quality of the 
features in the first frame is crucial for later tracking, inspired by the attention mechanism of the ECA channel, in 
this paper, we introduce this attention mechanism into the residual unit, which enables the Siamese network to 
assign weights to different feature channels and suppress the features that cause interference to the tracking 
through the weighting factor The structure of the attentional residual unit is shown in Fig. 1. The structure of the 
attention residual unit is shown in Fig. 1. 
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Figure 1, Attention residue unit 

II. C. 3) Feature Fusion Module 
The traditional feature fusion method performs addition operation for the features of different layers, this fusion 

scheme does not increase the model parameters, but the features between different layers are more different, and 
the addition operation may lead to the loss of some of the features, inspired by the literature, the fusion scheme 
based on the attention mechanism [21] is used to fuse the features of different layers, in which the attention fusion 

module is shown in Fig. 2, for the residual network The outputs of the last three stages , 3,4,5jH W C
jAR j

    

are selected for attention fusion. In this case, the fusion module is divided into an upper and lower double-branch 
structure, where the upper branch is used to extract the global channel attentional weights gW  and the next branch 

is used to extract the local channel attentional weights tW . First the 1
1

jH W CH
j j jAR W C AR  

      element-

by-element for the features output from the residual module are Summing (taking into account that the channels 
and sizes of features at different layers are inconsistent, the most primitive outputs of the last three stages of the 
residual attention network will be converted to a tensor of the same size and number of channels by convolution 

operation before that) yields the initial integration feature H W CA   , which then goes through the upper and 
lower double branches respectively to get the localized attention mechanism feature H W C

lA     and the feature 
1 1 C

gA    of the global attention mechanism, and the two are subjected to element-by-element addition. 
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Figure 2, Feature Fusion Module based on attention 

The fusion process can be expressed as Eq, 

 1j jA AR AR   (7) 

 2 ( ( ( 2 ( ))))gW Conv D ReLU Conv D A  (8) 

 ( 2 ( ( ( 2 ( ))))lW GAP Conv D ReLU Conv D A  (9) 

 ( )g lW W W   (10) 

 1 (1 )j jOutput AR W AR W      (11) 

where   is the element-by-element multiplication operation,   is the element-by-element addition operation,   
is the Sigmoid activation function,   denotes the batch regularization process, GAP  is the Global Average 
Pooling Layer, and 2Cov D  is the two-dimensional convolution operation. 
 
II. D. Experimental results and analysis 
II. D. 1) Experimental data set 
In this section, the Veri-wild dataset is used as a vehicle re-identification dataset for training the appearance feature 
extraction network of vehicles. 

The Veri-wild dataset is a classic dataset in the field of vehicle re-identification, which is widely used in the field 
of intelligent transportation and traffic safety. The dataset consists of 24 folders, which contain 416314 image data 
and 40671 vehicle types. 

In the Veri-wild dataset, the dataset is too large and the number of images under each folder (vehicle ID) is uneven, 
in order to make the vehicle target features extracted by the network more complete, a program is written to screen 
the dataset. The first 16 compression terms of the dataset are selected to screen each vehicle ID with the number 
of vehicles between 40-60, and then 4 images are randomly selected from under each vehicle ID as the test set. 
The appearance images of 570 vehicles are obtained after screening, constituting the training set train_570 and the 
test set test_570. 

 
II. D. 2) Evaluation indicators 
In this paper, the MOTChallenge evaluation criteria are selected to evaluate the R-DeepSORT tracking performance, 
and the specific performance evaluation indexes are as follows. 

