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Abstract With the popularization of low-orbit satellite communication system, the impact of various types of 
interference signals on the quality of satellite communication has become increasingly serious. In this paper, for the 
automatic detection of various types of interference signals in low-orbit satellite communication system, an 
automatic interference signal detection method based on improved depth belief network is proposed. The study 
firstly establishes seven typical interference signal models, including single-tone interference, multi-tone 
interference, narrowband noise interference, broadband noise interference, comb spectrum interference, 
broadband linear sweep interference and impulse interference; and then extracts the signal characteristics from 
both time and frequency domains, focusing on the analysis of three characteristic parameters: 3dB bandwidth of 
normalized spectrum, peak-to-average ratio of the frequency domain, and moment skewness of the frequency 
domain; Then an improved deep belief network model introducing radial basis function activation function, 
combining  -step contrast dispersion (CD)-  and adaptive moment estimation algorithms is constructed to realize 
accurate classification and detection of interference signals. The experimental results show that the proposed 
method has good recognition effect in the range of dry noise ratio from -6dB to 13dB, and the AUC values for the 
seven kinds of interference signals as unknown signals are more than 0.7, among which the best detection effect 
is achieved for the comb spectral interference, with an AUC value of 0.806. The method has a false alarm probability 
of only 0.3 when the detection probability of the unknown interference is 0.8, which verifies the improvement of the 
depth belief network effectiveness and accuracy in the automatic detection of low-orbit satellite signal interference. 
 
Index Terms Low-orbit satellite communication, interference signal detection, deep belief network, feature 
extraction, unknown interference detection, adaptive moment estimation 

I. Introduction 
With the development of satellite communication business, low orbit satellite communication has become a 
development hotspot in the field of space-based information system [1], [2]. Low-orbit satellites are located at the 
perigee of the Earth's orbit, so the distance between them and the ground is closer and the communication signal 
transmission speed is faster [3], [4]. In contrast, traditional terrestrial communication equipment is limited by factors 
such as geographic location and weather, and is susceptible to interference and cannot provide global 
communication services [5], [6]. Low-orbit satellite communication, on the other hand, can make up for these 
shortcomings by establishing a satellite network [7]. 

However, due to the high speed of LEO satellites orbiting the Earth, the frequency changes during signal 
transmission [8]. This phenomenon is caused by the Doppler effect, which directly affects the quality of satellite 
communications. When the satellite is close to the ground receiving end, the signal frequency is compressed and 
elevated, and when the satellite is far away the frequency is stretched and reduced [9], [10]. This frequency shift 
causes sound distortion in voice calls, similar to the change in pitch of a train whistle from far away to near [11]. 
Inter-symbol interference is triggered during data transmission, with a significant increase in the BER at the receiving 
end, and the navigation and positioning system is more significantly affected, with pseudo-range measurement 
errors of up to tens of meters generated by high-speed satellite movement [12]-[14]. In addition, satellite 
communications need to receive the signal is not only related to the frequency, but also related to the location, time, 
etc., coupled with the long transmission distance, resulting in transmission delay, which creates favorable conditions 
for interference [15]-[17]. In order to further improve the spectrum utilization and communication quality of satellite 



Automatic Detection and Performance Evaluation of Low-Orbit Satellite Signal Interference Based on Deep Belief Networks 

7707 

communication, it is of great significance to study the detection of low-orbit satellite signal interference, and there 
are more algorithms for the detection of interfering signals at present, in which the main detection algorithms include 
the energy detection method, the cyclic smoothing analysis method, and so on, and with the development of artificial 
intelligence, the deep conviction network method based on deep learning algorithms is able to realize the automatic 
detection of signal interference[18]-[21]. 

