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Abstract With the rapid development of urban construction, accurate decoding of urban scenes has become 
particularly important in the fields of urban infrastructure planning, intelligent transportation management, and 
environmental monitoring. In this study, a dynamic adaptive convolution-based RGB-D urban scene segmentation 
algorithm (FastDVFN) is proposed, which aims at solving the limitations of the existing full convolutional neural 
network (FCN) methods in terms of efficiency and real-time performance. The method combines RGB-D point cloud 
feature extraction with adaptive convolution mechanism, and optimizes the parameter tuning of the convolutional 
layer to improve the segmentation accuracy and computational efficiency. On the Cityscapes dataset, the FastDVFN 
network achieves an mIoU metric of 72.9%, which improves the accuracy by 5.2% compared to the traditional 
method. In terms of running speed, it reaches 88 frames/s, outperforming other similar lightweight semantic 
segmentation networks. In the experiment, the number of parameters of FastDVFN network is 0.63m, which is 
significantly reduced compared to other methods. The effectiveness of the dynamic adaptive convolution and 
enhanced channel feature normalization (ECFN) module is demonstrated through comparative experiments and 
analysis of ablation experiments. The results show that the algorithm has strong real-time processing capability 
while maintaining high accuracy and can meet the practical application requirements of urban scenes. 
 
Index Terms RGB-D, urban scenes, segmentation algorithm, dynamic adaptive convolution, accuracy, real-time 
 

I. Introduction 
The urban scene segmentation problem is essentially an image recognition problem, but the requirements for image 
recognition are higher, recognizing the category and location information of all pixels in the image of the perceived 
urban scene, including the small targets and target boundaries in the image need to give accurate recognition and 
localization results [1]-[4]. With the rapid development of cities, high population mobility, and intensive infrastructure 
construction, efficient and accurate segmentation of images in this scene is of great significance for urban 
infrastructure construction, urban ecological environment monitoring, urban transportation management, urban 
natural resources monitoring, and urban security [5]-[8]. 

With the rapid development of deep learning technology and the successive release of datasets in recent years, 
the performance of image semantic segmentation technology has been improved by leaps and bounds, but it has 
not yet met the requirements of urban scenes for high-quality segmentation technology [9]-[11]. In urban scenes, 
the shooting distance is far and the angle is wide resulting in image data with complex environments, a wide range 
of small target categories, a large number of them, large scale changes, light changes, and data imbalance [12]-
[14]. Small targets are the focus and difficulty of image segmentation in urban scenes, and its efficient and accurate 
segmentation is of great significance for accurate monitoring and scientific management of smart cities [15], [16]. 
And with the popularization of full convolutional neural network, it makes great breakthroughs in the field of image 
semantic segmentation, such as PSPNet, DeepLabv3+, etc., especially the RGB-D urban scene segmentation 
technology based on full convolutional network, which plays an important role in promoting the development of 
urban scene segmentation [17]-[20]. 

With the rapid development of information technology, the interpretation of urban scenes has become the core 
content of urban planning and management. Semantic segmentation of urban scenes, as an important part of image 
understanding, aims to accurately delineate different types of urban elements, such as buildings, roads, and green 
spaces. However, traditional convolutional neural networks (CNNs) face the trade-off between computational 
efficiency and accuracy when dealing with these complex scenes, which limits their promotion in practical 
applications. Therefore, how to improve the computational efficiency and real-time performance of the algorithm 
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while ensuring higher segmentation accuracy has become an important direction of current research. In this study, 
an image segmentation framework based on full convolutional neural network (FCN) is adopted and innovatively 
improved by introducing dynamic adaptive convolution (DAConv) and enhanced channel feature normalization 
(ECFN) techniques. By adaptively adjusting the input image features, the DAConv module improves the adaptability 
of the convolution kernel so that it can capture the detailed information in the image more accurately. The ECFN 
module, on the other hand, optimizes the feature learning capability of the model by combining the advantages of 
batch normalization and layer normalization. In addition, the study also combines RGB-D point cloud features to 
improve the segmentation accuracy of the model for complex urban scenes by fusing depth and color information. 
The experimental results show that the improved FastDVFN network outperforms multiple existing semantic 
segmentation methods on the Cityscapes dataset, with high segmentation accuracy and low computational 
complexity, and can meet the demands of real-time applications. 

