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Abstract Currently, the construction industry is facing the challenge of balancing modularity and personalization 
needs, and assembly buildings are promoted by various countries for their high efficiency and environmental 
advantages. In this study, a comprehensive optimization scheme is proposed for the problem of balancing 
modularity and customization of assembled buildings in an intelligent design environment. Firstly, a modular design 
and customization demand balance model is constructed to analyze the relationship between standardization and 
customization, module flexibility and adaptability, and 3D point cloud data segmentation using BIM technology. 
Secondly, a multi-objective optimization model of “cost-duration-carbon emission” for the assembly building 
construction process is constructed based on the Improved Gray Wolf Optimization (IGWO) algorithm, and the 
dynamic weighting method is introduced to solve the optimization problem under different construction process 
execution modes. Simulation results show that the optimization accuracy of IGWO algorithm on the test function 
f1(x) reaches 0.0015, which is more than 95% higher than that of GWO algorithm. It was verified that the optimized 
assembled component combination reduced the duration by 20%, carbon emission by 12.25%, and cost by 0.56% 
compared to the all-cast-in-place solution in the baseline scenario. It was found that the optimal range of 
prefabrication rate for assembled buildings should be controlled in the range of 20%-60%, which is determined 
according to the specific needs of the project, and should not be pursued as a high prefabrication rate. The method 
provides a feasible way to achieve a balance between modularity and individualization for assembly buildings in an 
intelligent design environment. 
 
Index Terms assembly building, modular design, personalized balance, BIM technology, gray wolf optimization 
algorithm, multi-objective optimization 

I. Introduction 
With the continuous development of science and technology and society, the construction industry is facing new 
challenges and opportunities [1]. Traditional construction methods have problems such as low efficiency and high 
resource waste, which bring a great burden to the environment [2]. And as an emerging construction method, 
assembly building has received more and more attention and favor by virtue of its high efficiency, sustainability and 
flexibility [3], [4]. 

Assembled building refers to the prefabrication and processing of all kinds of components in factories, and then 
transported to the site for assembly, which finally forms a complete building [5], [6]. Compared with traditional 
construction, its construction time is shorter, which can significantly improve the construction efficiency [7]. 
Modularization and personalized design as two core concepts in assembly building, modularization design is based 
on standardized modules, which achieves the improvement of construction efficiency and quality [8], [9]. 
Personalized design, on the other hand, pursues uniqueness and adaptability to meet the diverse needs of users 
[10]. In actual engineering, how to balance modularization and personalized design has become an important issue 
[11]. The optimization of the balance between the two needs to be considered from the perspectives of technology, 
economy, environment, design and operation, etc. By reasonably balancing modularization and personalized design, 
assembly building construction can improve efficiency, reduce costs, and meet the diverse needs of users [12]-[15]. 
The intelligent design environment provides an optimized solution for the balance of modularity and personalization 
in assembly buildings, which is based on the integration of technology and the reconstruction of the architectural 
design process to achieve the balance of modularity and personalization in assembly buildings [16]-[19]. 

As an important development direction of contemporary construction industry, assembly building is gradually 
changing the production mode and technical route of traditional construction industry. Traditional building 
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construction is generally characterized by serious waste of resources, environmental pollution, low construction 
efficiency and other problems, while assembly building can significantly improve construction efficiency, reduce 
environmental impact and improve construction quality through factory production and on-site assembly. However, 
in practice, assembly building still faces the contradiction between standardization and individualized demand. 
Standardization is the basis for achieving scale efficiency and cost control in assembly buildings, but excessive 
standardization can lead to uniform buildings that fail to meet the diverse aesthetic and functional needs of users. 
How to maintain the advantages of high efficiency and environmental protection of assembled buildings while 
meeting the individual needs of customers has become a key challenge in the development of current assembled 
buildings. Intelligent design environments offer new possibilities for solving this contradiction, and through digital 
technology and parametric design, it is expected to find a balance between modularity and personalization. The 
international construction industry has begun to explore the use of BIM technology, artificial intelligence and other 
means to enhance the design flexibility and construction optimization of assembled buildings, but the relevant 
research is still in its infancy and lacks systematic optimization methods and evaluation systems. In addition, in the 
context of peak carbon and carbon neutral targets, the problem of carbon emission in the construction industry has 
become increasingly obvious, and it has become particularly important to optimize the construction process of 
assembled buildings in a multi-objective manner, taking into account both economic and environmental benefits. In 
this study, we firstly establish an equilibrium model by analyzing the modular design principle and customized 
demand characteristics; secondly, we use BIM technology for 3D point cloud data processing and parametric 
modeling of assembly buildings; thirdly, we sort out the assembly building construction process and construct a 
multi-objective optimization model of “cost-duration-carbon emission”; finally, we propose the Improved Gray Wolf 
Optimization Algorithm (IGWO) to solve the optimization problem and validate the optimization model through 
simulation experiments and case studies. Finally, the improved gray wolf optimization algorithm (IGWO) is proposed 
to solve the optimization problem, and the effectiveness of the method is verified through simulation experiments 
and case studies. This research will provide theoretical support and practical guidance for the design and 
construction of assembly buildings, and promote the development of the construction industry in the direction of 
digitalization, intelligence and greening. 

