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Abstract Virtual character performance generation technology is widely used in film and television animation, 
especially the combination of motion capture and deep learning, which can effectively improve the naturalness and 
fluency of the performance. In this paper, a virtual character performance generation method is proposed, which 
adopts motion capture technology to obtain character movement data and combines deep reinforcement learning 
for training. The study introduces hierarchical policy learning based on the Actor-Critic framework and uses the PPO 
algorithm to optimize the motion control strategy. The experimental results show that the reward value of the virtual 
character in completing the one-legged squatting movement tends to stabilize after 6000 training rounds. In terms 
of muscle-driven control, the ablation experiments verified the importance of the degree of muscle activation in 
generating movement fluency and variety. In the one-legged squat maneuver, the maximum reward value was 32.08, 
while the maximum value after removing the muscle reward decreased to 16.39. Through the user research, the 
smoothness and naturalness of the virtual character's movements were highly evaluated, and the system's usability 
and visualization received positive feedback. The technique proposed in this paper has important application value 
in virtual character performance generation. 
 
Index Terms virtual character, deep reinforcement learning, motion capture, reward function, muscle-driven, user 
research. 

I. Introduction 
With the development and innovation of science and technology, virtual reality film and television production has 
become a new trend in the film and television industry [1], [2]. In this trend, the virtual character performance 
generation technology based on motion capture plays a crucial role [3]. Motion capture-based virtual character 
performance generation technology is an important link in virtual character modeling, which can help designers 
accurately capture real-world movements and apply them to virtual character models, thus making virtual characters 
more realistic and natural when performing actions [4]-[6]. This technology is widely used in many fields such as 
film and television animation and virtual reality, and its appearance makes virtual characters more realistically mimic 
human movements, bringing a more immersive experience to the audience [7]-[9]. 

Generally speaking, the steps of motion capture virtual character performance generation technology in film and 
television animation usually include selecting motion capture equipment, setting up the capture scene, implementing 
motion capture and processing the capture data, so as to realize the application in film and television animation 
[10]-[13]. However, the use of virtual character performance generation techniques in virtual reality film and 
television production faces some challenges [14]. For example, the technical threshold for operating the equipment 
is high, requiring a specialized team to operate and process it. At the same time, the captured data need to be 
interpreted and processed accurately, otherwise it will lead to incoherent or unrealistic movements of virtual 
characters [15], [16]. In addition, the capture equipment itself has certain cost and technical limitations, and the 
producer needs to, weigh the pros and cons according to the budget and demand [17]. 

With the continuous development of virtual character performance generation technology, the film and animation 
industry has put forward higher requirements on the performance capability of virtual characters. Traditional virtual 
character generation methods usually rely on fixed action libraries or predefined control methods, which results in 
the virtual character's action performance often appearing to be single, lacking in personalization and fluency. 
Therefore, how to improve the performance of virtual characters in complex animation scenes by means of emerging 
technologies has become an important research topic. 
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In recent years, the application of deep learning, especially deep reinforcement learning (DRL), in virtual character 
generation has attracted widespread attention. Unlike traditional methods, deep reinforcement learning enables 
virtual characters to autonomously learn how to generate actions according to the environment and task 
requirements without relying on fixed action sequences. This approach not only enhances the adaptability and 
expressiveness of virtual characters, but also provides greater flexibility in character generation. In particular, the 
combination with muscle-driven control strategies ensures that the virtual character maintains the coordination and 
naturalness of its movements while executing complex actions. 

In this context, this paper proposes a virtual character performance generation method based on deep 
reinforcement learning and muscle-driven control strategies. The action data of the character is acquired through 
motion capture technology and trained using deep reinforcement learning to optimize the action generation process 
of the virtual character. The research focuses on improving the smoothness and expressiveness of virtual character 
actions through the combination of deep reinforcement learning and muscle-driven control strategies. To this end, 
this paper introduces a hierarchical strategy learning framework, which is trained by the PPO algorithm and 
combined with muscle control strategies to optimize the precision and diversity of character movements. 

II. Deep Reinforcement Learning-based Virtual Character Performance Generation 
Technology 

II. A. Motion Capture for Virtual Character Performance 
II. A. 1) Marker point labeling and processing 
Combining the principle of ergonomics and the characteristics of virtual character performance in film and television 
animation, 65 marker points are selected to be pasted on the whole body of the virtual character. Viconshgun is 
used to solve the masked marker points, build the model, and capture the performance movements. Finally, the 
skeleton is solved and the output data is the complete human body marker points. 
 
