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Abstract With the continuous development of weather prediction technology, the traditional single data source 
prediction model has been difficult to meet the demand of increasingly complex weather changes. In this paper, an 
intelligent weather prediction model based on the fusion of cloud radar and weather sensor data is proposed, which 
utilizes a combination of Kalman filter algorithm and deep learning model for weather forecasting. First, the Kalman 
filter algorithm is used to invert the cloud radar echo data, and the inversion accuracy is improved by optimizing the 
parameters, with the lowest temperature deviation reaching 3.2 K. Then, based on the multimodal fusion of 
weather prediction model, the temporal and spatial dependencies in the meteorological data are modeled using the 
Transformer encoder-decoder architecture, which further improves the prediction accuracy. The experimental 
results show that the model in this paper performs better in the evaluation indexes of RMSE, MSE and MAPE 
compared with the LSTM and RNN models, with an RMSE of 2.6483, a MAPE of 0.0229, and an R² value close to 
1, which makes the prediction results the closest to the real values. The model shows significant advantages in 
multimodal data fusion and provides an effective solution in the field of weather prediction. 
 
Index Terms cloud radar, Kalman filter, deep learning, multimodal fusion, weather prediction, Transformer 

I. Introduction 
Weather forecasting is a central means for humans to cognize weather changes and reduce the risk of natural 
disasters [1]. However, the complexity of weather changes makes the current weather forecast accuracy still has 
many shortcomings [2]. Traditional weather forecasting models use basic observation data and empirical models to 
calculate forecasts, and with the development of science and technology, weather forecasts are gradually 
intelligentized [3]-[5]. Some emerging technologies such as artificial intelligence, internet of things, and cloud 
computing have brought many powerful tools and algorithms for weather forecasting, which not only improve the 
forecasting accuracy, but also make the forecasting work faster and more efficient, especially the cloud radar and 
weather sensor data fusion of intelligent weather forecasting has been widely used in recent years [6]-[9]. 

Cloud radar is a device that detects cloud structure, water vapor distribution, and precipitation processes by 
transmitting radio waves [10]. This technology can monitor the internal changes of cloud bodies in real time, help 
people to know the weather trends in advance, and is widely used in many fields [11], [12]. In contrast, weather 
sensor is a device that measures and monitors the parameters of the atmospheric environment, which is widely 
used in the fields of meteorology, climate research, weather forecasting, and agricultural production [13], [14]. 
Compared with the traditional weather forecasting methods, the intelligent weather forecasting by fusion of cloud 
radar and weather sensor data can deal with more complex information, including massive meteorological data, 
artificial satellite data, geographic information, wind sensors and other data sources [15]-[18]. Meanwhile, it can 
also improve the accuracy of the forecast by self-adjustment through data analysis and learning [19]. In addition, 
meteorological data can be quickly processed and analyzed to provide real-time and accurate forecasting 
information [20], [21]. Intelligent weather forecasting based on the fusion of cloud radar and weather sensor data 
has an important application value in natural disasters, aerospace, transportation, and other occasions where 
timely processing of weather information is required [22]-[24]. 

With global climate change and frequent meteorological disasters, weather forecasting plays an increasingly 
important role in disaster prevention and mitigation. Traditional weather prediction models usually rely on a single 
data source, which is difficult to comprehensively reflect complex weather trends. The fusion of cloud radar and 
weather sensors, on the other hand, can provide more multi-dimensional meteorological data and provide more 
comprehensive information for prediction models. Therefore, the development of meteorological prediction models 
based on multimodal data fusion has become an important direction to improve prediction accuracy. 
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The Kalman filter algorithm has become a commonly used tool in meteorological data processing due to its 
efficiency and accuracy in processing linear systems. However, the traditional Kalman filter algorithm often has 
certain limitations when dealing with nonlinear meteorological data, especially when dealing with complex 
meteorological systems, the stability and prediction accuracy of the algorithm are insufficient. For this reason, this 
paper proposes a meteorological prediction framework based on the combination of Kalman filtering and deep 
learning modeling, which aims to overcome the shortcomings of traditional filtering algorithms through deep 
learning techniques. 