II. Balancing modular design with customization requirements 
II. A. Modular Design Principles 
(1) The relationship between standardization and customization. The balance between standardization and 
customization is key to achieving successful modular design. Standardization provides an efficient way to reduce 
costs, increase productivity, and ensure consistent quality by defining common modules. However, in real-world 
projects, customers often have unique needs, so the relationship between standardization and customization must 
be handled carefully. Developing clear definitions of standard modules ensures that modules widely used in projects 
are standardized and generic, providing alternative choices of standardized modules that can be moderately 
customized when they are needed to meet specific needs without breaking the overall standard. 

(2) Flexibility and adaptability of module design. Module design flexibility and adaptability is to ensure that the key 
to customization needs to be met. Modules must have enough flexibility to adapt to the unique characteristics of 
different projects and the individual needs of customers. Modules should be designed to be configurable and able 
to be flexibly combined and adapted according to project needs. Modules should be designed to be extensible so 
that they can be easily improved if they need to be expanded or upgraded in the future. Integrating some 
customization options into the module design allows flexibility to respond to individual needs while maintaining 
standardization. 

 
II. B. Customized Demand Analysis 
Customization needs are varied and can encompass all aspects of a building project, and understanding the 
different types of customization needs is critical to meeting client expectations and ensuring successful design and 
construction. Exterior customization involves the need to personalize the building's appearance, style and finishes, 
such as façade design, color choices and architectural elements. Functional customization focuses on the 
customization of the building's internal functions, including the personalization of space layout, equipment 
configuration and functional requirements. Technical customization involves the individualization of building systems, 
material selection and technical specifications, such as special energy efficiency requirements or the integration of 
intelligent systems. Environmental adaptation customization addresses the need for customization for specific 
geographic, climatic or environmental conditions, such as seismic design and energy efficiency design. 
Sustainability customization emphasizes the environmental friendliness and sustainability of the building, including 
the use of green materials, energy efficiency and eco-friendly design. Client expectations and requirements for a 
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building project have a direct impact on the degree of customization, and the scope of customization is clarified 
prior to project initiation to ensure that client expectations are aligned with actual delivery. Customization and 
implementation usually takes more time. In time-critical projects, there is a need to weigh the degree of 
customization against the project schedule and ensure that the chosen customization solution is technically feasible 
to avoid unnecessary technical challenges and delays. 
II. C. Equilibrium modeling 
Establishing the link between module design and customization requirements is a key part of balancing the model. 
Subdivide the customization requirements into different types such as appearance, functionality and technology, 
and determine the impact of each type on the module design. Determine the key attributes of the module design, 
including the degree of standardization, substitutability, flexibility, etc., in order to understand how they correspond 
to the different types of requirements. Adaptability analysis is performed for each module to determine its level of 
adaptation to different customization requirements, including its ability to satisfy and what level of modification is 
required. Constructing a balanced model aims to maximize the benefits of module design while meeting 
customization requirements, and the model needs to be constructed taking into account a variety of factors to ensure 
that the balance can be achieved in an actual project. Based on the project requirements and customer expectations, 
the degree of customization is determined, and a set of trade-offs including time, cost, and technical complexity are 
developed to assist in decision-making. For each customization requirement, assess the risks it introduces, consider 
the possible impact of different levels of customization on the successful delivery of the project, establish an effective 
project management process to ensure that appropriate attention is paid to the management of module design and 
customization requirements throughout the project lifecycle, and introduce a real-time adjustment mechanism to 
allow for adjustments to be made as the project progresses to respond to changing requirements. 
 
II. D. Application of BIM technology in assembled buildings 
BIM technology [20], assembly building realizes a more refined, efficient and sustainable construction practice. The 
main application of BIM technology in assembly building construction process lies in the construction of building 
model before construction. Therefore, the application of BIM will be optimized for the modeling of the walls of the 
assembled building. 

The multi-objective wall 3D reconstruction is the most critical and important goal in the assembly building 
construction process. The application of wall 3D reconstruction technology can significantly improve the construction 
accuracy and efficiency. A 3D model of the construction site can be built from the point cloud data captured by the 
camera or laser scanner. This reduces a lot of manual measurement work. The overall segmentation process of 3D 
point cloud data segmentation for assembled building walls is shown in Figure 1. 