II. A. 2) Constructing avatar models 
(1) Character role modeling 

Based on the modern dance movement dataset, Maya animation production software is used to construct the 
virtual character model [18], [19]. Specifically using polygonal modeling technology to model the virtual character's 
head and body; then composed of a complete human body model; and finally adjusted and modified the body parts 
of the sewing and details, and ultimately realize the construction of a complete character model. On the basis of 
character modeling, the creation of clothing is carried out. First of all, we create clothing sample curves before and 
after the body of the character model; then we simulate the material and texture of the real fabric through the 2D 
texture method; finally, we adjust the editing UV and texture editor to apply the texture to the corresponding objects, 
thus realizing the creation of the character's clothing model. 

(2) Neural Fusion Shape Technology 
The framework of neural fusion shape technology mainly includes envelope deformation branch and residual 

deformation branch. By inputting the joint rotation and character model data, the bone structure can be obtained; 
then the envelope deformation branch is used to bind the skin weights for the bone construction; finally, it is fused 
with the hybrid shapes and hybrid coefficients in the residual deformation branch to obtain the fused character 
model. 

a) Envelope deformation branch 
This part focuses on learning the parameters of a specific skeleton level, predicting the skeleton, skin and weight 

bindings. A pose represented by local joint rotations is added in each iteration   3 3
i iR R where R R   , which 

guides the deformation of the input data and the predicted bindings and skinning. Therefore, a local mapping 
transformation  ,i iR O  needs to be performed first for each joint in the character model using the positive kinematic 

cumulative transformation; the global transformation for each vertex is computed: 

 Rj ji ii
T W T  (1) 

After the operation, the vertex-by-vertex mapping transformation { }
iR RT T  can be applied to the input 

characters: 

 Rj RV T V   (2) 

where RT  is the global mapping transform and   is the vertex-by-vertex operation. 

b) Residual deformation branching 
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Let the given vertex position be V  and the connectivity of each vertex be F , the output skin W  is connected 

to the depth vertex V   along the channel   ( ), V K JV W R    , and then use the edge feature representation and 

mesh convolution width to generate a set of N  residual shapes   3
1

,
N V

i ii
B B R 


 . A small neural network of J  

MLP blocks is input simultaneously, and finally the pose-dependent coefficients 1{ }Nij ia   of each joint J  are output 

and added to the residual shape of V : 

 
1 1

J N

ij j ij i
V V M B

 
    (3) 

jM  is a binary mask that specifies the vertices associated with joint j . 

Finally, the loss function vL  is utilized to find the difference between the task role and the corresponding true 

value. As a result, high-quality 3D character models in *.FBX format are automatically generated by the neural 
fusion shape technique of envelope deformation branches and residual deformation branches. 

 
II. A. 3) Finger bone actuation 
In this paper, a data fusion algorithm is used to complete the driving of finger movement in the character model. 

(1) Read the data in the motion capture file. 
(2) Read the information in the model file. 
(3) Match the skeletal nodes of the two files, and according to the matching result, read the position of the 

corresponding nodes in the motion capture file, and make the nodes in the model display in the node position of the 
motion capture file. Finally, the nodes in the model are matched with the nodes in the motion capture file. 

(4) Repeat the cycle of step (4) to completely fuse the task model to the captured action sequence, so as to 
realize the effect of motion capture data driving the movement of the character model. 

 
II. B. Deep reinforcement learning 
Deep Reinforcement Learning (DRL) is a combination of reinforcement learning and deep learning that is able to 
learn the mapping relationship between inputs and outputs and gradually converge the decisions given by the model 
to the optimum through continuous learning. 
 
II. B. 1) Traditional reinforcement learning 
In reinforcement learning Markov Decision Process (MDP) can be represented using the quaternion ( , , , )S A P R , 

where S  is the state space, which is the set of all states i.e. 1 2{ , , , }nS s s s  ; A  is the action space, which is 

the set of all possible actions i.e. 1 2{ , , , }nA a a a  ; P  is the state transfer probability, which represents the 

probability of transferring to the next state after taking an action in the current state i.e., 
1t t

a
s sP

 ; R  is the reward, 

which is a scalar function with the combination of the current action, the current state and the next state as 

1( , , )t t tR R s a s  . 