Satellite communications, as an important part of the global communications infrastructure, play an irreplaceable 
role in the fields of national defense and military, emergency disaster relief, telemedicine and information 
transmission. In particular, low-orbit satellite communication system is becoming an important development 
direction of global communication network due to its advantages of low latency, high bandwidth and wide coverage. 
However, satellite communication systems are highly susceptible to various types of interference signals in complex 
electromagnetic environments, leading to degradation or even interruption of communication quality. These 
interferences may originate from the natural environment, man-made attacks or within the system, and their 
characteristics include diversity, complexity and uncertainty. In order to guarantee the reliable operation of LEO 
satellite communication system, the accurate detection and classification of interference signals become especially 
critical. Traditional interference detection methods mainly rely on techniques such as signal energy detection, 
matched filtering and statistical characterization, which are practical but difficult to accurately identify the type of 
interference in complex electromagnetic environments, especially the limited ability to detect unknown interference. 
In recent years, machine learning, especially deep learning technology, has shown strong potential in the field of 
signal processing, providing new ideas for automatic detection of interference signals. Deep belief network, as a 
deep learning model, excels in signal classification and anomaly detection by virtue of its powerful feature extraction 
and nonlinear mapping capabilities. 

Based on the above background, this study proposes an automatic low orbit satellite signal interference detection 
method based on improved deep belief network. First, seven typical interference signal models are constructed to 
comprehensively cover the common types of interference in practical applications; Second, the interference signal 
characteristics are analyzed from both time and frequency domains to extract the feature parameters that can 
effectively distinguish different types of interference; then, to address the problems of slow convergence and low 
fine-tuning accuracy of the traditional deep belief network, the radial basis function is introduced as the activation 
function, and combined with the k-step contrastive scattering algorithm and adaptive moment estimation algorithm 
for improvement; Finally, the low orbit satellite signal interference detection process is designed to realize the 
accurate classification of known interference and the effective detection of unknown interference. The effectiveness 
of the proposed method is verified through simulation experiments, which provides theoretical support and technical 
guidance for the enhancement of anti-interference capability of LEO satellite communication system. 

II. Satellite interference signal characterization 
Satellite communication technology is the inheritance and development of terrestrial microwave relay 
communication and space technology, the use of communication satellites as a relay station to realize voice, data, 
multimedia and other communication services between mobile or fixed users on the ground end [22]. 
 
II. A. Modeling of interference signals 
In this subsection, we will study seven typical interference signals in satellite communication systems: single-tone 
interference, multi-tone interference, narrowband noise interference, broadband noise interference, comb spectrum 
interference, broadband linear sweep interference, and impulse interference, and analyze their time-domain and 
frequency-domain characteristics. 

(1) Single-tone interference 
Single-tone interference refers to single-frequency continuous wave interference (CWI) in the communication 

frequency band, which generates interference at a specific frequency. Single-tone interference makes the satellite 
communication signal power amplification at a specific frequency point, while there is no effect on other frequency 
points, single-tone interference has the characteristics of simple structure, easy to realize, and concentrated 
interference energy, and the time-domain expression of single-tone interference is: 

  ( ) 2 cos 2w cI t P f t    (1) 

where wP  is the power of the single-tone interference, cf  is the carrier frequency, and   is the phase, uniformly 

distributed within [0,2 ) . 

(2) Multi-tone interference 
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Multi-tone interference (SCWI) refers to the existence of single-frequency point interference at multiple random 
or fixed frequency locations in the communication band. Multi-tone interference is characterized by similar features 
as single-tone interference, with centralized capability and easy to implement. Its time domain expression is: 

  ,
1

( ) 2 / cos 2
J

w I i i
i

I t P J f t 


   (2) 

where ,I if  is the i th carrier frequency of the multi-tone interference, J  is the total number of frequency points, 

and i  is the phase corresponding to ,I if , obeying a uniform distribution in [0,2 ) . 

(3) Narrowband noise interference 
Narrowband noise interference (NBI) is relative to the full frequency band of communication interference band 

accounted for a relatively small noise interference, interference energy is relatively concentrated, if the carrier 
frequency of the communication signal jumps into the narrowband interference band range, the communication 
BER will greatly increase, seriously affecting the performance of communication. The generation of narrowband 
noise interference is relatively simple. 

First generate random Gaussian white noise ( )n t  , which is the full frequency band noise, and then let ( )n t  
through the narrow-band filter ( )h t , the window function ( 2 )H j f  for the impulse response after Fourier inversion 

( )h t , the time-domain expression of the narrow-band noise interference is: 

 ( ) ( ) ( )I t n h t d  



   (3) 

 
1,

( 2 ) 2
0, Other

I
c

W
f f

H j f
   


 (4) 

where cf   is the center frequency of narrowband noise interference and IW   is the interference bandwidth. 