Start

RANSAC algorithm to segment 
wall point cloud data

Get a large number of point cloud 
data of the wall

Calculate plane distance and 
normal vector angle

Merge all point clouds in the same 
plane

End
 

Figure 1: The overall segmentation process of 3d point cloud data 

Based on the randomized sampling iterative algorithm (RANSAC), the specific segmentation process of the 
algorithm is as follows: 
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Assuming that there are on  missing points and cn  error points in the 3D point cloud data, the probability that 

an error point is just a missing point is as in equation (1): 
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In random sampling, a larger number of iterations is set, the minimum number of samples is b , and the probability 

2P  that the sampling result is qualified is shown in equation (2): 

 2 1 (1 )bP     (2) 

In Eq. (2),   denotes the likelihood of error-free near misses in the point cloud data. Then there is equation (3): 
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CAD technology (Computer Aided Design) has a wide application base and mature technology system in the 
construction industry. It can accurately create and edit two-dimensional drawings, providing reliable data support 
for architectural design. For assembled buildings, CAD technology can help designers accurately draw the plan, 
elevation and section of wall components, etc., providing detailed size and location information for subsequent 3D 
model reconstruction. 

Revit technology, as one of the core software of BIM technology, is able to realize the precise correlation between 
components through parametric design. In the 3D model reconstruction of the wall of an assembly building, Revit 
technology can automatically create a 3D model of the wall according to the dimensional and positional information 
in the CAD drawings, and maintain consistency with the original design. 

The combination of CAD technology and Revit technology can realize the seamless connection of data. Through 
specific data interfaces or plug-ins, CAD drawings can be imported directly into Revit, avoiding information loss and 
formatting errors during data conversion. This seamlessness not only improves work efficiency, but also ensures 
the accuracy and reliability of wall 3D model reconstruction. 

By combining CAD technology and Revit technology, the advantages of both can be fully utilized to realize the 
efficient and accurate reconstruction of the 3D model of the wall. CAD technology provides accurate 2D drawing 
data, while Revit technology converts this data into an intuitive 3D model, providing comprehensive information 
support for the design, construction, and operation and maintenance of the assembly building. 

 
II. E. Prefabricated component library and parametric modeling module development 
The sharing of assembly building information among projects is realized through the prefabricated component family 
library, which is mainly used to achieve standardization and normalization for BIM designers in the design process. 
The prefabricated component library in this paper consists of three functions, namely prefabricated component entry 
function, prefabricated component preview function, and prefabricated component loading function. Prefabricated 
components library module technology route: prefabricated components classification →  prefabricated 
components into the library → prefabricated components preview → prefabricated components loading. 

In this paper, prefabricated components are divided into structural system and enclosure system according to the 
system, in which the structural system can be divided into vertical components and horizontal components, and the 
enclosure system is divided into exterior wall enclosure components and interior wall enclosure components, and 
the creation process of prefabricated component family can be divided into the following five steps: 

(1) Select the corresponding type of family sample; 
(2) Modeling according to the design with the commands of stretching, fusing, rotating, releasing, fusing, releasing, 

fusing, and hollow shape; 
(3) Setting the dimensional parameters of the “family” and the spatial logic of the relationship between the 

parameters; 
(4) Setting other attributes of the family; 
(5) Load the family into the project for testing. 
The parametric modeling program involved in this paper contains five functions: generating axis network, columns, 

beams, structural beams attached to building walls, and statistical information on building wall loads, which are 
cumbersome to use separately with the Add-InManager plug-in, and therefore a new “Structural Modeling” tab has 
been created in Revit, and the above five functions can be set via buttons. Therefore, a new “Structural Modeling” 
tab is created in Revit, and the above five functions are linked to the program set by buttons. 
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(1) The designer clicks the “Generate Axis Nets” button, prompts the family type of the axis nets used and the 
elevation at which the nets are placed, passes the button value to the system, which reads the line information of 
the walls at the selected elevation and stores it in the collection, passes the command to the transaction, the 
program traverses all the wall models in the model, and then executes the command to generate the axis nets; 

(2) The designer clicks the “Generate Columns” button, prompts the family type of the columns used and the 
elevation at which the columns are placed, the elevation of the top of the columns is the elevation of the 
superstructure by default, passes the value of the button to the system, and the program reads all the intersections 
of the axial network at the elevation and collects them, and then passes the commands to the transaction, and then 
executes the command of generating the columns; 

(3) Identify the axis network in the view, combine the method of beam modeling in Revit, and judge the beam size 
with the structural design principle, select the modeling elevation and family type, and complete the process of 
automatic beam generation. The specific process of beam generation is similar to that of columns; 

(4) The designer clicks the “wall flush with the bottom of the beam” button, selects the wall that needs to be flush 
with the bottom of the beam, passes the value of the button to the system, and the system reads the height 
information of the beam at the elevation and collects it, and subtracts the top elevation of the wall from the height 
of the beam, and the program passes it to the transaction to execute the command of modifying the elevation; 

(5) Revit wall model after the creation of windows and doors the software will automatically calculate the volume 
of the wall after the opening, proposed to pick up the building wall volume parameters and structural load coefficients 
combined with the method of exporting line loads, the calculation formula is shown in equation (4). 