Set the current state of the environment to be s , define the cumulative reward obtained under the policy   as 

the state-value function ( )V s , and the cumulative reward obtained after the execution of the action a  using the 

policy   as the state-action-value function ( , )Q s a . ( )V s  and ( , )Q s a  are defined as: 

 00
( ) t

tt
V s a r s s

 



   (4) 

 0 00
( , ) ,t

tt
Q s a a r s s a a

 



    (5) 

where   - discount factor and (0,1)  ; r  - reward obtained after the execution of the current action. 
Under the Markov model, the future change of each state does not depend on any previous state, but only on its 

current state, so the above equation can be written in recursive form. I.e: 

  1 1

1

1( ) ( , ) ( )
t t

t

a a
s s s s t

a A s S

V s s a P r V s  
 



  
 

    (6) 
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  1 1

1

1( , ) ( )
t t

t

a a
s s s s t

s S

Q s a P r V s 
 



  


   (7) 

where 1ts   - the next state given by the environment after the execution of action a . 

It can be seen that the state-value function ( )V s  and the state-action-value function ( , )Q s a  are related as: 

 ( ) ( , ) ( , )
a A

V s s a Q s a 


  (8) 

Model-free reinforcement learning can be used to find the optimal solution using Monte Carlo methods, but Monte 
Carlo methods require a large number of average samples, and this leads to learning inefficiency, and when the 
number of samples is not up to the optimal solution using Monte Carlo methods is imprecise, which is one of its 
larger drawbacks. 

 
II. B. 2) Value function based algorithm 
The temporal difference algorithm in reinforcement learning solves the problem of imprecision in model-free 
reinforcement learning, Q    learning algorithm is a typical temporal difference algorithm. The Q    learning 
algorithm is based on the method of value iteration, and learns in constant interaction with the environment, through 
which the decision rule is constantly optimized to maximize the cumulative value of the reward. 

The Q   learning algorithm takes as its core idea the learning of a state-action value function ( , )Q s a , which 
represents the value that can be obtained by choosing an action a  in the current state s . The Q   learning 
algorithm uses the Bellman equation to update the Q  value. To wit: 

  ( , ) ( , ) max ( , ) ( , )aQ s a Q s a r Q s a Q s a         (9) 

where   - learning rate and (0,1]  ; s  - next state obtained by performing action a  in current state s ; r  -

- the reward obtained by performing the action a  in the current state s ; max ( , )a Q s a    -- the next state s  under 

which all actions in that state s  are executed a  - the maximum Q  value that can be obtained. 

It is common to take 1   to simplify the above equation: 

 ( , ) max ( , )aQ s a r Q s a      (10) 

From the Bellman equation, the reward r  obtained after performing action a  in state s  plus the discounted 
value of the maximum value function ( , )Q s a   that can be obtained in the next step is closer to the true value of 

( , )Q s a . The Q   learning algorithm consists of the following five steps: 
(1) Initialize the Q  values with random values or 0; 
(2) Selecting actions using a greedy strategy that balances exploration and exploitation, randomly selecting 

actions to execute with a probability of  , and selecting actions to execute with a probability of 1   with the 
largest Q  value of all actions in the current state; 

(3) Execute the action obtained in step 2 and obtain the reward r  for executing the action in the current state 
and the state s  for the next step; 

(4) Update the Q  value using the Bellman equation; 
(5) Loop over steps 2-4 until the termination state. 
After learning and updating the Q  function, the optimal policy can be obtained by continuous iterative updating 

of the Q  function and the policy  : 

 ( ) arg max ( , )a As Q s a   (11) 

II. B. 3) Deep learning 
Deep Learning (DL) constructs a model by simulating the neural structure in the human body, which processes the 
data to obtain the laws and representation levels in the data, so that the model has the ability to classify and 
recognize. This paper is mainly based on convolutional neural networks. The neurons all have weights and the data 
is subjected to a weighted summation operation and the bias in the neurons is added and the result obtained is 
processed through an activation function to get the output: 

 
1

n

j ij i j
i

O f w x b


 
   

 
  (12) 
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where ix   - the i  th input of the j  th neuron; jO   - the i  th output of the j  th neuron; ijw  - the - the weight 

corresponding to the input ix ; jb  - the bias of the j th neuron; f  - the activation function. 

The output of a neuron is very dependent on the activation function and bias. The commonly used activation 
functions are Sigmoid, Tanh, ReLU, Softmax. 