In this study, the Kalman filter algorithm is first used to preprocess the cloud radar echo data, and the inversion 
accuracy is further improved by improving the algorithm. Then, the multimodal data fusion method is used to model 
the spatio-temporal features of the meteorological data by combining the Transformer model in deep learning. 
Through the adaptive property of deep learning, the complex patterns and changing trends in meteorological data 
can be better captured. Finally, the prediction performance of this paper's model is evaluated through comparative 
experiments, which verifies its advantages in weather prediction. 

II. Research on intelligent weather forecasting models 
In this paper, Kalman filtering algorithm is used to apply in the study of cloud radar weather prediction, and 
combined with the constructed multimodal fusion weather prediction model to jointly realize the weather forecast. 
 
II. A. Sensor data processing based on Kalman filter algorithm 
Kalman filtering algorithm is a linear filtering recursive algorithm. The algorithm uses a set of recursive formulas to 
solve the filtering equations consisting of state equations and measurement equations. By modifying the important 
parameters in the recursive system, using the prediction error of the previous moment to feed back to the original 
prediction equation, and correcting the coefficients of the prediction equation in a timely manner, the optimal filter 
value for the next moment can be repeatedly recursively calculated [25]. Because the algorithm is very easy for 
computers to process, and has the characteristics of using recursive methods to solve the linear filtering problem. 
Therefore, the Kalman filter algorithm has been generally welcomed and has been widely used in the fields of 
econometrics, inertial guidance systems, radar trackers, satellite navigation systems, and dynamic positioning 
systems. 

With the development of computer technology, the numerical stability, computational efficiency, algorithmic utility 
and effectiveness of the Kalman filter algorithm began to slowly fail to keep up with the requirements of computing. 
In order to improve the numerical stability and computational efficiency of the Kalman filter algorithm, a series of 
robust filtering algorithms have been proposed on the basis of the original Kalman filter algorithm. For example, the 
extended Kalman filter [26], the trace-free Kalman filter [27], and so on. 

 
II. A. 1) Principles of Kalman filtering algorithm 
Assume that the state and measurement equations of the system are, respectively: 

 , 1 1 , 1 1K K K K K K KX X W        (1) 

 K K K KZ H X V    (2) 

In the above equation, KX  is the state of the system at the moment K , , 1K K  and , 1K K  are the state 

transfer matrices from the moment 1K   to the moment K , KZ  is the measurement value at the moment K , 

KH  is the parameter of the measurement system, KW  and KV  denote the process noise and observation noise, 

which are assumed to be Gaussian white noise. If the estimated state and observation satisfy Eq. (1), and the 

system process noise and observation noise satisfy the assumptions of Eq. (2), the estimate X̂  of the 
observation KX  at moment K  can be solved by the following equation. 

State one-step prediction: 

 , 1 , 1 1
ˆ ˆ
K K K K KX X     (3) 

State Estimation: 

 , 1 , 1
ˆ ˆ ˆ[ ]k K K K K K K KX X K Z H X    (4) 

Filter gain matrix: 
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 1
, 1

T
K K K K KK P H R

  (5) 

One-step prediction error variance array: 

 , 1 , 1 1 , 1 , 1 1 , 1
T T

K K K K K K K K K K K KP P Q            (6) 

Estimating the error variance array: 

   , 1K K K K KP I K H P    (7) 

Given the initial values 0X  and 0P , and based on the observations KZ  at K  moments, the state estimates 

 ˆ 1, 2, ,KX K N   at K  moments can be calculated recursively. 

Finally, the state estimates can be obtained by applying Eqs. (1) to (7) recursively with the given initial values 
and the observed values obtained from the observations. 

 
II. A. 2) Algorithm improvements and applications 
In order to improve the problem of poor estimation effect in Kalman filtering, this paper proposes the following 
improvement ideas: 

(1) Pre-complete offline a large number of complex Kalman filter gain and error calculations in the calculation 
process of the Kalman filter algorithm. 