(1) MOTA 
MOTA is a measure of the tracking accuracy of the tracking algorithm in the continuous tracking task, which 

indicates the proportion occupied by wrong matches, the higher MOTA value indicates the less misdetection, 
omission and IDSwitch phenomenon, and the better tracking performance, and the calculation formula is shown in 
(12). 
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where, ( )GT t  represents the number of detection frames that really exist in the t th frame image; ( )IDSW t  

indicates the number of times an identity switching occurs in the t th frame image target; ( )pf t  represents the 
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number of times the image is misdetected in the t th frame image; and ( )nf t  the number of missed detections in 

the t th frame image. 
(2) MOTP 
MOTP is a measure of the accuracy of the detector of the tracking algorithm in the continuous tracking task, 

expressed in the position error between the tracking frame and the real frame, more concerned about the 
performance of the detector, the calculation formula is shown in (13). 

 ,

i
t

t i

t
t

d

MOTP
c





 (13) 

where, tc  denotes the number of successful matches between the tracking frame and the real frame in the t -th 

frame image; i
td  denotes the intersection and concatenation ratio of the detection frame between the i -th tracking 

frame and the corresponding real frame in the t -th frame image. 
(3) IDSwitch 
IDSwitch represents the number of times an ID switch occurs in the target to be tracked, and the smaller the value 

indicates the better performance of the tracker when occlusion occurs. 
(4) Detection speed 
The detection speed is evaluated using the frame rate FPS, which represents the tracking rate of the tracker. 
 

II. D. 3) Experimental results and analysis 
(1) Vehicle re-recognition experiment 

This experiment focuses on training the appearance feature extraction network on the constructed vehicle 
appearance feature dataset, and the optimized appearance feature extraction network is trained 80 times by using 
a fixed-step learning rate decay strategy, and the loss function and accuracy curve of the model training process 
are shown in Figure 3. It can be seen that when the model is trained to the 40th epoch, the vehicle feature 
appearance extraction network of the twin network tracking model based on the attention mechanism tends to 
converge, no underfitting or overfitting phenomenon occurs, and the accuracy rate on the validation set is 98.8%, 
which indicates that the vehicle appearance feature network of the twin network tracking model based on the 
attention mechanism has a higher ability to extract vehicle features. 

  

(a) Loss function curve (b) Accuracy curve 

Figure 3, Training loss curve and accuracy curve 

(2) Road vehicle tracking experiment 
This section of the experiment is to prove the effectiveness of the improved algorithm proposed in this paper, in 

the experimental process SiamCAR algorithm for comparison, the experimental process will be for the occlusion 
scene, complex traffic scene to verify the model tracking performance. 

Scene 1, Simple Occlusion Scene 
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In order to verify the tracking performance of the vehicle tracking algorithm in the occlusion scene, the training 
dataset MVI_40991 file in the UA-DETRAC public dataset is selected for the tracking test, and the duration of the 
surveillance video is 93s, with an image resolution of 960×540 and a frame rate of 26PS. 

The evaluation results of the algorithm in the occlusion scene are shown in Table 1. As can be seen from the 
table, the algorithm proposed in this paper compared to the SiamCAR algorithm tracking accuracy increased by 
3.6%, tracking precision increased by 3%, the number of identity switching reduced by 7 times, proving the 
effectiveness of the twin network tracking model based on the attention mechanism proposed in this paper, but due 
to the deepening of the network structure brought about by the increase in the amount of computation of the model, 
the detection rate is reduced, but still meet the real-time requirements of vehicle tracking. 

Table 1, The algorithm evaluation results under the occlusion scenario  

Tracking algorithm MOTA/% MOTP/% IDS FPS 

SiamCAR 79.85 85.17 14 36 

This article tracking algorithm 83.42 88.19 5 29 

 
Scene 2, Complex Traffic Scene 
In order to verify the tracking performance of the vehicle tracking algorithm in complex traffic scenes, traffic scenes 

with fuzzy scenes and high traffic flow are selected from the UA-DETRAC public dataset for testing. The MVI_20035 
file of the training set is selected, the total duration of the surveillance video is 42s, the image resolution is 960×540, 
and the frame rate is 26FPS. 