(1) The Sigmoid function has the property of being continuously conductible, with a maximum derivative at 0, 
which accelerates the training of the neural network. Namely: 

 
1

( )
1 x

f x
e




 (13) 

(2) The Tanh function alleviates the output bias problem of the Sigmoid function and has an accelerating effect 
on the convergence of the model: 

 ( )
x x

x x

e e
f x

e e









 (14) 

(3) The ReLU function is effective in mitigating and accelerating the convergence of the gradient vanishing 
problem of Sigmoid and Tanh functions in practice: 

 ( ) max(0, )f x x  (15) 

(4) Is more commonly used in multicategorization problems, where its output is a value representing a probability 
distribution such that the probabilities of all the categories are between 0 and 1 and add up to 1. i.e: 

 max( )
i

j

x

i x

j

e
soft x

e

  (16) 

II. B. 4) Actor-Critic Framework 
The Actor-Critic algorithm [20] is able to update the strategy while exploring the environment, so the strategy will 
be able to adapt to the environment, and the exploration time is reduced. Actor makes the intelligent body output 
action a  according to the current state s , and Critic calculates the value of Q  according to the current state s  
and action a  and passes it to Actor. 

The Bellman equation of action value function ( , )Q s a  and state value function ( )V s  is established according 
to the Markov decision process, and the values of action and state are evaluated respectively to make the decision 
of the intelligent body better. Namely: 

 ( , ) ( ) ( )a
s s s s

s

Q s a r P V s a r V s       


        (17) 

 (\ ( ) ) ( , ) ( , )
a A

V s a s Q s a a Q s a    




     ∣  (18) 

where a
s sr   - the reward obtained by performing the action a  in the current state s ; s sP   - the probability of 

transferring from the current state s  to the next state s . 
The formula for updating the gradient of the strategy can be obtained from the above formula: 

 1( ) ( ( ) ( )) log ( , )t t t t tJ a r V s V s s a 


 
            (19) 

In general both the action value function and the strategy are unknown, so a neural network is used to replace 
both functions, so the Actor-Critic algorithm learns both networks and uses gradient descent when updating the 
parameters, denoted 1 log ( , )t t t t ts a V        , and   denotes the learning rate. 

 
II. C. Deep Reinforcement Learning Based Method for Virtual Human Motion Generation 
II. C. 1) Layered Strategy Learning Framework 

The trajectory tracking [21] layer of hierarchical policy learning takes the joint pose information  1̂ ˆ, ,ref nq q q   

from the motion database as the reference action, builds a neural network, and uses the proximal policy optimization 
algorithm to train to obtain the optimal control policy  tar sq s ∣ , to obtain the mapping of the virtual human from 
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the skeletal state ss  to the action tarq . The stabilized proportional differential (SPD) controller receives the target 

action tarq  output from the trajectory tracking strategy   and converts it into the desired moment tar  and the 

desired acceleration tarq  for each joint to be passed to the muscle control layer. The muscle control layer forms a 

muscle synergy strategy  ,tar ma q s ∣  through supervised learning and outputs muscle activation parameters a . 

The kinetic simulation system updates and feeds the muscle and bone states ( , )s ms s s  in real time based on a . 

 
II. C. 2) Trajectory tracking layer 
The strategy architecture of PPO algorithm based on Actor-Critic framework is analyzed in the specific case, and 
two neural networks sharing the parameters of strategy and value function are built to complete the strategy 
optimization, in which Actor network is used to get the trajectory tracking strategy  , and the strategy loss term 

updating network is obtained by using the old-new network ratio and the dominance function calculated by GAE; 
Critic network is used to obtain the value function ( )V s , using TD-error as the loss term update network. 

The state space, i.e., to meet the strategy decision-making needs but not too redundant to affect the training 
efficiency of the algorithm. Since the control object of the trajectory tracking strategy is the joint posture of the virtual 
character, the dynamic information of its bones and joints is mainly chosen as the content of the state space, i.e., 

 , , , ,s p p q q    , which is 210-dimensional data. 

In motion control studies using joint actuation, the action can be simply set as  1 2, , , na f f f  . In order to 

optimize the control effect while achieving the motion of the virtual character generated using the .muscle actuators, 
a higher level of abstraction control is used to set the action space of the trajectory tracking strategy to the desired 
pose of each joint, i.e.,  1ˆ ˆ ˆ ˆ, , , ,root root na x q q q  . 