Narrowband noise interference bandwidth accounts for a small proportion of the total bandwidth of communication, 
if the center frequency of interference falls into the frequency band occupied by the communication signal, the 
communication signal can form a great threat. 

(4) Wideband noise interference 
Wideband noise interference (WBI) refers to the ability to communicate the whole frequency band or most of the 

frequency band for noise interference. Wideband noise interference in the case of the enemy does not know the 
relevant parameters of the communication, but also able to interfere with each other's communication band, and 
only need to set the power of the interference source is large enough, you can cause serious interference to the 
enemy's communications, so that the enemy's communication system quality is seriously degraded, but this 
produces a wideband noise interference power consumption cost is very large. 

The Gaussian white noise ( )n t  is generated first, and then ( )n t  is allowed to pass through as a broadband filter 
( )h t  , and then passes through an amplifier to obtain interference with larger energy. The broadband noise 

interference expression can also be expressed in equation (4), the difference is that its impulse response ( )h t  is 
determined by according to the bandwidth of the communication signal, and the Fourier transform of ( )h t  , 

( 2 )H j f , is expressed as: 

 
1,

( 2 )
0, Other

If W
H j f

 
 


 (5) 

(5) Comb Spectrum Interference 
Comb Spectrum Interference (CSI) refers to the communication of multiple locations in the full frequency band 

for noise interference, combining the characteristics of narrow-band noise and wide-band interference, comb 
spectrum interference energy is relatively concentrated, and relatively easy to produce a more serious impact on 
the enemy in the case of unknown communication parameters. 

Comb spectral interference is also generated by first generating a full-band random Gaussian white noise ( )n t , 
and then passing through a filter with a time-domain impulse response of ( )h t . The time-domain expression for 
comb spectral interference can also be expressed by Eq. (4), with the difference that the selection of the time-
domain impulse response of ( )h t  is based on the decision of the communication band to be interfered with, which 
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can be either continuously distributed or randomly distributed, with the impulse response ( )h t  Fourier transform 
( 2 )H j f  is given: 

 
,

,

0 O

2

the

1,
( ) 2

, r

I i
I i

W
f f

H j f


  


 (6) 

where the set of center frequencies of the comb spectrum interference bands is  ,I if , which is a collection of 

several consecutive or random frequency bands, and  ,I iW  is the set of interference bandwidths corresponding 

to  ,I if . 

(6) Broadband Linear Sweep Interference 
Broadband linear frequency sweeping interference (LFMI) refers to the interference whose frequency varies 

linearly with time, and a higher sweeping rate is prone to form broadband interference, i.e., interference in most of 
the communication frequency bands. It is a dynamic non-stationary signal, whose frequency can change linearly 
with time periodically, and it interferes with the communication frequency band on a large scale, which seriously 
affects the communication performance. 

The frequency of broadband linear sweep interference shows a wide band over a period of time and a single tone 
at a point in time, and its frequency varies linearly with time over a sweep period. Its time domain expression is 
shown in equation (7): 

 2
0 0 0( ) ( ) cos( 2 )I t A t t f t      (7) 

where the linear sweep signal time domain amplitude 
, 0

( ) ( / )
0, Other

A t T
A t A rect t T

 
   


, 0f  is the initial frequency, 

0  is the sweep rate, 0  is the initial phase, and T  is the sweep period. 

(7) Pulse Interference 
Pulse interference (PI) refers to the strong amplitude impulsive noise generated in a very short time, is a short-

lived transient electromagnetic pulse, whose main characteristics are short duration, impulse amplitude, long time 
interval, discontinuous, irregular, sudden and strong. Impulse interference is often generated artificially, usually its 
impact on the quality of communication will be much larger than the impact of Gaussian white noise, especially in 
the requirements of high-quality communications, such as in voice calls, data transmission services. Impulse 
interference can be generated in various forms, here a single rectangular pulse is used to form, then its time domain 
expression can be: 

 
,

( ) 2
0, Other

A t
I t

  


 (8) 

where A  is the signal amplitude of the pulse interference and   is the pulse interference duration. 
 