      Line load wall volume wall length load factor   (4) 

The program collects the volume and length information of the walls, and automatically calculates the line loads 
of all building walls according to the calculation of the input load coefficients based on the materials of the walls. 
Specific realization of the process is: the designer clicks on the “line load statistics” button, prompted to enter the 
line load coefficient, the system collects all the ID, volume, length parameters of the wall, and then passes them to 
the transaction, and finally executes the calculation commands and sets the path of excel export. 

III. Optimizing the balance between modularity and personalization in assembled 
buildings 

III. A. Construction process organization 
There are many processes in the building construction site, from the basic engineering construction to the 
completion and acceptance, in which each sub-project contains many subtle processes. At present, the main forms 
of building construction include cast-in-place construction and assembly construction. With the continuous 
development of the construction industry, cast-in-place construction has been difficult to meet the requirements of 
people's environmental protection, and assembly construction can not only effectively improve the construction 
efficiency, but also effectively reduce the pollution of the construction process on the environment, therefore, many 
countries around the world are promoting the development of assembly construction. In this paper, the assembly 
construction mode process flow is chosen to carry out research, which can not only improve the feasibility of the 
research, but also comply with the development trend of the construction industry. 

From the current practice of assembly construction, the construction process of stacked plate components is 
more standardized and the construction process is more regulated, so this paper takes the installation of stacked 
plate components as an example to sort out the process flow of the installation of stacked plate components in 
assembly buildings, and establishes a multi-objective optimization model on this basis. 

 
III. B. Multi-objective optimization problem 
Generally speaking, the installation process of laminated panel components can be sequentially divided into the 
following processes: entry and inspection of components, erection of equipment support, cleaning of the grass-roots 
level and construction surface, arrangement of embedded parts, lifting and transportation of laminated panels, 
installation of laminated panels in place, grouting operations, node protection, site cleaning and other processes. 
At the same time, through data collection and on-site research, the labor, material and machinery consumption of 
each process can be obtained, so that the cost and carbon emission of each process can be further calculated. 

In general, using the relevant principles of mathematical function conversion, the multi-objective optimization 
problem can be converted into a mathematical model, as shown in equation (5). 

 
min ( ( ), ( ), ),

. . ( ) 0, ( ) 0

mY f x f x x T

s t g x h x
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where, ( ), ( ),f x f x     represents each sub-objective, each sub-objective has the corresponding mathematical 
function expression; mT   is the feasible solution space, in which each solution can be applied to the original 
problem, but not all of them are the optimal solution, in general, there are only a few solutions that can make the 
relative minimization of the objective function; ( )g x   and ( )h x   are the constraints of the objective function, 
usually there are more than one constraints. are constraints on the objective function, usually there are more than 
one constraint. 

After establishing the multi-objective optimization model, the next step needs to be solved for the model, because 
the multi-objective optimization model has certain specificity, so it needs to be processed by using special methods, 
including the following methods: 

(1) Objective planning method. This method is relatively simple and suitable for multi-objective optimization 
problems with few parameters and few constraints. Firstly, the optimal value of each sub-objective is found, and 
then the optimal value of each sub-objective is treated as the constraints of the original problem. Finally, the 
difference between each sub-objective and its corresponding optimal value is reduced, and the final optimal solution 
is the optimal solution of the original problem. 

(2) Fixed weight method. This method utilizes weight coefficients to measure the importance of each sub-objective 
to the overall objective, and calculates the composite function value through the weight coefficients between 0 and 
1 and the sub-objective values, and finally compares the corresponding composite function value of each feasible 
solution, and if the composite function value is optimal, it means that the corresponding feasible solution is optimal. 

(3) Dynamic weighting method. Similar to the fixed weight method, a certain weight is assigned to each sub-
objective, but the method adopts dynamic weights, and the weight coefficients change during each calculation, thus 
enhancing the randomness and global nature of the solution process, which is suitable for the multi-objective 
optimization problems that are more balanced among the sub-objectives and have no obvious dominance. 

The above three methods are the three most widely used methods in the multi-objective optimization solution 
process, among which, the dynamic weighting method has the following advantages compared with the remaining 
two methods: firstly, the weighting coefficients are easy to manipulate, which can quickly and reasonably transform 
the multi-objective optimization problem into a single-objective optimization problem; Secondly, the weight 
coefficients adopt dynamic change to avoid falling into local optimum in the solution process and improve the 
scientificity of the optimization results; in addition, the method is used maturely, has certain reference experience, 
and can achieve good coordination with computer language algorithms. Therefore, in this paper, the dynamic weight 
method is chosen to solve the multi-objective optimization problem, and the weight coefficients are generated by 
Eq. (6) in the iterative process. 