II. Urban scene segmentation algorithm based on full convolutional neural network 
Accurate interpretation of urban scenes is crucial for applications such as urban infrastructure planning, urban 
intelligent transportation management, and urban environment monitoring and management. Semantic 
segmentation of urban scenes aims to accurately and efficiently segment the image elements in urban scenes to 
provide the basis for the interpretation of urban scenes. Convolutional neural network can be said to play a driving 
role in the field of semantic segmentation of urban scenes, and this chapter will focus on introducing the improved 
image semantic segmentation method based on convolutional neural network. 
 
II. A. Convolutional Neural Networks 
The computation of the l th convolutional layer in a convolutional neural network is based on the output of the input 
layer or its previous pooling layer, which can be expressed as Equation (1) [21]: 

 1 *
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In the above equation, l
jx  denotes the j th feature map of the l th layer, 1l

ix
  denotes the i th feature map of 

the 1l  th layer, and the range of values of i , jM , denotes the set of features that are selected as the inputs, and 

thus the obtained output feature maps synthesize the values of multiple features. The l
ijk  denotes the convolution 

kernel of the j th feature map in the l th layer, each feature map i  corresponds to its own convolution kernel, 

which is convolved and summed with the corresponding features selected in the 1l  th layer respectively, together 

with the bias parameter l
jb , and finally the output is calculated by the activation function f . 

The pooling layer is after the convolutional layer, so if the l th layer is a pooling layer, then the formula for this 
pooling layer is as in equation (2): 

  1( )l l l l
j j j jx f down x b    (2) 

where   denotes the weights, which are generally of fixed size for the pooling layer. down  is the sampling 
function. 

In summary, the convolutional neural network in order to reduce the network model training parameters to propose 
a solution - local connection and weight sharing, these two methods greatly reduce the number of parameters to 
train the model, reducing the complexity of the model. 

 
II. B. Improved Semantic Segmentation Method for Urban Scenes 
In order to be able to realize pixel-level semantic classification, the traditional segmentation method based on 
convolutional neural network, CNN must use a piece of local urban scene image around a certain pixel as an input 
for training and prediction, which exists the problems of computational inefficiency due to repeated computation, 
and the size of the image block restricts the size of the perceptual domain, for this reason, in this paper, we introduce 
a full convolutional neural network (FCN) model for the semantic segmentation of the image, which has no 
requirement on the input image and can obtain the same size of output image as the input image. There is no 
requirement on the size of the input image, and it can get the output image with the same size as the input image, 
which ensures the relative position and spatial information of the objects in the input image. In the following, three 
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features of the full convolutional neural network are introduced: convolutionalization, up-sampling, and layer-
hopping connections. 

(1) Convolutionalization 
FCN convolutionalization simply means replacing the three fully connected layers in a traditional CNN with 

convolutional layers. The feasibility of the replacement lies in the fact that the implementation functions of the fully 
connected layers and the convolutional layers are the same, both computing the dot product between neurons, and 
it can be seen that the fully connected layers can be replaced by the convolutional layers. The reason for removing 
the fully connected layer is that firstly the fully connected layer needs to be trained with more parameters because 
the neurons in the convolutional layer are locally connected to each other and share parameters, whereas the 
neurons in the fully connected layer are fully connected to each other and the parameters cannot be shared. 
Secondly, the convolutional neural network can achieve the same effect as the fully connected layer by performing 
only one forward propagation calculation, and the convolutional layer is more practical than the fully connected layer. 