II. B. Interference signal feature extraction 
In the process of data analysis, the purpose of feature parameter extraction is to extract the parameter features with 
research value from the redundant and complex raw data, so as to reduce the time-consuming computation and 
improve the efficiency of signal recognition. In terms of parameter extraction, the main parameter features are 
obtained from two perspectives: time-domain features and frequency-domain features. Time-domain feature 
extraction is usually related to the amplitude of the signal, and it is not easy to express other features of the signal. 
Through some transformations from the time domain to the frequency domain, the distribution of the signal at each 
frequency can be visualized from the frequency domain to obtain richer signal features [23]. 
 
II. B. 1) 3dB bandwidth of normalized spectrum 
Analyzing the above seven kinds of interference signals, it is not difficult to find that some signals have a relatively 
narrow spectral range, such as single-tone interference, multi-tone interference, etc., which are just impact points 
at certain frequency points, while some signals have a relatively wide spectral width, such as narrow-band noise 
interference (NBI) and wide-band noise interference (WBI). Thus based on the difference in the spectral width of 
the signal the signal can be categorized into wideband interference and narrowband interference. The above signals 
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can be distinguished by the 3dB bandwidth of the parameterized normalized spectrum. First define the normalized 
form of the signal: 

 
( )

( )
[ ( )]u
P n

P n
E P n

  (9) 

where [*]E  represents taking the mean value for *. where ( )P n  represents the spectral value of the received 
interference signal. Let the normalized 3 dB bandwidth wB  of the interference be as follows: 

 
1 2 1

w
m m

B
N

 
  (10) 

 ( )
1 max ( )

u thP n P
m n


  (11) 

 ( )
2 min ( )

u thP n P
m n


  (12) 

where 1 n N   . N   denotes the number of frequency points where the interference signal is received. 

0.5*max[ ( )]th uP P n . The variation of the normalized spectral 3dB bandwidths of the seven interfering signals with 

respect to the dry-to-noise ratio is shown in Fig. 1. It can be seen that the wB  values of both the single-tone 

interference (CWI) and the narrowband noise interference (NBI) signals are relatively small, while the wB  of the 

comb-spectrum interference (CSI), the pulsed interference (PI), and the wideband noise interference (WBI) are 
relatively large. The values of multi-tone interference (SCWI) and swept frequency interference (LFMI) are uncertain. 
It can also be seen that the value of wB  tends to be constant as the dry-to-noise ratio keeps increasing, and it can 

be seen that the noise affects the extraction of wB   eigenvalues differently for different interference signals. 

Therefore it can be realized that the wB  parameter can be used to classify and identify some signals. 

 

Figure 1: The variation of the bandwidth of the spectrum 3db with the noise ratio 

II. B. 2) Peak-to-average ratio in the frequency domain 
The frequency domain peak-to-average ratio parameters are defined as follows: 

 
max( ( ))

( ( ) ')

P n
As

mean P n
  (13) 

where max( ( ))P n  represents the maximum value in the signal spectrum. ( ( ) )mean P n   represents the mean value 
of 30% of the signal spectrum in descending order. It represents the ratio of the peak of the signal spectrum to the 
mean value of the larger portion of the signal amplitude. 

The variation of the frequency domain peak-to-average ratio As  with JNR as shown in Fig. 2 shows that the 
parameter gradually stabilizes as the dry noise ratio continues to increase. Among them, the parameter of single-
tone interference gradually increases, the value of As  of multi-tone interference (SCWI) is close to 5, and the 
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values of the parameters of the remaining five types of interfering signals are almost close to 1-3. Therefore, the 
classification of single-tone interference can be realized by setting appropriate threshold values. 