Reward function design: 
The reward function is an incentive mechanism, trajectory tracking requires the virtual human to be as similar as 

possible to the reference motion in each frame, thus designing the reward function r  that can respond to several 
imitation metrics simultaneously, and due to the strong positive correlation between the metrics, the metrics are 
chosen to be multiplied to improve the accuracy of imitation: 

 q q e comr r r r r     (20) 

qr  is the stance bonus, which encourages the virtual character to match the joint rotations of the reference action 

as the sum of all joint stance quaternion differences: 

 
2

2

1
ˆexpq i ii

q

r q q


 
  
 
 

 !  (21) 

where iq  and ˆiq  are the joint poses of the virtual character and the reference motion expressed in quaternions, 

i  is the joint index, and q  is the pose reward coefficient, respectively. 

qr  is the velocity reward, which encourages the virtual character to match the motion velocity of the reference 

motion as the sum of all joint angular velocity differences: 

 
2

2

1 ˆexpq i ii
q

r q q


 
   
 
 





   (22) 

where iq   is the joint angular velocity, ˆ
iq   is the desired joint angular velocity calculated by differencing the 

reference motion data, and q   is the velocity reward coefficient. 

er  is the end position reward, which encourages the end parts of the virtual character (including the left foot, right 

foot, left hand and right hand) to match the corresponding values of the reference motion in terms of their 3D 
positions in the world coordinate system, and is the sum of the differences of all end position coordinates: 

 
2

2

1
ˆexp e e

e j ji
e

r p p


 
    

 
  (23) 
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where e
jp  and ˆ ejp  are the end positions of the virtual character and the reference motion, respectively, j  is the 

end position index, and e  is the end position reward coefficient. 

comr  is the center of mass reward, which encourages the center of mass position of the virtual character to match 

the corresponding value of the reference motion: 
where comp   and ˆcomp   are the center of mass positions of the virtual character and the reference motion, 

respectively, and com  is the center of mass reward coefficient. 

SPD Controller: 
The SPD controller is used to complete the computation of the joint desired pose ˆ jq  to the joint desired moment 

j  and provided to the muscle control layer. There are two types of joints with different degrees of freedom in the 

virtual human model: rotary joints and ball-and-socket joints. The rotary joints have only one degree of freedom, 
and the scalar value q̂  can be used to directly represent the desired rotation angle, and the calculation of the 

moments is accomplished by treating the SPD controller as a spring-damped system; The ball and socket joints 
have three degrees of freedom, and the rotation angle is expressed using quaternions to avoid the gimbal deadlock 
problem caused by the use of Euler angles, so the moment calculation formula of the SPD controller is rewritten as: 

 1 1 1ˆ( )n n n n
p dk map q q k q        !  (25) 

where 3q   is the angular velocity of the ball-and-socket joint, and 1 2q q!  denotes the quaternion difference, 

computed as 1 2 1 2q q q q!  , with 2q   being the conjugate of 2q  . To compute the target moment using the 

difference in rotation angles represented by 1 2q q! , the quaternion q  is mapped to the rotational form of the axial 

angle representation via ( )map q : 

 

2

2

map( )

q

q q
v

q

 


  


 (26) 

where   is the rotation angle expressed in radians and v  denotes the rotation axis. 
Set the SPD controller of the root joint with proportional gain 1000pk   and differential gain 100dk  , and the 

SPD controllers of the other joints with 500pk   and 50dk  . 

 
II. C. 3) Muscle control layer 
In the human skeletal-muscular system, since the number of human muscles is much larger than the sum of the 
degrees of freedom of the human joints, deriving the degree of muscle activation with known moments or 
accelerations of the joints results in an infinite solution, so muscle-based motion control is actually a redundant 
control problem, which requires determining the muscle synergistic control strategy through the optimization concept. 

The muscle control strategy training process uses a loss function containing three subterms muscleL : 

  muscle ma ta ee
ma ta eeL w L w L w L     E  (27) 

where   is the weight of the corresponding subterm. 
maL  is the muscle activity loss term, which reflects the muscle work efficiency and is an important indicator for 

deciding the muscle driving strategy under many possible coordination schemes, and is the sum of squares of the 
muscle activation level: 

 2
( )maL a   (28) 

taL   is the movement tracking loss, which reflects the overall movement completion and is the sum of the 

acceleration differences across all joint degrees of freedom: 

  
2ˆ ( )ta

i ii
L q q a      (29) 
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where q̂  is the incoming target acceleration at the end position from the trajectory tracking layer, and q  is the 

actual measurement of the degree of muscle activation that will be current. 
eeL  is the end position loss, which reflects the degree of movement completion at the end position, and is the 

sum of the acceleration differences at the end position: 

  
2ˆ ( )ee

j jj
L p p a      (30) 

where p̂   is the incoming end-joint acceleration from the trajectory tracking layer, and p   is the actual 

measurement of end-position acceleration at the current level of muscle activation. 