 
1 2 3

i
i

a
w

a a a


 
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where, iw  is the weight coefficient of the i th sub-objective, and 1, 2,3i  ; ia  is a random number between 0 and 

1. During each iteration, the algorithm system assigns a value to ia   and then calculates the dynamic weight 

coefficients, and further uses the sub-objective function values and the weight coefficients to calculate the 
comprehensive objective function values, realizing the conversion of multi-objective optimization problems to single-
objective optimization problems. 

 
III. C. Optimization modeling 
In the assembly building construction site, the duration, cost and carbon emission of the laminated panel component 
installation process depend on the input labor, materials, machinery and other factors. Yi Changsheng et al. found 
that prefabricated component factory and assembly building construction site processes can be divided into normal 
mode, rush mode and saving mode for research, and different execution modes correspond to different production 
resources and consume different costs and durations. On this basis, after considering the carbon emission factor, 
the on-site installation process of laminated panel components can also be divided into the above three modes, and 
the same process in different execution modes corresponds to different costs, durations, and carbon emissions, 
and the search for the optimal combination of multi-objective execution modes of the process can provide guidance 
for the optimization of on-site construction. 

The optimization objective of this paper is the multi-objective optimization of “Cost C  -Duration T  -Carbon 
Emission E ”, and the optimization model is established according to the execution modes of different processes 
as shown in Equation (7). 
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where, m  is the number of construction processes; iq  is the number of execution modes possessed by the i th 

process; ijD  is a decision variable that takes the value of 0 or 1, and the value of 1 when the j th execution mode 

is used in the i th process, and 0 otherwise. 
 

III. D. Model solving based on the gray wolf optimization algorithm 
Gray wolf optimization algorithm (GWO) is a new type of swarm intelligence optimization algorithm. Based on the 
Gray Wolf Optimization Algorithm, this study designs a random key coding mechanism, converts continuous coding 
into discrete coding and combines the crossover and mutation operations in the genetic algorithm to improve the 
global search capability of the discrete Gray Wolf Algorithm, which is capable of solving the prefabricated component 
production scheduling model. In order to distinguish it from the improved Gray Wolf optimization algorithm, the Gray 
Wolf optimization algorithm is referred to as the basic Gray Wolf optimization algorithm in this study. 
 
III. D. 1) Basic Gray Wolf Optimization Algorithm 
There is a strict hierarchy within the gray wolf pack, which is divided into  ,  ,   and   according to the social 
rank, from the largest to the smallest in terms of power, and the distribution of the social rank is shown in Figure 2. 
Gray wolf packs are usually led by a small number of head wolves leading a group of gray wolves toward prey, i.e., 
gray wolf packs will hunt collectively under the leadership of  . Predation in gray wolf packs is divided into 3 steps: 
encirclement, hunting and attacking prey. 

α

ω

δ

β

 

Figure 2: The social hierarchy of the grey Wolf 

In the basic gray wolf optimization algorithm [21], assuming that the location of the prey is provided by the best 
solution in the search space, the solution can be used to find a better solution, and continuously iterative optimization, 
and ultimately get the optimal solution. 

Eq. (8) to Eq. (12) represent the process of gray wolf packs encircling the prey, and its mathematical model is 
described as: 

 ( ) ( )pD C X t X t  
  

 (8) 

 ( 1) ( )pX t X t A D   
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Eqs. (13) to (15) represent the hunting process of the gray wolf, and its mathematical model is described as: 
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where, X  , X   and X   are the current positions of   ,    and    respectively; 1C  , 2C   and 3C   are 

random vectors; 1X , 2X  and 3X  are the updated positions of  ,   and   respectively. 

Where Eq. (14) denotes the distance between  ,   and   and other individuals, Eq. (15) denotes the step 
length and direction of orientation of   individuals from  ,   and   in the wolf pack. 

Although the basic gray wolf optimization algorithm has certain advantages in solving the scheduling problem, it 
has two shortcomings: first, the global search ability of the basic gray wolf algorithm is unstable, and it is easy to 
fall into the local optimum dilemma; Secondly, the basic Grey Wolf optimization algorithm was initially proposed to 
solve the continuous problem, but the assembly prefabricated component production scheduling problem is a 
discrete problem, so the basic Grey Wolf optimization algorithm cannot be used directly to solve the problem. 
Therefore, it is necessary to improve the above two deficiencies of the basic Gray Wolf optimization algorithm to 
make it more suitable for solving the precast component production scheduling problem. 

 
III. D. 2) Steps to Improve the Gray Wolf Optimization Algorithm 
(1) Coding 

The maximum order value rule (LOV) based on random key encoding can be used to realize the conversion of 
the gray wolf position coordinates from continuous to discrete values. The maximum order value rule of random key 
encoding is as follows: firstly, the position element ikX  is assigned a random number between [0,1] , secondly, the 

intermediate sequence ik  is obtained by arranging them in non-ascending order, and finally, the processing order 

of the components ,( )
iki k   is calculated. 