(2) Up-sampling 
The up-sampling mentioned in the previous paragraph in the full convolutional neural network is the inverse 

convolution calculation, the inverse convolution is the inverse process of the convolution, but the essence of the 
vector multiplication and addition operation, so the principle is actually very simple is the convolution of the forward 
propagation process and the backward propagation process under the position of the swap. After the completion of 
the forward propagation, the loss function Loss  can be obtained from the deeper network, according to the matrix 

of the differential formula TAx b
A

x

 



, can be known: 

 TLoss Loss Y Loss
C

x Y x Y

   
  

   
 (3) 

The derivation of the above equation is the matrix operation of the backpropagation process. So the essential 

operation of the backpropagation is the left multiplication of the forward process by TC  and the left multiplication 

of the reverse process by ( )T TC . 

(3) Layer skipping connection 
Full convolutional neural network after the full convolution of the result is relatively rough, directly after the 

convolution of the image of the deconvolution operation is only able to restore the features of the fifth layer of 
convolutional kernel, the semantic segmentation results obtained by the poor accuracy, in order to optimize the 
accuracy of the problem the authors have proposed a jump structure. 

The full convolutional neural network has obvious advantages over the traditional convolutional neural network: 
there is no limitation on the size of the input image, the computation is more efficient, and repeated storage and 
computation can be avoided. But there are also shortcomings: firstly, the semantic segmentation results are not 
accurate and not ideal for detail processing; secondly, it lacks spatial consistency and does not fully consider the 
relationship between pixels. 

III. Dynamic adaptive convolution based RGB-D urban scene segmentation algorithm 
In this study, urban scene segmentation algorithms based on full convolutional neural networks were introduced in 
the previous paper, although they have made remarkable achievements in terms of accuracy, their large number of 
parameters and high computational complexity make it difficult for these models to meet the real-time processing 
requirements in the practical application of urban scene segmentation. Based on this situation, this paper combines 
the principle of RGB-D point cloud feature extraction, constructs a fast deep visual fusion network model 
(FastDVFN), and proposes an RGB-D urban scene segmentation algorithm based on dynamic adaptive convolution. 
 
III. A. RGB-D point cloud 
III. A. 1) Point cloud data classification 
A 3D point cloud is generally a collection of data points containing coordinate depth information and color information 
acquired using 3D sensors such as Kinect and laser scanners. Due to the different data storage formats acquired 
by different 3D sensors, the data obtained will have different distribution and sorting structures, as well as different 
processing methods. 

In order to better analyze the point cloud data, we classify the point cloud into four categories based on the spatial 
layout of the data points [22]. 

The first category is scattered point clouds, which are obtained by random scanning acquisition, with points 
arranged in an unorganized manner with no specific topological relationship between them. 
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The second type is the scanned line point cloud, which is acquired along a straight line using a laser scanner, 
and the scanned trajectories are linearly arranged. Compared with the scattered point cloud, this type of point cloud 
data is relatively more regular, and the linear scanned trajectories are retained in the point set, but the point clouds 
on each line are arranged in a disordered manner. 

The third type is gridded point cloud, which is calculated by grid and interpolation on the basis of the original point 
cloud, a vertex in the matrix grid corresponds to each point in the data point set, which is also called matrix point 
cloud. 

The fourth type is polygonal point cloud, which utilizes the data point set obtained from 3D sensors arranged in a 
plane parallel to each other, and they are connected to each other with straight lines, obtaining a planar polygonal 
structure with nesting and topological relationships, which belongs to the category of ordered point cloud. 

 
III. A. 2) Feature extraction for RGB-D point cloud 
(1) Normal vector feature 

Normal vector features, also called normal vector features, are one of the most commonly used features in 2D 
image and 3D point cloud processing. There are two main methods for 3D point cloud normal vector estimation, 
PCA transform based normal vector algorithm and integral map based normal vector algorithm. Since the normal 
vector features obtained by the PCA transform-based normal vector algorithm are more accurate and convenient 
for the calculation of the next curvature features, the PCA transform-based normal vector algorithm is used in this 
paper to calculate the normal vector information of RGB-D point cloud data. 