(2) Replace the state equation of the estimated state of the system Ŝ  in the Kalman filtering algorithm by the 
multiplication of matrix and volume vector. 

Assume that the state equation of the estimated state kS  of the system at moment k  is described as follows: 
Observation equation: 

 k k k kU H S v   (8) 

Equation of state: 

 1 1
ˆ ˆ ˆ( )k k k k kS S K A H S     (9) 

One-step prediction error variance array: 

 1 1 1
T T

k k k k k k kP P Q       (10) 

Filter gain matrix: 

 1
1 1( )T T

k k k k k k kK P H H P H R    (11) 

Estimating the error variance array: 

 1( )k k k kP I K H P   (12) 

where k  is the one-step transfer matrix at moment ( )t k , k  is the system noise matrix, kU  is the system 

observation that can be obtained directly, kH  is the system observation matrix, and kv  is the observation noise 

of the system. 
It is obtained after improvement: 

 1 1 1 1 1 1 1 1( ) T T
k k k k k k k k k kP P K H P Q           (13) 

 1
ˆ ˆ
k k k k kS Y S K U   (14) 

where k k k kY E H K  . If frequency determination is used, each element of kY  and kK  is constant. Eq. (14) 

consists of the multiplication operation of 2 matrices and 1 column vector, so a large number of complex Kalman 
filtering gains and coefficients can be completed offline in advance, which greatly reduces the amount of arithmetic 
and improves the algorithm estimation accuracy, which can meet the requirements of practical applications. The 
Kalman filter algorithm improvement process is shown in Figure 1. 
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Figure 1: Kalman filtering improved algorithm process 

II. B. Weather prediction model construction with multimodal fusion 
II. B. 1) Model Architecture 
The task of weather prediction can be formulated as a sequence prediction problem. Specifically, given a historical 

sequence of meteorological observations  1 2, , ,in int T t T tX M M M     , the meteorological data for the future 

time period is predicted  1 2ˆ ˆ ˆ ˆ, , , outt Tt tY M M M    . Where inT , outT  denote the sequence length of input and 

the sequence length of output, respectively. The goal of this paper is to construct a deep learning model that makes 

the prediction sequence Ŷ  close to the real weather observation data  1 2, , , outt Tt tY M M M    . 

Based on the above representation, the weather prediction task can be formulated as a sequence prediction 

problem. Specifically, given a historical sequence of meteorological observations  1 2, , ,in int T t T tX M M M     , 

the forecasting of meteorological data for the future time period  1 2ˆ ˆ ˆ ˆ, , , outt Tt tY M M M    . Where inT , outT  

denote the sequence length of input and the sequence length of output, respectively. The goal of this paper is to 

construct a deep learning model that makes the predicted sequence Ŷ  close to the real meteorological 

observation data  1 2, , , outt Tt tY M M M    . 

Overall, the model proposed in this paper consists of three parts: a multimodal feature fusion network, a 
Transformer-based encoder-decoder network and a spatial regression network, and the overall framework of the 
model is shown in Fig. 2. The multimodal fusion network utilizes a convolutional network to extract the spatial 

features of the sequence data while fusing the multimodal features. Notation tF  denotes the feature map of the 
meteorological data at the moment of t  through the multimodal fusion network. Based on the multimodal feature 
fusion, the Transformer encoder-decoder structure further models the spatial and temporal dependencies among 

the meteorological data. The decoder outputs the final feature representation  1 2, , , outt Tt tZ Z Z    . Finally, the 

spatial regression network converts the spatio-temporal feature maps output from the decoder into the final 

predictions  1 2ˆ ˆ ˆ, , , outt Tt tM M M    . 
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Figure 2: Overall framework of model 

II. B. 2) Multimodal feature fusion networks 
In order to learn the coupling relationship between different modes (humidity, temperature, latitudinal wind speed 
and meridional wind speed), and at the same time to effectively fuse the multimodal features, a multimodal feature 
fusion network is designed in this paper, which is characterized by the following main features: 