(2) Decoding 
The decoding process, i.e., the process of generating a specific scheduling scheme. In the decoding process, it 

is necessary to initialize the start time and end time of each component, and update the time matrix in the scheduling 
process. It should be noted that the start time of each component in each process depends on the completion time 
of the previous process and the maximum value of the completion time of the previous component in the process, 
and the start time of the maintenance process is equal to the end time of the pouring process. Labor constraints, 
process constraints, and buffer constraints also need to be taken into account when generating the specific 
scheduling plan. Finally, the scheduling time schedule of all component production is updated according to the 
specific scheduling scheme. 

(3) Population initialization 
According to the encoding method, each solution (gray wolf) is a prefabricated component production scheduling 

sequence. randperm function can randomly disrupt a numerical sequence, in order to improve the efficiency of the 
program operation, the use of random generation method for the population initialization, the use of randperm 
function to generate a set of non-repeating random integer data, in order to indicate the production and processing 
sequence of the components. 

(4) Adaptation function 
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The determination of the fitness function [22] depends on the objective function of the model, and the fitness 
value is the probability of survival and reproduction of individuals under certain environmental conditions. The 
objective of the model in this study is to minimize the maximum completion time, and the smaller the maximum 
completion time is, the larger its fitness value is, so the inverse of the objective function in the model is set to be the 
fitness function of the population, and the top three individuals are defined as  ,  , and   according to the 
magnitude of fitness value of the solution. 

(5) Head wolf selection mechanism 
An important step in the basic gray wolf optimization algorithm is to select the top three individuals in terms of 

fitness value as the head wolf. This selection operation reduces the loss of effective solutions and increases the 
probability that high-performance individuals are retained, which in turn improves global convergence and solution 
efficiency. In this study, a roulette strategy is used to select the   wolf,   wolf, and   wolf with the highest 
fitness. 

(6) Crossover and mutation operations 
Since the basic gray wolf optimization algorithm completes the updating of individual positions based only on the 

three solutions with the best individual fitness during the evolutionary process, the algorithm is prone to fall into the 
local optimality dilemma. Therefore, the basic gray wolf optimization algorithm is improved by combining the 
crossover and mutation operations of the genetic algorithm with the basic gray wolf optimization algorithm, so as to 
improve the global search ability of the gray wolf optimization algorithm. In the specific optimization scheduling 
operation, two-point crossover operation and reverse order mutation operation are used for the optimal individual. 

(7) Individual position update 
The basic gray wolf optimization algorithm adopts the elite retention strategy in the process of gray wolf population 

evolutionary update, and retains the optimal adaptive individuals ( ,   and  ) directly to the next generation. 
Then, based on the basic principles of the basic gray wolf optimization algorithm, the location information of gray 
wolves is updated by using tracking, encircling and attacking prey, so as to carry out the individual location update 
of the whole population. 

(8) Specific steps 
The specific steps of the improved gray wolf optimization algorithm are as follows: 
a) Set the parameters, set the population size as wolf, the maximum number of iterations as maxiter, and the 

dimension of the independent variable as dim; 
b) Randomly initialize the population; 
c) Perform GWO algorithm search, calculate the value of population fitness, and use roulette strategy to determine 

the top three individuals and their locations in terms of fitness, i.e., determine  wolf,  wolf, and  wolf; 
d) Perform crossover and mutation operations on the optimal individuals with a certain probability, and then update 

the   wolves,   wolves and   wolves according to the value of the adaptation degree from the largest to the 
smallest; 

e) Update the individual information of the population according to the information of the optimal individual; 
f) Recalculate the individual fitness based on the updated individual information of the population, if the updated 

individual fitness is better than the original individual, it becomes the new    wolf,    wolf and    wolf, and 
continue to perform the search operation in a loop; 

g) If the original individual is always better than the updated individual or reaches the maximum number of 
iterations, then end the search operation and output the optimal solution. 

IV. Simulation experiments and analysis 
In order to verify the superiority of the improved IGWO, this paper utilizes three benchmark test functions to compare 
and simulate the improved IGWO with the GWO algorithm, GRO algorithm, and GRO-GWO algorithm, and the 3D 
surface plots of the three functions are shown in Fig. 3-Fig. 5, respectively. In order to facilitate a better comparison 
of the results, this paper sets the maximum number of iterations of each algorithm as 2000, 400 and 200, 
respectively, in addition, this paper sets the population size of the four algorithms as N=150.Finally, the above four 
algorithms are run independently for 30 times, and the respective optimal solutions are taken for side-by-side 
comparisons, and the results obtained from the simulation are shown in Table 1. 