The normal vector algorithm based on PCA transform is also known as principal component analysis or 
microtangent plane method. The main idea of estimating normal vector based on PCA transform is: 

If the surface of the point cloud is smooth (surface surface is continuous of high order), we can use principal 
component analysis to compute the plane under the least squares of the K domain of a point to represent the 
tangent plane of that point. Subsequently, the covariance matrix of that K-field is computed, and the eigenvector 
corresponding to the smallest eigenvalue in the covariance matrix is the normal vector of that point. Compared with 
the integral map method of calculating normal vectors, the PCA transform method is more accurate and more widely 
applicable (the integral map method of calculating normal vectors is only applicable to ordered point clouds, while 
the PCA transform method of estimating normal vectors of surfaces can be applied to both ordered and unordered 
point clouds). 

In a smooth surface, given a point set  , ( )i k ip N p , the k -field of an arbitrary point ip  in the point set is ( )k iN p , 

and the representation of the least squares plane of the k -neighborhood fit to it is: 

  2
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k
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neighboring points to the plane. 
Subsequently, the eigenvalue decomposition of the small squares plane is performed using the covariance matrix 

C , and the eigenvector corresponding to the smallest eigenvalue of the matrix C  is the normal vector of the point 
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The eigenvectors 0v


, 1v


, 2v


 resulting from the decomposition of the covariance matrix C  are the same as the 

corresponding eigenvalues 0 , 1 , and 2  if the condition 0 1 2    . Then the feature vector n


 

corresponding to point ip  is denoted as: 

 0n v
 

 (6) 

(2) Curvature feature 
Curvature feature is an important feature in 2D image and 3D point cloud processing, which indicates the 

curvature of the surface, the normal vector change of the point is small when the curvature is small, indicating that 
the change of the region is relatively smooth; on the contrary, the normal vector change of the point is large when 
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the curvature is large, indicating that the change of the surface of the region is large, so in the process of detecting 
the edge contour of the cloud, the curvature feature can be used as an important reference factor for judging the 
feature point. Therefore, the curvature feature can be used as an important reference factor in the judgment of 
feature points in the process of edge profile detection of point clouds. 

The calculation of curvature feature in RGB-D point cloud is defined as [23]: 

 0

0 1 2

k


  


 
 (7) 

The eigenvalues 0 , 1 , and 2  have been found during normal vector computation, are the three 

eigenvectors corresponding to this covariance matrix, and satisfy the condition 0 1 2    . And the center of mass 

of the point set  , ( )i k ip N p  is ikpp
k


, and if the direction of the normal vector of the point is set to be positive, 

the direction of the curvature of the point is determined by whether the point ip  is in the center of mass point p


 

in front of or behind the center of mass point p


, if 0ip p 


, the curvature is positive, if 0ip p 


, the curvature 

is negative, the curvature sign ( )sign k  is defined as: 

   ( )
T

isign k sign p p n  
 

 (8) 

(3) Extraction of neighborhood information 
When using LightGBM classifier training to predict the edge points of RGB-D point cloud data, the first step is to 

get the input data, and in this paper, we hope to get the data that contains the features of the point cloud's 
neighborhood, such as concavity and convexity, and Euclidean distance, in addition to the color, depth, normal 
vector, and curvature features. In this paper, we hope to use the image sliding window algorithm to obtain the 
information of the domain points of the point cloud and let the LightGBM classifier adaptively learn the neighborhood 
features of the point cloud. 