III. Practical effects of virtual character performance generation technology in film and 
television animation 

III. A. Deep Reinforcement Learning Based Virtual Human Motion Generation 
In fact learning a muscle-driven control strategy is three times faster than learning a moment-driven control strategy. 
The motion tracking layer learns and operates at the frame rate of the reference data, which is typically 45 frames 
per second. The muscle-driven layer learns and operates at the rate of the forward dynamics simulation, which is 
typically 800 to 1600 frames per second. The construction, training and prediction of the neural network was done 
using the Pytorch deep learning framework under the Ubuntu operating system, and the model was optimized using 
the Adam optimizer. The design of the neural network hyperparameters is shown in Table 1; Table 2 shows the 
design of the SPD controller gains, which affect the learning effect of the model and the result output. In addition, 
in the SPD controller, if a single gain parameter is used it may not be applicable to the whole motion control system. 
It is usually necessary to select different gain parameters according to the characteristics of the joints to ensure 
system stability and control accuracy. 

Table 1: Neural network hyperparametric design 

Hyperparameter Data 

Learning rate 10-3 

Batch size 225 

Muscle experience pool size 55000 

Discount factor 0.999 

Cross entropy coefficient 0.005 

GAE parameter 0.98 

Table 2: SPD controller gain design 

 Proportional gain kp Breeze gain kd 

Root joint 2000 200 

Other joints 1000 100 

 
Input data of 2 movements extracted from the video, single-leg squat and rotational kick, to complete the training 

under the hierarchical strategy learning based on deep reinforcement learning. The training results are shown in 
Fig. 1, where (a) and (b) represent the single-leg squat reward value and the kick reward value, respectively. The 
blue color indicates a single reward, and the red color is the curve made by taking the average value of every 3 
rewards, which can be seen that the reward curve rises smoothly. Since the running and walking movements are 
relatively simple, the virtual human learns and trains better, and the reward value increases faster, and after about 
6000 training rounds, the average reward value starts to stabilize. The rotation and kicking movement is the most 
complex, the virtual human has to maintain balance and coordinate the muscles of the whole body to complete the 
rapid rotation and kicking movement, the training effect is relatively the worst, after 10,000 training rounds, the 
reward value stays at about 30. In addition, the learning effect of the dummy decreased for both the dancing 
movement of one-legged squatting and the ballet movement of spinning and kicking, with the reward value 
remaining at around 30. 
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(a) The reward value of a squat at the foot    (b) Kicks reward 

Figure 1: Training results 

In this study, the energy reward of muscles is considered during the design of the reward function to illustrate the 
effect of muscle activation degree on the realization of diverse motions by the virtual human. In order to verify the 
effectiveness of the muscle-driven virtual human movement proposed in this paper, ablation experiments are done 
on the energy reward function of the muscles to compare the change of the reward curve, the optimal value of the 
reward and the simulation effect. 

The results of the ablation experiments are shown in Fig. 2, where (a) and (b) represent the single-leg squat 
reward value and the reward value after ablating the muscle reward for single-leg squat, respectively. Taking the 
one-legged squat as an example, the reward curve rises slower and the maximum reward value decreases from 
32.08 to 16.39 after the ablation experiment, and fluctuates after reaching the maximum reward value, which 
indicates the effectiveness of the muscle-driven virtual human movement, and shows the importance of effectively 
controlling the degree of muscle activation for the virtual human to generate a more natural and fluent diversity. 

  

(a) The reward value of a squat at the foot   (b)The reward of the loss of muscle reward at the 
foot of the single foot 