The optimization accuracy of the improved IGWO in the three test functions is significantly better than the other 
three algorithms in the three different functions, and the results obtained are closer to the real value, and the error 
of this paper's algorithm is only 0.0015 in the f1(x) function, which indicates that the IGWO algorithm proposed in 
this chapter has a better balance between the global search and the local search, and it fully proves that the 
improvement strategy of this paper is effectiveness of the improved strategy in this paper. 
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Figure 3 The three-dimensional graph of f1(x) 

 

Figure 4 The three-dimensional graph of f2(x) 

 

Figure 5 The three-dimensional graph of f3(x) 
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Table 1: Comparison of algorithm results 

Function Minimum value IGWO GWO GRO GRO-GW 

f1(x) 0 0.0015 0.0654 18.5461 0.0561 

f2(x) 0.0002 3.4811e-04 0.0259 0.0056 0.0019 

f3(x) 2 2.0000 4.1561 4.3151 2.0000 

V. Case scenario analysis 
The results of multi-objective optimization of prefabricated component assemblies using the IGWO algorithm are 
mainly determined by the magnitude of the weights of the sub-objectives and the range of prefabrication rates. The 
weight coefficient is an assessment of the degree of importance of each sub-objective, which indicates the 
requirement or urgency of the sub-objective in an engineering project. The level of prefabrication rate represents 
the degree of industrialization of the building, and the evaluation standards of each province and city have clear 
requirements for the prefabrication rate of assembled buildings. Therefore, in order to explore the influence of the 
range of weight coefficients and prefabrication rate on the combination of prefabricated components, this paper 
conducts a scenario analysis. 
 
V. A. Analysis of Pareto chart results 
The prefabricated component assemblies for different scenarios are obtained by solving using Matlab tools, the 
number of optimal solutions varies according to the range of prefabrication rates and weights, and the number of 
Pareto solution sets obtained by running different scenarios is shown in Fig. 6. 

In terms of the number of optimal solutions, the number of optimal solutions in the cost-focused scenario 
decreases as the assembly rate increases, and the schedule-focused scenario increases as the assembly rate 
increases. This is mainly because the cost-focused scenario will favor the selection of cast-in-place components, 
and in the low precast rate range do not have to think about the precast components must be selected to meet the 
precast rate requirements, so the cast-in-place components have a larger range of choices, while the schedule-
focused scenario will favor the selection of precast components, and the schedule-focused scenarios have a larger 
selection of precast components in the high precast rate range, thus making the weights of the different weights in 
the different precast rate range differences in the number of pareto solution sets. 

 

Figure 6: The pareto solution set number 

In order to better investigate the impact of different scenarios on the prefabricated component combination 
selection results as well as the cost and duration of the component selection results, this paper plots the Pareto 
frontier plots of the component combination optimization results, the results of which are shown in Figures 7-Figures 
9. Fig. 7-Fig. 9 represent the pareto frontier plots for the baseline scenario, the cost-focused scenario, and the 
duration-focused scenario, respectively, and the range of prefabrication rates is represented by different colors in 
the plots. The pareto frontier plots for different scenarios are analyzed as follows. 
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The effect of weighting factors on the pareto frontier plot is analyzed by observing the position of scatter points in 
the plot. The weights of each sub-objective are the same in the baseline scenario, and the selection of optimal 
solutions is relatively balanced in terms of cost and duration, and the optimal value in the baseline scenario is 
achieved through the overall reduction of each sub-objective to minimize the overall target value, so the optimal 
solutions in the pareto solution set are mainly distributed more evenly and concentrated in the middle part of the 
three-dimensional three-dimensional graph. In the cost-oriented scenario, the weight of cost is higher, and the 
change of unit cost has a greater impact on the target value than the change of unit duration. In the cost-oriented 
scenario, the optimal value is achieved by choosing cast-in-place components to directly reduce more cost to 
minimize the comprehensive target value, i.e., choosing cast-in-place components, so the pareto solution set is 
concentrated in the upper right corner of the 3D graph where the cost is lower. 

The weight of duration is higher in the duration-focused scenario, and the change of unit duration compared with 
unit cost has a larger impact on the target value. In the duration-focused scenario, the integrated target value is 
minimized mainly by lowering more duration, i.e., prefabricated components are chosen, and thus the pareto 
solution set is mainly concentrated in the part of the three-dimensional drawing with a lower duration. 

In summary, by analyzing the pareto solution set under different scenarios, we can conclude that the number of 
prefabricated component combinations and the construction process of the assembled building are affected by the 
prefabrication rate and the weights of the cost and duration sub-objectives. The weights of the sub-objectives affect 
the cost and duration of the project by influencing the selection of the component construction process, which 
determines “how to select” the component construction process. The prefabrication rate affects the cost and duration 
of the project by influencing the number of components to be selected under the construction process, which 
determines “how much” of the component construction process to be selected. 