 
III. B. Improved RGB-D urban scene segmentation algorithm 
III. B. 1) Dynamic Adaptation Convolution 
Convolutional neural networks are a core building block in deep learning techniques, they efficiently extract features 
from images of urban scenes by performing convolutional operations. These networks utilize a series of 
convolutional layers to process image data, with each layer capturing local dependencies and features by 
performing filtering operations on the input image. In traditional convolutional neural network architectures, the 
convolutional layers typically employ regular sampling grids to perform these operations, e.g., a typical 3 3  
convolutional kernel would be applied in the form of a fixed-spaced grid over the input feature map to localize and 
extract features at the corresponding locations. 

Let R  denote the sampling grid, and instead of being a fixed structure, it can be adapted to the specific features 
of the input data. For example, in the 3 3  convolution operation, the definition of the regular sampling grid R  is 
extended to accommodate features of different shapes and scales in the image, allowing the network to capture 
complex patterns and variations in the image more efficiently: 

 ( 1, 1), ( 1,0), , (0,1), (1,1)R       (9) 

The Dynamic Adaptive Convolution (DAConv) proposed in this chapter is able to automatically adjust its sampling 
shape by introducing a new coordinate generation algorithm. The algorithm is able to generate initial sampling 
coordinates for convolution kernels of different sizes and shapes. 

However, the sampling grid is regular, whereas dynamically adapted convolution targets irregularly shaped 
convolution kernels. In order to allow irregular convolution kernels to have sampling grids, an algorithm is created 
for convolutions of arbitrary size that generates the initial sampling coordinates for the convolution nP , the flow of 
the algorithm is shown in Algorithm 1. The sampling grids are first generated as regular sampling grids, then irregular 
grids are created for the remaining sampling points, and finally they are connected to generate the overall sampling 
grid. It is shown to generate initial sampling coordinates for convolution of arbitrary size. The sampling grid for the 
regular convolution is centered at the point (0, 0), and the point (0, 0) in the upper left corner is set as the sampling 
origin in the algorithm in order to accommodate the size of the convolution used. 

After defining the initial coordinates nP  for the irregular convolution, the convolution operation corresponding to 

position 0P  can be defined as follows: 
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 0 0( ) ( )nConv P w P P    (10) 

In Eq. (10), w  denotes the convolution parameter. Irregular convolution operation is impossible to realize, 
because irregular sampling coordinates cannot be matched with the corresponding size convolution operation. 

Dynamically adapted convolution breaks through the limitations of traditional convolution kernels in terms of 
number and shape, and is able to realize the operation using an arbitrary number of convolution kernels and arbitrary 
shapes. Unlike the depth-separable convolution designed only for specific object shapes, dynamic adaptive 
convolution does not stop at the exploration of fixed size and shape. The core of its design lies in solving the related 
problems by introducing the offset mechanism, which enables the convolution operation to effectively capture the 
feature information of irregular samples and supports an arbitrary number of convolution parameters. 

 
III. B. 2) Enhanced Channel Feature Normalization 
Batch normalization (BN) is widely used as a standard normalization method in various convolutional neural 
networks, which effectively speeds up the model training process and mitigates the overfitting problem, but exhibits 
a high sensitivity to the batch size and is susceptible to changes in the sample appearance. Although batch 
normalization reduces image-level variance, it fails to normalize channel feature vectors at the pixel level. In 
semantic segmentation tasks, accurate utilization of channel features is essential to label each pixel with an 
accurate category. 

Inspired by previous ideas, this chapter proposes Enhanced Channel Feature Normalization (ECFN) for training, 
which combines the advantages of batch normalization and layer normalization to optimize the performance by 
adaptively exploiting the dependencies of channels and batches, and it performs the normalization along the axes 
of N , H , and W  (batches, heights, and widths) and C , H , and W  (channels, heights, and widths) for the 
inputs Normalization is performed and the normalized output is fused using the adaptive parameter  . The   
parameter is dynamically adjusted according to the activation features of the network layer to optimize the 
normalization effect, thus better adapting to the changes during the training process. Enhanced channel feature 
normalization enhances the model's invariance to changes in image appearance, making the model more able to 
focus on the essential features of the image, which is very effective in improving the model's generalization ability. 
The specific algorithmic process of enhancement channel feature normalization is described in detail below. 