The algorithm evaluation results of different tracking algorithms are shown in Table 2. From the experimental 
results, it can be seen that the twin network tracking model proposed in this paper based on the attention mechanism 
tracking accuracy MOTA improves the accuracy by 2.4% precision, MOTP improves by 4.2%, and the number of 
identity switching is reduced by 13 times. However, the speed of the tracking algorithm is reduced, which is due to 
the fact that the tracker needs to match and track all the vehicles on the video screen, and the complexity of the 
algorithm is increased, which has a certain impact on the tracking performance. 

Table 2, Algorithm evaluation results in complex traffic scenarios 

Tracking algorithm MOTA/% MOTP/% IDS FPS 

SiamCAR 76.41 81.54 30 31 

This article tracking algorithm 78.77 85.69 1 24 

III. Multi-vehicle steering trajectory tracking prediction controller 
III. A. Space-based bias modeling 
Converting the vehicle motion into a space-based deviation model requires decomposing the vehicle position 
information from the right-angle coordinate system to the Freightliner coordinate system. Given a smooth reference 
trajectory, according to the position of the vehicle, it is projected onto the reference trajectory, and the motion state 
of the current vehicle in the map coordinate system is decomposed based on the projection point to obtain the 
motion state along the reference trajectory. The advantage of doing motion analysis in the Freightliner coordinate 
system is to do motion decomposition with the help of the reference trajectory, which reduces the dimensionality of 
the vehicle model, ignores the influence of the shape of the road in the map coordinate system, and is more helpful 
to understand the motion relationship of different objects on the road. The correspondence of the vehicle position 
information in the Cartesian coordinate system and the Freightliner coordinate system is shown in Fig. 4. The 
variable e  is defined to denote the deviation of the vehicle heading angle   from the heading angle s  that 
corresponds to the heading angle on the reference trajectory, and ye  denotes the vehicle's transverse deviation 
with respect to the reference trajectory. Then, the variable s  (the projected displacement of the vehicle with respect 
to the reference trajectory) is introduced to establish e  and ye  from a function of time t  into an equation of state 
with respect to space s . 

The kinematic equation is derived from the geometric relationship in Fig. 4 as, 

 ( )s s y sv e vcose     (14) 
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s s
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where, sv  is the projected vehicle speed along the reference trajectory; s  is the radius of curvature of the 
reference trajectory; s  is the heading angle of the reference trajectory; and s  is the speed of the vehicle traveling 
along the reference trajectory. 
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Figure 4, Vehicle model in the Freiner coordinate system 

The derivatives of the lateral displacement deviation and heading angle deviation with respect to time are, 

 sin( )ye v e  (16) 

 se      (17) 

Assuming 0s  , the derivative with respect to space can be replaced as a function of the derivative with respect 

to time, i.e., 
( ) ( ) 1d d

ds dt s

 
 . The curvature of the vehicle's motion   is expressed in terms of the vehicle's front wheel 

steering angle   as 
tan

L

  . Thus, the space-based deviation model expression is, 
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The space-based incomplete vehicle deviation model is defined as, 

 ( , )f u    (20) 

Where, the state quantity is 
T

ye e     ; the input quantity is u  . 

III. B. Model Predictive Controller 
III. B. 1) Linearization and discretization 
Assume that any point ( , )ref refu  on the reference trajectory satisfies the above kinematic equations. Linearize at 

the point ( , )ref refu  using the 1st order Taylor approximation of the reference trajectory and discretize using Euler's 

formula. Setting the discrete walk as 
cosk k

s

k k
s y

e
s vT

e
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
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
, the spatial deviation model for linear discretization is, 

 , , ,( 1| ) ( ) ( | ) ( ) ( | )k c k c k ck k A k k k B k u k k d      (21) 
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Let the prediction time domain of the system in the trajectory tracking layer be N . From Eq. (23), we can find 
the respective outputs of the system state quantities at each moment in the prediction time domain as, 

 ,( ) ( ) ( | ) ( ) ( ) ( )y k ce k k k k k u k O k D     (24) 