 

Figure 7: Benchmark scenario 

 

Figure 8: Focus on cost scenarios 
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Figure 9: Focus on the period 

V. B. Optimization effect analysis 
In order to have a more intuitive understanding of the degree of optimization, this paper selects the prefabricated 
component combinations with the smallest integrated objective weight values under different scenarios and applies 
the optimization rate to analyze them, and the results are shown in Table 2. 

The table describes the results of the selection of prefabricated components of the optimal solution under different 
scenarios, as well as the cost, duration and carbon emissions of the corresponding projects. Taking the baseline 
scenario as an example, the weights of cost, duration and carbon emission are taken as 1:1:1, and the construction 
process of the optimal program is: (first floor) precast columns - cast-in-place beams - precast slabs - precast walls 
- precast stairs (second floor) cast-in-place columns - cast-in-place beams - precast slabs - cast-in-place walls - 
cast-in-place stairs (third floor) cast-in-place columns - cast-in-place beams - cast-in-place slabs - cast-in-place 
walls, with prefabrication rate of 25.145, cost of 7.12×105 yuan, duration of 116 days, and carbon emission of 265 
t. Other scenarios are modeled in the same way. 

Table 2: Optimization effect analysis table 

 Layer number Current building Assembly building 

Different scene - Full current scenario Benchmark scenario Cost attention Construction period 

Target weight - - C: T:E=1:1:1 C: T:E=4:1:1 C: T:E=1:4:1 

Prefabricated rate (%) - 0 25.145 27.235 32.156 

Pillar beam 

First layer Current casting Precast Current casting Current casting 

Second layer Current casting Current casting Current casting Current casting 

Third layer Current casting Current casting Current casting Current casting 

First layer Current casting Current casting Precast Precast 

Second layer Current casting Precast Precast Precast 

Third layer Current casting Current casting Current casting Current casting 

Wall 

First layer Current casting Precast Precast Precast 

Second layer Current casting Precast Precast Precast 

Third layer Current casting Current casting Current casting Precast 

First layer Current casting Precast Precast Precast 

Second layer Current casting Current casting Current casting Current casting 

Third layer Current casting Current casting Current casting Current casting 

Stair 
First layer Current casting Precast Precast Precast 

Second layer Current casting Current casting Precast Precast 

Cost (yuan)*105 - 7.16 7.12 7.07 7.13 

Period (day) - 145 116 111 104 

Carbon emissions (t) - 302 265 261 250 
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(1) The optimal solution in the baseline scenario reduces the cost by 0.56%, the duration by 20.00%, and the 
carbon emission by 12.25% compared to the all-cast-in-place building. This indicates that the prefabricated 
component portfolio obtained by applying the methodology of this paper is optimized in terms of cost, duration and 
carbon emission, which can effectively save the cost and duration of the project while minimizing the carbon 
emission of the building. 

(2) The weight coefficients reflect the degree of preference of stakeholders for different objectives, while the 
degree of optimization of objectives in multi-objective optimization mainly depends on the size of weights. 

(3) The prefabrication rate range of the optimal combination of prefabricated components scheme mainly focuses 
on the range of 20%-60%, which indicates that for assembled buildings, we should not pursue a high prefabrication 
rate, but should determine the optimal prefabrication rate according to the needs and requirements of specific 
projects. An appropriate prefabrication rate range can achieve the best balance in terms of cost, schedule, and 
carbon emission, and realize the most optimized results. 

VI. Conclusion 
The research on the balance between modularization and personalization of assembled buildings in intelligent 
design environment has achieved remarkable results. The relationship between standardization and personalization 
is clarified through the establishment of a modular design and customization demand balance model, which provides 
a theoretical basis for engineering practice. The Improved Gray Wolf Optimization (IGWO) algorithm achieves an 
accuracy of 3.4811e-04 on the test function f2(x), which is 93.8% higher than the GRO algorithm. The case study 
shows that the multi-objective optimization model for assembled buildings based on the IGWO algorithm has an 
excellent performance and achieves excellent results in different scenarios. The optimal prefabrication rate for 
assembled buildings should be controlled in the range of 20%-60% rather than blindly pursuing a high prefabrication 
rate. Focusing on the duration scenario, the prefabricated component combination solution can reduce the duration 
to 104 days, which is 28.3% less than the all-cast-in-place solution. The optimization results show that the selection 
of prefabricated components is not only affected by the prefabrication rate, but also by the weighting coefficient, 
which determines “how to select” the component construction process, while the prefabrication rate determines 
“how much to select” the component construction process. The application of BIM technology and parametric 
modeling enables the assembly building to realize precise control and efficient collaboration in the design and 
construction phases, which provides intelligent solutions and promotes the construction industry to move towards 
green solutions, and also provides the building industry to move towards green construction. The application of BIM 
technology and parametric modeling enables precise control and efficient collaboration in the design and 
construction phases of assembled buildings, providing intelligent solutions for the assembled building industry and 
promoting the transformation of the construction industry to green and digitalization. 
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