During the training period of the model, the enhancement channel feature normalization first calculates the mean 

1  and variance 2
1  of the input layer along the  , ,N H W  axis. This step targets the feature maps of all samples 

in the entire batch, thus obtaining statistical information across batches and helping to mitigate the effects of sample 
variation in a single batch: 

 1
1

1 n
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Next, the algorithm computes the mean 2  and variance 2
2  along  , ,C H W . This step focuses on 

characterizing the features of the individual channels, capturing the data properties within the channels and helping 
to refine the model's treatment of each channel feature: 
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Next, 1x  and 2x  are normalized using 1 , 2
1  and 2 , 2

2 , respectively, with ò  being a constant. This step 

helps the model process the information more consistently by reducing the variation of the data in the specified 
dimensions: 
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Next, the learnable parameter   is introduced to adaptively balance the normalized output along the  , ,N H W  

and  , ,C H W  axes, a step that allows for flexibility in controlling the influence of the batch normalization and layer 

normalization strategies to optimize the overall normalization effect: 

 1 2(1 )y x x     (17) 

Specifically, the update formula for   is as follows: 

 new old
L  



 


 (18) 

In Eq. (18), new  denotes the updated value, old  denotes the current value,   denotes the learning rate, and 

L





 denotes the gradient of   to the loss function. 

The final output of the enhanced channel feature normalization is accomplished by combining the above 
normalization results with the adaptive parameters as shown in Equation (19): 

 Y y    (19) 

In Eq. (19),   and   are learnable parameters. 

IV. RGB-D City Scene Segmentation Simulation Experiments 
In this chapter, RGB-D urban scene segmentation simulation experiments will be conducted to test the performance 
of the RGB-D urban scene segmentation algorithm based on dynamic adaptive convolution proposed in this paper 
through comparison experiments and ablation experiments. 
 
IV. A. Experimental environment configuration 
The experiments in this chapter are implemented based on the deep learning framework PyTorch and run on a 
single RTX 3060Ti GPU. The details of the environment platform are shown in Table 1. 

Table 1: Detailed parameters of experimental environment 

Parameters Configuration 

CPU Intel(R) Xeon(R) Gold 5218 CPU 

Memory 16G 

Hard disk 5T 

GPU NVIDIA RTX3060Ti 

display memory 12GB 

Operating system Ubuntu 18.05 

CUDA version 10.1.88 

cuDNN version 8.2.0 

Python version 3.6 

Deep learning framework PyTorch 1.5.0 

 
IV. B. Experimental parameterization 
Since this paper is dedicated to the study of semantic segmentation of urban scenes, Cityscapes and CamVid, the 
most commonly used urban scene datasets in the field of image semantic segmentation, are chosen, while the 
CamVid dataset is used as the validation set. Deep images are encoded into HHA images using the FastDVFN 
network proposed in this paper as the backbone network of the encoder after pre-training the improved ResNet-
101 and ResNet-50 networks, respectively. In order to increase the diversity of the images, data augmentation is 
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applied to the input images by applying operations such as random horizontal flipping, scaling and cropping to train 
them in a supervised learning manner, and the loss function chosen during network training is the cross-entropy 
function, which is computed as shown in Eq. (20): 

 
^

1

1
( log( ))

N

i i
i

Loss y y
N 

   (20) 

where N  denotes the total number of pixels in the input image, iy  denotes the label value corresponding to pixel 
i  in the image, and 

^

iy  denotes the predicted value of pixel i  by the network model. The loss curve during the 
training process is shown in Fig. 1. It can be seen that the FastDVFN network in this paper achieves convergence 
and fitting at about 250 training rounds. 