III. B. 2) Spatial model-based model predictive control algorithm 
In order to realize safe, accurate and smooth trajectory tracking of multi-vehicles in tunnels, it is necessary to design 
a suitable objective function. According to the control object and control goal, the selected objective function should 
be able to optimize the vehicle lateral displacement deviation and steering curvature, so as to minimize the deviation 
of the vehicle in the driving process, and at the same time to avoid the wear and tear of the steering system and 
tires caused by the high steering frequency. Therefore, the objective function of the selected SMPC algorithm 
consists of two parts, which ensure the smoothness of the vehicle during driving and the accuracy of trajectory 
tracking, respectively. 
 
III. C. Double-shifted line data recharge experiments 
This subsection takes the results of the 85km/h double shift line experiment as an example to demonstrate the 
control scheme and vehicle position information acquisition method described in this paper. Since the simulated 
vehicle model parameters have a certain error in the tire nonlinearity region and the experimental vehicle 
parameters, the steering wheel corner command is adjusted in time and frequency domains according to the 
situation during the experiment. Eventually, the amplitude of the cornering command of the real-vehicle experiment 
described in this subsection is 0.56 times of the theoretical value, and the frequency is 0.7 times of the theoretical 
value. Meanwhile, during the experiment, it was found that there was a difference of about -2.4deg between the 
angular zero position of the experimental vehicle's EPS and the zero position of the steering wheel, so that the 
steering wheel corner command value and the feedback value at the beginning and end of the experiment did not 
coincide with the 𝑦 = 0deg. 

Figure 5 shows the variation of each kinematic parameter of the vehicle with time during the real vehicle 
experiment. From the simulation results, it can be seen that the active steering method based on data backfeeding 
adopted in this section can enable the vehicle to successfully complete the double-shift line experimental maneuver, 
which effectively verifies the reliability and effectiveness of the control method proposed in this paper. 

  

(a) Value contrast (b) Speed of a motor vehicle 
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(c) Turn the corner command value and feedback 
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(e) Centroid side bias Angle (f) Angular velocity 

Figure 5, Curve of vehicle parameters with time 

IV. Conclusion 
Through the in-depth study of the multi-vehicle steering trajectory tracking problem in tunnel scenarios, the vehicle 
tracking performance is improved by improving the residual network structure and introducing the attention 
mechanism. The experimental results demonstrate that the twin network tracking model based on the ECA channel 
attention mechanism performs well in feature extraction and achieves 98.8% accuracy on the validation set. 
Comparison experiments show that in simple occlusion scenarios, the tracking accuracy MOTA of this improved 
algorithm reaches 83.42%, which is 3.6% higher than that of the SiamCAR algorithm; the tracking accuracy MOTP 
reaches 88.19%, which is 3% higher; and the number of identity switching times is reduced from 14 times to 5 times. 
In the complex traffic scene test, the MOTA value of the improved algorithm reaches 78.77%, which is 2.4% higher 
than the SiamCAR algorithm; the MOTP value reaches 85.69%, which is 4.2% higher; and the number of identity 
switching times is reduced to 1, which is substantially better than the 30 times of the SiamCAR algorithm. 

At the control level, the model predictive controller based on the spatial deviation model realizes the accurate 
tracking of the vehicle steering trajectory. The results of the double-shift line experiment show that the active steering 
method with data recharge enables the vehicle to successfully complete the test maneuver, which verifies the 
effectiveness of the control method. Although the computational complexity of the improved algorithm increases, 
resulting in a slight decrease in tracking speed, it still maintains a processing speed of 29 FPS in simple occlusion 
scenarios and reaches 24 FPS in complex traffic scenarios, which is able to meet the real-time tracking requirements. 
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The comprehensive results show that the improved residual network combined with the attention mechanism can 
effectively improve the accuracy and stability of multi-vehicle steering trajectory tracking in tunnel scenarios, which 
provides reliable technical support for the application of intelligent transportation systems in complex environments. 
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