(1) Structurally, a multi-branch hierarchical fusion strategy is adopted. 
(2) Technically, a feature fusion method based on a gating mechanism is used. The input of each layer in the 

fusion branch contains the current features t
jR , t

jT , t
jU , t

jV  of each modal branch, and the current fusion 

feature t
jF , and the initial fusion feature is set to zero: 

   , , , , , , , ,
j

F R T U V t t t t t
j j j j j j j j j jG G G G G M F R T U V  (15) 

 1
t F t R t T t U t V t
j j j j j j j j j j jF G F G R G T G U G V            (16) 

where R
jG , T

jG , U
jG , V

jG  denote the corresponding gating weights of each modality, and F
jG  denotes the 

gating weights of the current multimodal fusion feature. In addition,   denotes the Sigmoid function, which is a 
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commonly used gating activation function.   denotes the Hadamard product. 
j

M  is the gating generation 

network. 
II. B. 3) Transformer-based encoder-decoder network 
Based on the spatial features extracted from the multimodal fusion network, the spatio-temporal dependencies 
between the data are further learned by the Transformer encoder-decoder [28]. The attentional mechanism is at 
the heart of the Transformer model and can be described as the process of mapping a query and a set of 

“key-value pairs” to an output. Given a set of query matrices qN d
Q

 , and key-value matrices , kN dK V   , the 

output of the attentional operation is as follows: 

  , , max
TQK

Attention Q K V soft V
d

 
   

 
 (17) 

When Q K V  , it is called a self-attention mechanism. Multi-attention is an extension of the attention 
mechanism that runs k  attention operations in parallel by projecting queries, keys, and values to different 
subspaces via a learnable k  set of linear transformations. The outputs of these k  attentions are then spliced 
together to obtain the final output via a learnable linear transformation: 

    1 2, , , , , O
kMultiHeadAttention Q K V Concat h h h W   (18) 

  , ,Q K V
i i i ih Attention QW KW VW  (19) 

where , , hd dQ K V
i i iW W W   are the parameter matrices of the linear transformations of queries, keys, and values, 

respectively, and hkd dOW   is the multicentered attention mechanism's final parameter matrix of the linear 
transformation. In general, hd  is often set to /d k . 

After the attention operation the features still maintain the global receptive field, and the axial attention output 

, ,i j tz  for a specific location ( , , )i j t  is computed as follows: 

 
, , 11

, , 1max
T

i j t
i j t

q K
z soft V

d

 
 
 
 

  (20) 

 
, , 22

, , 2max
T

i j t
i j t

q K
z soft V

d

 
 
 
 

  (21) 

 
, , 33

, , 3max
T

i j t
i j t

q K
z soft V

d

 
 
 
 

  (22) 

 1 2 3
, , , , , , , ,i j t i j t i j t i j tz z z z       (23) 

where , ,i j tq  is the corresponding query vector, 1 1, H dK V   is the corresponding key-value matrix along the 

vertical latitudinal direction, 2 2, W dK V   is the corresponding key-value matrix along the horizontal longitudinal 

direction, 3 3, T dK V   is the corresponding key-value matrix along the time direction. 

 
II. B. 4) Location coding 
Recurrent neural networks process the input sequences one by one, thus ensuring temporal backward and forward 
order, but the attention mechanism abandons sequential operations due to parallel computing. In the weather 
prediction task, since this paper applies the attention mechanism to the time axis, the vertical and horizontal 
directions of space, a three-dimensional tensor is needed to represent the location relationship. Similar to the 
two-dimensional position encoding in images, this paper uses a learning strategy to learn three sets of position 
encoding. Here, the dimension of each group of position encoding is set to / 3d , and d  is the dimension of the 
feature in the attention module. Based on the position coordinates of the input tensor, the three sets of position 
encoding will be connected together to represent the final position embedding representation. 
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II. B. 5) Spatial regression networks 
The spatial regression network consists of an anti-convolution layer with an activation function. The inverse 
convolution operation is the opposite of conventional convolution and enables up-sampling of the input data. The 

spatial regression network then maps the feature map  1 2, , , outt Tt tZ Z Z     generated by the decoder into the 

meteorological state space with greater spatial resolution. After obtaining the prediction results, it is trained by 
minimizing the mean square error between the predicted and true values, and the corresponding loss function is 
defined as: 

 
2ˆ

ˆ( , )
Y Y

L Y Y
E P H W




  
 (24) 

where Y  is the real meteorological observation sequence, Ŷ  is the predicted meteorological observation 
sequence, E  is the number of meteorological modes, P  is the number of isobaric layers, and H  and W  
denote the number of grids in the longitudinal and latitudinal directions, which are related to the size of the area to 
be predicted and the spatial resolution. 