 

Figure 1: Loss function curve 

IV. C. Comparative Experimental Analysis 
In this section, the proposed FastDVFN network is compared with other urban scene semantic segmentation 
networks on the Cityscapes dataset, and the experiment compares not only advanced large-scale semantic 
segmentation networks, but also more advanced lightweight real-time semantic segmentation networks. The 
evaluation metrics used include mIoU, the running speed of the network and the number of parameters of the 
network. 
 
IV. C. 1) Analysis of Cityscapes Test Set Comparison Results 
The FastDVFN network of this paper is trained on the Cityscapes training and validation sets, and then the prediction 
results are obtained on the test set and uploaded to the Cityscapes online server to get the final test set experimental 
results as shown in Table 2. This paper FastDVFN network achieves 72.9% in mIoU evaluation metrics and runs at 
88 frames/s without using additional data and pre-trained models for training. This paper FastDVFN network 
significantly outperforms all the compared lightweight semantic segmentation networks in mIoU evaluation metrics, 
and even outperforms several large-scale semantic segmentation networks. The Pyramid Scene Parsing Network 
(PSPNet) and SFNet achieve 77.7% and 79.4% in the mIoU evaluation metrics, but the FastDVFN network in this 
paper obtains better segmentation accuracy with only 1% and 5% of its parameter number, respectively. In terms 
of network efficiency, the FastDVFN network operates 76% and 29.41% faster than FPENet and LEDNet, 
respectively. Although both the two-way segmentation network (BiseNet) and DABNet are faster than the FastDVFN 
network, their mIoU evaluation metrics are decreased by 4.94% and 5.08%, respectively, compared to the 
FastDVFN network in this paper. In terms of network size, FastDVFN network in this paper has only 0.63m 
parameters, which is at a lower level among all compared semantic segmentation networks, and it can be seen that 
FastDVFN network in this paper has fewer redundant parameters, and the network structure is streamlined and 
efficient. 
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Table 2: Comparative experimental results on Cityscapes dataset 

Network Network name MioU (%) Operating speed (frame·s-1) Number of parameters (m) 

Large-scale network 

SegNet 57.6 18 29.6 

Deeplab 63.2 <1 - 

FCN-8S 66 4 134.44 

Dilation10 66.9 <1 - 

Deeplabv2 70.3 <1 44.1 

PSPNet 77.7 <1 65.67 

SFNet 79.4 29 13.45 

Lightweight network 

ENet 57.6 78 0.33 

CGNet 64.6 50 0.43 

EDANet 67.8 84 0.77 

ERFNet 68.5 44 2.12 

BiSeNet 69.3 111 5.77 

FPENet 69.7 50 0.48 

DABNet 69.2 101 0.81 

ICNet 70.8 33 26.47 

LEDNet 71.4 68 0.86 

FDDWNet 70.5 55 0.88 

LRNNet 72.4 76 0.73 

FastDVFN 72.9 88 0.63 

 
The scatterplot of the lightweight networks on the Cityscapes test set compared in terms of segmentation 

accuracy and running speed is specifically shown in Figure 2. It can be seen that the FastDVFN network of this 
paper is located in the upper right corner of the image, and its segmentation accuracy surpasses all other lightweight 
semantic segmentation networks, while the running speed also maintains a high level. Therefore, the FastDVFN 
network in this paper is able to better balance the accuracy and efficiency with a smaller number of parameters, 
and achieves a better balance between segmentation accuracy, network size and running speed. 