 

Figure 2: The frequency range peak is compared to the change of As  with the JNR 

II. B. 3) Moment Bias in the Frequency Domain 
Analogous to the time domain moment skewness of a signal, the frequency domain moment skewness is expressed 
as: 

 
3

3

( ( ) )
3

E P n
b





  (14) 

The frequency domain moment skewness responds to the degree of deviation of the signal spectrum relative to 
the central distribution. The characteristic curves of 3b   for seven signals with different dry-to-noise ratios are 
shown in Fig. 3. From the figure, it can be seen that the value of the frequency domain moment skewness 3b  for 
the single-tone interference (CWI) is close to 15, the frequency domain moment skewness 3b  for the multi-tone 
interference (SCWI) is close to 8, where the frequency domain moment skewness 3b  for the narrow-band noise 
interference (NBI) and the pulsed interference (PI) is relatively close to 4, and that for the swept-frequency 
interference (LFMI) is close to 3, and the rest of the comb spectral interference (CSI) and wide-band noise 
interference (CSI) are close to 4, and the remaining comb spectral interference (CSI) and wide-band noise 
interference (CSI) are close to 3. CSI) and Wideband Noise Interference (WBI) have the same frequency domain 
moment skewness 3b  value close to 1. Thus, the interfering signals can be categorized by appropriate threshold 
values. 

 

Figure 3: The frequency domain moment deviation 3b  is changing with the JNR 
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III. DBN-based automatic detection model for low-orbit satellite signal interference 
III. A. Restricted Boltzmann machines 
The Restricted Boltzmann Machine (RBM) is the basic unit of a deep belief network [24], and its model structure is 
shown in Fig. 4. The model consists of implicit and visible layers, with bidirectional full connectivity between layers 
and no connectivity within layers. 

In Fig. 4 W  is the weight matrix connecting the visible layer to the hidden layer. n  and m  are the number of 

neurons in the hidden and visible layers, respectively. 1 2[ , , , ]Tmv v v v   is the state vector of the visible layer. 

1 2[ , , , ]Tnh h h h   is the state vector of the hidden layer. 1 2[ , , , ]Tma a a a   is the bias vector of the visible layer. 

1 2[ , , , ]Tnb b b b   is the bias vector of the implicit layer. 

a1 a2 a3 am

b1 b2 b3 bnImplicit layer

Visible layer

…

…

h1 h2 h3 hn

v1 v2 v3 vm

W

 

Figure 4: Restricted Boltzmann machine 

The energy function of the joint RBM Bernoulli (visible layer)-Bernoulli (hidden layer) state can be expressed as: 

 
1 1 1 1

( , )
m n m n

i i j j ij i j
i j i j

E v h a v b h w v h
   

       (15) 

where, ijw  is the connection weight of RBM. The joint probability distribution function of the visible and hidden 

layers can be obtained by ( , )E v h  as: 

 
( , )

( , )
E v he

P v h
Z



  (16) 

 
( , )

,

( ) E v h

v h

Z e   (17) 

where, ( )Z   is the normalization factor or the collocation function, which represents the (energy index) summation 
over all possible states of the set of nodes in the visible and hidden layers. 

The joint probability distribution function ( , )P v h  is known to yield an independent distribution for the visible layer 
as: 

 
( , )1

( ) E v h

h

P v e
Z

   (18) 

Due to the special fully connected between layers and unconnected within layer structure of the RBM model, the 
conditional probability distribution can be expressed as: 

 
1

( 1 / )
m

j j i ij
i

P h v b v w


 
    

 
  (19) 

 
1

( 1 / )
n

i i ij j
j

P v h a w h


 
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 
 

  (20) 
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where,     is the activation function. 

 
III. B. Improved Deep Belief Network Algorithm 
Deep Belief Network (DBN) is a probabilistic generative model stacked with multiple Restricted Boltzmann Machines 
(RBMs), which is one of the main current implementations of deep learning.The DBN structural model is shown in 
Fig. 5.The DBN generally consists of multiple layers of stacked Restricted Boltzmann Machines (RBMs) as well as 
Soft-Max classifiers at the top layer. The input layer and the second layer form the first Restricted Boltzmann 
Machine structure, i.e., RBM1, and the second layer and the third layer form the second Restricted Boltzmann 
Machine structure, i.e., RBM2, and at the same time, the implicit layer of the upper layer is used as the visible layer 
of the next layer, and so on, which ultimately constitutes the structure of l RBMs. Then the output of the topmost 
layer is used as the input to the classifier, and the data is classified one by one based on the results of the 
classifier.The learning process of DBN is divided into two stages, i.e., unsupervised layer-by-layer pre-training of 
the RBMs and supervised backward fine-tuning of the whole network using the BP propagation algorithm. 