Figure 2: Ablation experiment results 

III. B. Research on users of virtual human film and animation system 
In order to evaluate the system objectively, this paper organizes a user study using system testing combined with a 
questionnaire. We recruited 20 volunteers (13 males and 7 females), with participants in the age range of 20-25 
years old, a small number of whom claimed to have good human-computer interaction skills and a certain level of 
understanding of VR/AR technology. The test hardware environment consisted of a PC, a HoloLens headset and a 
Leap Motion somatosensory controller, and the software environment was a Unity 3D environment based on ML-
Agents. Volunteers first need to record the interaction trajectory of human hands and objects in the virtual 
environment through Leap Motion, and then observe the generated virtual human motion sequence in an all-round 
way through the HoloLens headset, and score the visualization effect and usability of the system in terms of 
subjective experience and visual presentation effect of film and animation. 
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III. B. 1) Evaluation of visualization effects 
This paper focuses on the naturalness and stability indexes of the virtual person's grasping of objects, so the 
evaluation of the visualization effect is the core of this system. In this evaluation system, volunteers mainly play the 
role of students, according to which they evaluate the animation effect of the virtual teacher's demonstration. We 
use a Likert scale (from 5 (strongly agree) to 1 (strongly disagree)) to record the user's subjective evaluation. The 
evaluation results of the visualization effects designed in this paper are shown in Table 3. Through the obtained 
rating data, after analyzing, we found that the volunteers' average ratings of the performance content are all greater 
than 4. It is evident that most volunteers think that the system generates the virtual teacher's finger movements 
more smoothly and naturally, the accuracy of the operation is higher, and they can accept the virtual teacher's film 
and television effects. 

Table 3: Visual effect evaluation results 

Evaluation index Mean Standard deviation 

The teacher's fingers are fluent and natural 4.2751 0.6485 

The experimental operation of the demonstration teacher is accurate 4.4392 0.4903 

The auxiliary information of the system is clear and easy to understand 4.4507 0.5705 

 
III. B. 2) Evaluation of usability 
In addition to visualization results, usability metrics that reflect the operational flow of the system are equally 
important for interactive systems. Usability mainly includes five aspects: ease of learning, ease of memorization, 
ease of use, error frequency, and overall satisfaction. In the subjective evaluation system of the system framework, 
the user mainly plays the role of a teacher, independently designs a specific user interaction trajectory, and then 
participates in the UI interaction and observes the generated interaction animation sequence through the HoloLens 
headset. The usability evaluation results are shown in Table 4. Analyzing the data, the following results can be 
obtained: 

(1) The usability data of the system had generally high mean values (3.6212-4.6616) and low standard deviations 
(all <0.5), indicating that most of the volunteers thought the system was easy to learn, easy to memorize, easy to 
use, had a low error rate, and had a high level of overall satisfaction. 

(2) The mean values of the indicator "The navigation mode of this system has a relatively high operational 
efficiency" in "Ease of Use" and the standard deviation of the indicator "The misoperation rate of this system is 
relatively low" in "error frequency" are relatively low. Some of the users who participated in the research suggested 
that if they operated the system for a long time, their upper limbs would be fatigued due to the suspension of the 
upper limbs. This is also due to the fact that these users have not been exposed to virtual character interaction 
systems before, and it is still difficult for them to get started. 

Table 4: Usability evaluation results 

 Evaluation index Mean Standard deviation 

Learnability 
I can use the system faster on the ground 4.6616 0.4197 

I can use the system quickly and skillfully 4.2402 0.4638 

Erotica 
I can easily remember how to use the system quickly 4.1617 0.4306 

The operating process of the system is not easy to forget 4.177 0.3834 

Ease of use 
It's easier to find the information I need 4.5308 0.3374 

The system is efficient in navigation 3.7555 0.2449 

Error frequency The error rate of the system is low 3.6212 0.3187 

Overall satisfaction 

In general, I think the system is easy to use 4.1263 0.1631 

In general, I think the system is more efficient 4.1716 0.1391 

In general, I think the system is more satisfactory 4.4003 0.4041 

 
III. B. 3) Comparative Evaluation of the Effectiveness of Virtual Character Performance Generation 
In order to conduct a horizontal comparison among the performance generation effects of different virtual characters, 
we also conducted the above-mentioned Liket table investigation on two different performance effects, namely "real-
person demonstration" and "video explanation", and added two indicators, "low cost" and "high scalability". The 
comparison and evaluation results of the virtual character performance generation effect are shown in Table 5. We 
can learn that: 
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(1) Although the visualization effect of the virtual character performance demonstration system (4.3873) is slightly 
lower than that of the real-life demonstration (4.8685) and video explanation (4.6644), its scalability is much higher 
than the other two. If the prototype system designed in this paper is supplemented with appropriate visual or auditory 
special effects, it may further increase the experimenter's immersion and enhance the performance quality. 

(2) The average value of the “low cost” index of the virtual character performance demonstration system (1.9034) 
is slightly higher than that of the live demonstration (1.776). It should be noted that the AR system in this paper 
replaces the more complex motion capture devices or massive data sets, but compared with lightweight media 
devices such as video, the hardware overhead of this system is still large. With the development of computer 
hardware and software technology, we believe that the cost problem will eventually be effectively solved. 