III. Experimental procedures and analysis of results 
III. A. Experimental platform environment construction 
The hardware of the experimental platform environment uses an MSI B450M MORTAR MAX (MS-7B89) 
motherboard, AMD Ryzen 7 5700X 8-core, 16-thread processor, 32GB of DDR4 3600MHZ (16GB+16GB) RAM, a 
CUDA-enabled NVDIA GeForce RTX3070 GPU and a KIOXIA-EXCERIA G2 SSD 1TB solid state drive. 

The software environment uses Windows 10 Professional 64-bit operating system, Python as the main 
development language and Pycharm as the main IDE. Pytorch framework is used to build the deep learning model, 
while pandas, numpy and other dependent libraries are used for data processing. The deep learning process is 
accelerated using the CUDA feature of GPU. 

 
III. B. Analysis of the effect of Kalman filtering algorithms 
III. B. 1) Parameter selection 
Inversion of atmospheric parameters using the Kalman filter method firstly needs to clarify the real physical 
process that occurs during the detection process, i.e., the physical process that the optical signal emitted by the 
lidar interacts with the atmospheric medium in order to produce the measurement results, which is also known as 
the cloud radar equation. In this paper, the NRLMSISE-00 atmospheric model is chosen as the output a priori state 
model atmosphere of each major component, and the CIRA-76 model atmosphere is used as a reference to 
calculate the gravity acceleration of each place. 
 
III. B. 2) Analog simulation 
Before analyzing the real detection data of cloud radar, it is necessary to study and evaluate the proposed 
inversion algorithm in order to minimize or try to eliminate the systematic errors generated during the inversion 
process. Therefore, this paper will first simulate the overall inversion process of the lidar by using simulated echo 
data in order to detect and eliminate other factors that may affect the detection and to correct possible errors in the 
temperature inversion algorithm. 

In the lower atmosphere the laser signal scatters mainly with aerosols. At the same time, combined with the 
hardware characteristics of LIDAR itself, the effective detection altitude range is generally 40-100 km above sea 
level in the atmospheric space. Without considering the scattering and extinction effects of aerosols on the emitted 
laser beam, Poisson statistical uncertainty is added to the echo photon data obtained from the simulation with a 
spatial resolution of 130m. 

The key to the Kalman filtering algorithm is to establish an accurate system state model. However, it is difficult to 
get an accurate description of a real system like the middle atmosphere, and often only an approximate model can 
be used instead. Therefore, the generating parameter matrices of the standard atmosphere model are also 
approximated this time to be replaced by an approximate state model, in which the state transfer matrices are all 
fitted from the standard atmosphere model data. According to the previous research, the approximate model of 
4-dimensional state transfer matrix with better effect is selected. In addition to this, the traditional CH integration 
method is applied in this paper, and the atmospheric temperature at 100 km is selected as the reference 
temperature. The inversion operation is also carried out while keeping other parameters as well as the introduced 
error unchanged, in order to compare the difference between it and the Kalman filter algorithm. 
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III. B. 3) Analysis of results 
The inversion data obtained during the simulation are used as the basis for inverting and analyzing the measured 
echo data of cloud radar using the NRLMSISE-00 atmospheric model as the a priori state temperature information, 
and the linear Kalman filter and the extended Kalman filter are applied. 