Output layer y

wout

wl

hj-1

hj

RBMl

… …

h1

h2

w2

w1

RBM2

RBM1

vm

Layer-by-layer 

pre-training

Input 

Layer

Fine-

tuning
 

Figure 5 Structural model of DBN 

Due to the problems of long convergence time of network model, low accuracy of backward fine-tuning, and poor 
adaptability to complex data distribution in the traditional DBN model, this paper proposes an improved DBN model: 
firstly, the radial basis (RBF) function is introduced as the activation function of the DBN, which improves the 
adaptability of the DBN model to complex data distribution. Second, the k  -step contrast-dispersion (CD)- k  
algorithm is used for fast training in the unsupervised training phase of the RBM, and the adaptive moment 
estimation (ADAM) algorithm is used instead of the gradient descent algorithm for fine-tuning in the supervised 
training phase to improve the diagnostic accuracy of the DBN. 

(1) Radial basis activation function model 
The radial basis function is a monotonic function with the distance between the data x  to a certain vector c  as 

the independent variable, which is used as the activation function of the DBN, and the energy function can be 
expressed as: 

 
2

2 2
1 1 1 1

( )( )
( , )

2 2

m n m n
j j i j iji i

i ji ji j i j

h k v h wv k
E v h

     


      (21) 

where, iv  is the value of the i th node in the visible layer, jh  is the value of the j th node1 in the hidden layer, 

ijw   is the value of the connection weights,    is the neuron width, and k   is the neuron center point. The 

conditional probability distribution of the improved DBN can be expressed as: 
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 2
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i ij ji
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j
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
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 
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(2) Unsupervised pre-training phase 

The unsupervised pre-training phase of DBN refers to updating the network parameters  , ,ij i jw a b    by 

training each RBM layer-by-layer, in order to reduce the pre-training duration, the normalization factor ( )Z   in Eq. 

(17) is required to be calculated. Since it is difficult to compute it by the plain method, this paper adopts the CD k  

algorithm for fast unsupervised training of the pre-training process. The core of the CD k  algorithm is Gibbs 
sampling, which uses the K-L distance between the estimated probability distribution and the true probability 
distribution as a metric criterion to Gibbs sample the training samples to generate samples with maximum probability. 

By calculating the gradient of the log-likelihood formula log ( )P v , the RBM weight update formula is obtained as: 

 

( )

( )

( )

ij i j data i j recon

i i data i recon

j j data j recon

w v h v h

a v v

b h h





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
      
      

 (24) 

where,   is the learning rate, data  and recon  denote the probability distribution of the training data and the 
reconstructed probability distribution, respectively. According to the Markov chain principle, the above weight update 
problem is converted into an unbiased model, which can be achieved when Gibbs sampling is long enough. 

(3) Supervised backward fine-tuning stage 
The reverse fine-tuning stage is the supervised training carried out after completing the pre-training, which serves 

to fine-tune the relevant parameters of the DBN model and reduce the error between the model output and the 
actual labels, so as to achieve the optimization of the overall DBN model. In order to improve the diagnostic accuracy 
of the DBN model, this paper adopts the ADAM algorithm instead of the traditional gradient descent algorithm, which 
dynamically adjusts the learning rate by utilizing the first-order moment estimation and the second-order moment 
estimation of the gradient to provide a smoother and more stable parameter gradient for updating the weight 
parameters. In unsupervised pre-training, the network parameters { , , }ij i jw a b   are obtained after k  iterations, 

and the first-order moment estimation 1km    and the second-order moment estimation 1kv    are updated by 

calculating ( )kg J    as: 
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The first-order moment deviation 1ˆ km   and the second-order moment deviation 1ˆkv   are: 
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The updated network parameter 1k   is: 

  1 1 1ˆ ˆ/k k k km v         (27) 

where,   is the step size, i  is the decay rate, and   is the stabilization constant. 