Table 5: Comparison and evaluation results of virtual role performance 

Evaluation of teaching effect Pattern name Life demonstration Video Virtual role performance demonstration 

Visual effect 
Mean 4.8685 4.6644 4.3873 

Variance 0.1068 0.5339 0.5694 

Good availability 
Mean 4.8303 4.0374 4.1252 

Variance 0.0604 0.7597 0.8675 

Cost low 
Mean 1.776 4.0523 1.9034 

Variance 0.632 0.328 1.0486 

High scalability 
Mean 1.8512 3.6786 4.7528 

Variance 0.2799 0.4068 0.4375 

 
III. C. Analysis of the effect of virtual character stylized action generation 
In this paper, a user study was also conducted to further validate the diversity and rationality of the present method 
for generating action style attributes. The experiment invited 20 subjects with age distribution between 18 and 45 
years old, all of whom had normal or corrected-to-normal vision, were not color-blind, and had long-term experience 
in animation, games, and other fields. In order to verify the diversity and reasonableness of the action style attributes, 
the experiment compared the method of this paper with the random sampling method, which is still based on the 
instruction parsing method proposed in this paper, but replaces the module-generated style labels with randomly 
sampled style labels, and generates the action results of not shorter than 150 frames for each of the 10 instructions 
respectively. All subjects were asked to watch 10 groups of videos, each group of videos consisted of the same 
instruction as input, which were the results generated by the method in this paper and the random sampling method 
respectively. Subjects filled out a questionnaire after each set of videos. The following questions were included: 

1) Score the difference between the two results with a rating interval of an integer between 1 and 5, where 1 
represents the smallest difference and 5 represents the largest difference. 

2) Score the reasonableness of the two results separately, where 1 represents the least reasonable and 5 
represents the most reasonable. 

The results of user scoring analysis are shown in Fig. 3, where (a) to (c) represent the user scores on the 
differences, the user scores on the reasonableness of this paper's method and the user scores on the 
reasonableness of the random sampling method, respectively. The horizontal axis coordinates “instructions 1-10” 
in the figure correspond to the corresponding instructions. 

In terms of user ratings, this paper's method improves the mean of its action ratings by 1.3 points in terms of 
reasonableness compared to the random sampling method. The paired-sample t-test was applied to the user scores, 
and the significance level was α=0.01. The results showed that the mean score of the rationality score of this paper's 
method was 3.2, which was significantly better than that of the random sampling method with an average score of 
1.9. 

Different characters usually have different attribute features such as tall, short, fat, thin, etc., and the instructions 
described in the text also generally contain a variety of emotional features, this paper unifies these diverse features 
into style attribute labels, generates a style that conforms to the character and instructions through instruction 
parsing, and drives the action generation module to generate a sequence of actions that matches the style, which 
avoids the problem that the output is too monotonous, and enhances the reasonableness of the experimental 
results,. It proves the effectiveness of the method framework of this paper. The results show that this paper's method 
can generate actions with large differences according to different style labels, proving the diversity of action style 
attributes. 



The Practice of Motion Capture-based Virtual Character Performance Generation Technology in Film and Television Animation 

7818 

 
 

(a)User ratings for diversity (b)The user's evaluation of the rationality of the 
method 

 

(c)The user's score on the rationality of random sampling method 

Figure 3: User score analysis results 

IV. Conclusion 
The virtual character performance generation technique combined with deep reinforcement learning and muscle-
driven control strategies can effectively enhance the performance of virtual characters in film and television 
animation. With the method proposed in this study, the virtual character is able to achieve a high degree of 
naturalness and fluency when performing complex actions. In the experiment, when the virtual character completed 
the one-legged squatting action, the reward value stabilized after 6000 training rounds, indicating that the learning 
process was effective. Especially in the muscle drive control, the critical role of the degree of muscle activation on 
action generation was verified by ablation experiments. In the one-legged squat, the maximum value of the reward 
for controlling the degree of muscle activation was 32.08, while the maximum value after removing this reward was 
16.39, which proved that the effect of muscle drive on action generation was significantly improved. 

The results of the user survey also showed that the naturalness and smoothness of the virtual character's 
movements were highly rated, and the operability and visual effects of the system received positive feedback from 
users. Although there is a certain gap in hardware cost compared to traditional methods, the system has higher 
scalability and application potential, and the hardware cost problem is expected to be solved in the future with the 
advancement of technology. Therefore, this method provides an effective technical path for virtual character 
performance generation, which has a wide application prospect in the field of film and television animation. 
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