The inversion of the cloud radar measured echo photon data at 0600 UT on May 22, 2023 is processed using 
Kalman filter and improved Kalman filter after deducting the background noise, respectively. The temperature 
contours measured by the same lidar system at altitudes in the interval of 40-75 km were taken as the real values 
of temperature. The Kalman filter inversion yields the temperature contours and their deviations from the true 
values are shown in Figures 3 and 4. And the temperature contours and their deviations from the true values 
obtained by the improved Kalman filter inversion are shown in Fig. 5 and Fig. 6. 

Observing Fig. 3 and Fig. 4, it can be seen that in the practical application, for the altitude interval of 40~75km 
above sea level, the Kalman filter algorithm can still ensure a certain degree of sensitivity and inversion accuracy, 
and the atmospheric temperature profile obtained by its inversion basically coincides with the actual temperature 
profile, and its overall deviation is less than 4.8K. Meanwhile, comparing and observing it with Fig. 5 and Fig. 6, it is 
easy to find that the improved Kalman filtering shows better sensitivity and accuracy, and its deviation is less than 
3.2K overall. 

 

Figure 3: Kalman filter inversion gets the temperature profile 

 

Figure 4: Kalman filter inversion is the deviation of temperature and real value 
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Figure 5: Improved Kalman filter inversion gets the temperature profile 

 

Figure 6: Improve the deviation of the Kalman filter to the temperature and true value 

It is evident that there is a significant difference between the model atmospheric temperature, which is the a 
priori state temperature, and the temperature profile obtained by the inversion, i.e., the state information of the 
inversion as a whole is mainly derived from the measured information rather than the a priori information. This 
indicates that the contribution of the a priori information to the inversion is relatively low and is regarded as a 
reasonably good inversion process. 

 
III. C. Analysis of the effect of the application of meteorological forecasting models 
The multimodal fusion weather prediction model is validated and compared with LSTM model and RNN model 
respectively. The average dew point, average temperature, maximum temperature, minimum temperature, snow 
depth, whether it rained or not and whether it snowed or not meteorological feature data of the previous day were 
used as inputs. The loss values of each optimized model are shown in Fig. 7. The model in this paper shows better 
convergence speed and convergence accuracy. 

 

Figure 7: Optimization model loss value 
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In this paper, the data from May 26, 2023 to September 26, 2029 are selected for the comparative demonstration 
of the prediction results, and the actual values are compared with the model predictions, and the prediction results 
are shown in Fig. 8. Compared with the LSTM model and the RNN model, the prediction results of the multimodal 
fusion weather prediction model are closest to the real values. 

 

Figure 8: Optimal model prediction results 

The RMSE, MSE, MAPE and R² values of the tested multimodal fusion weather prediction model and the other 
two models are shown in Figure 9. The R² values of the three models are 0.9635, 0.8624, and 0.7881, respectively, 
in which the R² value of the model in this paper is close to 1, i.e., the model has a high degree of fit. The RMSE, 
MAPE and MSE of the weather prediction model with multimodal fusion are 2.6483, 0.0229 and 6.1827, 
respectively, which are lower than those of the LSTM and RNN models. It shows that individual models have 
certain limitations and cannot adequately capture the characteristics and trends of the data, thus failing to obtain 
the optimal prediction results. The model in this paper has a higher optimization seeking advantage, which can 
better improve the model prediction accuracy. 

 

Figure 9: Forecast evaluation of each optimization model 

IV. Conclusion 
The improved Kalman filter algorithm shows high accuracy in temperature inversion, and the overall deviation is 
less than 3.2K for the temperature prediction in the interval of 40-75km above sea level, which indicates that the 
algorithm has a good inversion capability. Compared with LSTM and RNN models, the weather prediction model 
based on multimodal fusion has significant advantages in prediction accuracy. The experimental results show that 
the R² value of the model reaches 0.9635, indicating that it has a very high degree of fit. In addition, the RMSE of 
the model is 2.6483, the MAPE is 0.0229, and the MSE is 6.1827, which are better than the traditional model. The 
multimodal data fusion further improves the accuracy of weather prediction, indicating that the intelligent weather 
prediction model proposed in this paper has a better application prospect, which can effectively respond to 
complex weather changes and provide more accurate weather forecasting services. 
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