 
III. C. Low-orbit satellite signal interference detection process 
For LEO satellites, the traditional state 2  detection method can detect whether the signal is interfered or not, but 
cannot recognize the type of interference. Therefore, this paper proposes an interference signal detection algorithm 
with improved DBN, which utilizes the improved DBN for interference detection on the basis of the state 2  
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detection method for satellites to achieve accurate identification, localization and isolation of interference signals, 
and to improve the stability of the low-orbit satellite signals, and its specific structure is shown in Figure 6. 
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Figure 6: The detection process of the interference signal based on improved DBN 

IV. Performance evaluation of automated low orbit satellite signal interference detection 
IV. A. Experimental environment and evaluation indicators 
The simulation environment for this experiment is GPU, and the deep learning framework PyTorch is used for the 
training and testing of the convolutional neural network. The network is initialized with random initialization for the 
weight parameters, the learning rate is set to 0.002, and the batch size is 68.In the experiment, the simulation 
software MATLAB is used to generate simulated communication interference signals, and the simulated 
communication interference signals include single-tone interference (CWI), multi-tone interference (SCWI), narrow-
band noise interference (NBI), and wide-band noise interference (WBI), Comb Spectrum Interference (CSI), 
Wideband Linear Frequency Sweep Interference (LFMI), and Pulse Interference (PI), the seven kinds of 
communication interference signals, the channel noise is additive Gaussian white noise, and the range of the dry-
to-noise ratio is from -6dB to 13dB, and 2,000 samples are generated by simulation of each interference signal at 
each dB, of which 1,300 samples are used as the training set, 350 samples are used as the validation set, and 350 
samples are used as the test set. 

In the experimental process, seven kinds of interference signals are respectively used as unknown signals for 
seven experiments, and the recognition and detection results are obtained when seven kinds of signals are 
respectively used as unknown signals. The following is a detailed description of the experimental process using 
comb spectrum interference as an unknown interference signal as an example. 

Use the training set to train the network, then use the trained network to identify the interference signal in the 
validation set, count the distribution of the confidence scores of the correctly classified interference signal on the 
validation set, set the threshold according to the distribution and the actual demand, and finally use the threshold 
and the trained network to determine whether the signal in the test set is a known interference or an unknown 
interference. 

Considering the unknown interference signal as 1 and the known signal as 0, the confusion matrix established is 
shown in Table 1. Where TP is the number of unknown disturbances detected as unknown disturbances, FP is the 
number of known disturbances detected as unknown disturbances, FN is the number of unknown disturbances 
detected as known disturbances, and TN is the number of known disturbances detected as known disturbances. 
Therefore, the detection probability TPR for unknown interference and the false alarm probability FPR for detecting 
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known interference as unknown interference can be obtained from this, and their specific expressions are shown in 
Eqs. (28) and (29): 

 
TP

TPR
TP FN




 (28) 

 
FP

FPR
FP TN




 (29) 

Table 1: Confusion matrix 

 
Real category 

1 0 

Detection category 
1 TP FP 

0 FN TN 

 
For the above confusion matrix, a plurality of TPRs and FPRs can be obtained by setting different thresholds, and 

by using these FPRs as the horizontal coordinates and TPRs as the vertical coordinates, the ROC curve graph of 
the present method can be obtained. The horizontal and vertical coordinates of the points on the curve represent 
the false alarm probability and the detection probability of the detection of the unknown signal by the present method 
obtained when the threshold is fixed to a certain value, respectively. The area enclosed by the ROC curve and the 
horizontal axis is denoted as AUC, and it is easy to know that the size of AUC should be between 0 and 1. The 
demand in practical applications is generally the higher the detection rate of unknown signals, the better, the lower 
the false alarm rate, the better, reflected in the ROC curve is the upper left point, the ROC curve composed of such 
points corresponds to the AUC is also larger, so generally speaking, the larger the value of the AUC, the better the 
detection effect of the model. Therefore, in this experiment, the AUC is used as the evaluation standard for the 
detection effect of unknown interference. 

 
IV. B. Experimental results and analysis 
In the experiment, the distribution of the confidence score c  over the correctly classified interfering signals on the 
validation set was obtained, as shown in Fig. 7. The threshold T  is set to 0.7 in this experiment. i.e., for c  greater 
than T  in the test set, the output is the signal type recognized by the classification branch. For c  less than T , 
the output is the unknown signal type. 