 

Figure 2: Comparison of precision and speed of lightweight network 

IV. C. 2) Analysis of CamVid Validation Set Comparison Results 
Experiments were conducted on CamVid training and validation sets to train this paper FastDVFN network and 
validation results were obtained on the test set as shown in Table 3. Without additional data and pre-trained models 
for training, the FastDVFN network achieves 68.1% on the mIoU evaluation metrics and runs at 108 frames/s. The 
FastDVFN network significantly outperforms all compared lightweight real-time semantic segmentation networks on 
the mIoU evaluation metrics. Despite the higher accuracy of PSPNet, the FastDVFN network is smaller and runs 
faster. Compared with ICNet and FDDWNet, FastDVFN network slightly improves in mIoU evaluation metrics, while 
the operation speed is improved by 4.7 times and 1.4 times, respectively. 
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Table 3: Comparative experimental results on the CamVid dataset 

Network Network name MIoU (%) Operating speed(frame·s-1) 

Large-scale network 

SegNet 47.4 7 

FCN-8S 57.8 - 

Deeplab 61.8 6 

PSPNet 70 8 

Lightweight network 

ENet 50.8 58 

FPENet 65.6 - 

BiSeNet 66.6 - 

CGNet 65 - 

EDANet 65.7 - 

FDDWNet 65.9 77 

ICNet 66.3 23 

FastDVFN 68.1 108 

 
IV. D. Analysis of ablation experiments 
The purpose of the ablation experiment is to verify the usefulness of this paper's dynamic adaptive convolution-
based RGB-D urban scene segmentation method at each stage, and the results of the ablation experiment are 
shown in Table 4. From the experimental data in the table, it can be seen that compared with the baseline model, 
the MioU evaluation index decreases by 5.6% after adding the DAConv module alone, and the segmentation 
accuracy decreases, while the number of parameters decreases by 1.1, and the processing speed of the model 
improves. Comparing the effectiveness of the DFConv and DAConv modules, the DAConv module proposed in this 
paper has some improvement in the number of parameters and frame rate, while the DFConv module has a lower 
decrease in the MIoU evaluation index than the DAConv module. Adding ECFN module alone, the MIoU decreased 
by 6.2%, and when the combined approach of two modules, DAConv+ECFN, was used, the decrease of MIoU 
increased further, but the number of parameters decreased by 5.6m compared to the baseline model, and the 
running speed increased by 39 frames/second, which is a significant improvement of the model's performance, and 
is crucial for modeling the performance of real-time or need for fast response applications. Although the 
incompatibility between the modules resulted in a decrease in the MioU evaluation metrics, the significant 
optimization of the number of parameters and the running speed effectively improved the efficiency of the model. 
When choosing to use these modules, it is necessary to make a balanced consideration between the efficiency and 
accuracy of the model. 

Table 4: Ablation experiment 

- Module MioU (%) Number of parameters r(m) Operating speed (frame·s-1) 

DVFN (baseline model) - 59.6 18.2 43.6 

FastDVFN 

DFConv 57.6 17.1 45.8 

DAConv 54 16.2 46.5 

ECFN 53.4 13.3 70.4 

DAConv+ECFN 50 12.6 82.6 

V. Conclusion 
With the dynamic adaptive convolution-based RGB-D urban scene segmentation algorithm (FastDVFN) proposed 
in this paper, an important breakthrough in segmentation accuracy and computational efficiency is realized. On the 
Cityscapes dataset, the FastDVFN network achieves an mIoU index of 72.9%, which significantly outperforms other 
similar networks, and has a computational speed of 88 frames/s. Compared with existing large-scale semantic 
segmentation networks, FastDVFN only lags behind PSPNet and SFNet in terms of accuracy, but its number of 
parameters is only 1% and 5% of theirs, which demonstrates an excellent lightweight design. Especially in the 
experiments on the CamVid dataset, the mIoU of FastDVFN is 68.1%, and the running speed is 108 frames/s, which 
is far beyond the similar networks. The experimental results show that by introducing Dynamic Adaptive Convolution 
(DAConv) with Enhanced Channel Feature Normalization (ECFN) module, the FastDVFN network not only obtains 
an improvement in accuracy, but also exhibits a better balance between the number of parameters and the running 
speed. In addition, the ablation experiments further validate the enhancement effect of each module on the 
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performance of the algorithm. Therefore, the application of FastDVFN in urban scene segmentation has wide 
prospects. 
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