 

Figure 7: The confidence score is distributed on the validation set 

The interference signals in the test set were passed through the trained network and the confidence scores of all 
the known and unknown interferences on the test set were obtained and their distribution is shown in Fig. 8. The 
distribution of the confidence scores on the test set shows that there is some overlap in the values of the confidence 
scores of the known and unknown signals, but most of them have been distinguished. After passing through the 
trained network, the confidence scores obtained for the known disturbances are mostly greater than 0.7, and the 
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distributions of the unknown signals are mostly less than 0.7. Moreover, it is found that the distributions of the 
confidence scores of the validation set and the test set on the known disturbances signals are similar, so that the 
method of using the validation set for determining the threshold value T  is reasonable and effective. 

 

Figure 8: The confidence score is distributed on the test set 

With the threshold T  set to 0.7 in this experiment, the false alarm probability of known interference detection as 
unknown interference is 0.3, and the probability of detection for unknown signals is 0.8. In addition, one can achieve 
one's desired detection effect by appropriately adjusting the size of the threshold T  according to the distribution 
of confidence scores on the validation set based on the sensitivity of the experimental project to unknown signals. 
Also the corresponding ROC curve of Fig. 7 is shown in Fig. 9, and its corresponding AUC value is 0.825. 

 

Figure 9: The comb interference is a ROC graph of the unknown signal 

Repeat the above steps, the unknown signal from the comb spectrum interference in turn for single-tone, multi-
tone, narrow-band, swept signal respectively for the above experiments, and ultimately get the detection of seven 
kinds of interference signals respectively as the unknown interference signal when the detection of the identification, 
each interference as an unknown signal when the detection of the ROC curve is shown in Figure 10. For the 
interference signal identification model designed in this section by adding confidence scores, for these seven types 
of interference, the model has a certain unknown interference detection capability when each interference signal is 
treated as an unknown interference. The detection effect of the model is close for different interferences as unknown 
interferences, among which the model has the best unknown interference detection effect when comb spectrum 
interference is used as unknown interference. 
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Figure 10: The various distractions are the ROC graphs of the unknown interference 

The AUC values of each interference as unknown signals respectively are shown in Fig. 11. The AUC values are 
all above 0.7, among which, the comb spectral interference (CSI) has the highest AUC value of 0.806. It is verified 
that the deep belief network is the most effective in detecting the comb spectral interference signals. 

 

Figure 11: Unknown signal recognition performance 

In summary, this paper investigates the interference signal recognition model that can detect unknown 
interference signals based on deep belief networks. The AUC values of each interference signal as an unknown 
signal respectively are above 0.7, and the model detects better and can accurately recognize several interference 
signals studied in the paper. 

V. Conclusion 
The following main conclusions have been obtained from the study of the automatic detection method of low-orbit 
satellite signal interference based on improved deep belief network: 

The improved deep belief network model significantly improves the detection accuracy and identification efficiency 
of interference signals by introducing the radial basis function as the activation function, combined with the  -step 
contrast-dispersion (CD)-  algorithm and adaptive moment estimation algorithm. The experimental results show 
that, in the test environment with the dry-to-noise ratio ranging from -6dB to 13dB, the method performs well in the 
identification of seven typical interference signals, especially in the identification of comb-spectrum interference, 
with an AUC value of 0.825. When the threshold is set to 0.7, the detection probability of the proposed method on 
the test set for unknown interference is 0.8, and the false-alarm probability is controlled to be within 0.3, which 
verifies that the method can detect the unknown interference in the test set within 0.8. , verifying the effectiveness 
of the method in unknown interference detection. Through the frequency domain feature analysis, it is found that 
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the three feature parameters of normalized spectrum 3dB bandwidth, frequency domain peak-to-average ratio and 
frequency domain moment skewness have a better differentiation between different interference signals, which 
provides an effective way for the feature extraction of interference signals. The research results provide theoretical 
basis and technical support for the anti-interference design of low-orbit satellite communication system, which is of 
great value for improving the quality and reliability of satellite communication. 
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