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Abstract The rapid development of the electric vehicle industry has prompted much attention to the assessment of 
power battery health status. In this study, an intelligent prediction model of battery performance decline trend is 
proposed based on real vehicle data. Firstly, the capacity increment analysis is used to extract health features from 
the battery charging process, which is processed by a double filter algorithm to obtain a smooth capacity increment 
curve, and ten key health features are extracted. Subsequently, the correlation between the features and the battery 
health state is evaluated by Pearson correlation analysis, and the study shows that the correlation coefficient of 
most of the health features is greater than 0.85, which verifies the effectiveness of the feature extraction. Based on 
this, a GRA-EMD-BILSTM prediction model incorporating the attention mechanism was constructed, which utilized 
empirical mode decomposition to decompose the non-smooth differential pressure sequence into multiple smooth 
components, and screened the associated features by gray correlation analysis, and combined with a bidirectional 
long- and short-term memory network to achieve high-precision prediction. The experimental results show that the 
prediction error of this method for B5 batteries is controlled in the range of -1.87% to 1.43%, and the MAE, RMSE 
and MAPE indexes are reduced by 0.0081, 0.011, and 0.0122, respectively, compared with the LSTM method alone. 
This study provides a reliable health state monitoring technology for battery management systems, which is of great 
significance for extending the service life of the batteries and guaranteeing the safe operation of electric vehicles. 
 
Index Terms Capacity incremental analysis, Health feature extraction, Gray correlation analysis, Empirical modal 
decomposition, Bidirectional long- and short-term memory network, Intelligent prediction model 

I. Introduction 
Against the background of global energy crisis and increasingly severe environmental problems, the development 
of new energy vehicles has become the focus of attention of governments and research institutions. With the 
continuous development and progress of the automobile industry, the problems of environmental pollution and 
energy scarcity have become more and more serious, so all countries have begun to formulate the development 
plan of new energy vehicles [1]-[3]. Among them, a series of battery components, such as fuel cells and lithium 
batteries, serve as the key power sources of automobiles, determining their overall performance, production costs 
and revenues [4], [5]. 

In recent years, the durability study of automotive batteries has become has become an important and hot issue 
with practical application value. In a stable and reliable operating environment, all components of the battery will 
undergo a certain degree of irreversible degradation with the increase of the usage time, which will result in the 
natural decline of the battery performance, and the rate of the battery performance decline will also be accelerated 
when it is operated under complex operating conditions, such as start-stop cycles, load cycles, thermal cycles, etc. 
[6]-[9]. In practice, ignoring the battery performance degradation problem may lead to misunderstanding of the 
tolerability of internal battery components or battery serviceable conditions, overconfidence in the health of the 
system, and thus failure of early health management or timely system maintenance, and ultimately lead to 
premature battery damage or more serious safety accidents [10]-[13]. In order to improve the durability of the battery 
and ensure its long-term safe and reliable operation, it is necessary to make the necessary predictions about the 
fuel cell during its use. The prediction of battery degradation trend can help drivers to prolong the performance of 
battery packs by adjusting their driving habits, and can effectively avoid battery pack failures caused by battery 
degradation to protect the lives and properties of drivers [14]-[17]. 

As the core power source of electric vehicles (EVs), the health status of lithium-ion (Li-ion) batteries has a direct 
impact on the range capability, safety performance and user experience of EVs. During the actual operation of 
electric vehicles, Li-ion batteries experience complex and variable operating conditions, such as diverse charging 
and discharging modes, different ambient temperatures, and various load states, which together lead to irreversible 
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degradation of battery performance. Currently, the industry relies on parameters such as residual capacity and 
internal resistance to assess the health status of the battery, but these parameters usually require a complete 
charge/discharge test to obtain, making it difficult to meet the demand for real-time monitoring. Battery management 
systems need to accurately predict battery performance decline trends based on partially accessible data without 
interrupting normal use, so that timely maintenance measures can be taken. Traditional battery health assessment 
methods mainly include electrochemical modeling, equivalent circuit modeling, and data-driven methods, in which 
electrochemical modeling and equivalent circuit modeling can reflect the internal mechanism of the battery, but the 
parameters are difficult to calibrate and complicated to calculate, and it is difficult to adapt to the changing conditions 
of the real vehicle environment. On the other hand, data-driven methods have gradually become the focus of battery 
health assessment research due to the advantages of no need to understand the internal mechanism of the battery 
and flexible model construction. However, the existing data-driven methods still face challenges in how to extract 
effective health features from limited battery operation data and how to construct prediction models that can 
accurately describe the nonlinear battery decline process. 

Based on these issues, this study proposes an intelligent prediction model for battery performance decline trend 
based on real vehicle data. First, health features are extracted from the battery charging process using capacity 
incremental analysis, and smooth feature curves are obtained by processing through a filtering algorithm; second, 
correlation analysis is used to assess the validity of the health features, and features that are highly correlated with 
the battery health state are screened out; finally, a GRA-EMD-BILSTM prediction model incorporating the attention 
mechanism is designed, and non-smoothness is handled through empirical mode decomposition sequences, 
screening associated features using gray correlation analysis, and combining with bi-directional long and short-term 
memory networks to achieve high-precision prediction. The aim of this study is to provide a practical and effective 
intelligent assessment method for battery health status monitoring, which in turn supports the optimization of battery 
management system and safe operation of electric vehicles. 

II. Health state feature extraction of lithium battery driven by real vehicle data 
II. A. Principle of lithium-ion battery 
II. A. 1) Composition of lithium-ion batteries 
Lithium-ion battery specifics are as follows: 

(1) Shell: the shell consists of external and internal parts, the internal increase in the vent and other designs, the 
external can be encapsulated with two kinds of materials, one is steel material and the other is aluminum material. 
For some need to provide short-circuit protection, researchers can also have the protection function of the integrated 
circuit board designed in the external. 

(2) Diaphragm: This part plays the role of isolation, isolating the positive and negative poles, avoiding the 
formation of a circuit between the two, thereby protecting the internal stability. 

(3) electrolyte solvent: the requirement itself is the need to have good electrical conductivity, on the basis of which 
also requires the internal resistance as small as possible, earlier used ether and so on as a solvent, but this kind of 
solvent itself with toxicity, under certain conditions, will also trigger an explosion and other phenomena, with the 
progress of science and technology, people have found a better material, such as potassium perchlorate, etc., and 
gradually replace the original material, and the use of more stable Gel, to ensure the safety and reliability of lithium-
ion batteries in the process of use. 

(4) Negative electrode material: the most commonly used material is graphite carbon material, with low 
embedding potential and huge resource storage of carbon material, which is one of the reasons why it can be widely 
used, and secondly, it is less polluting to the ecological environment, which is in line with the requirements of 
sustainable development, and its electrochemical properties are stable, which can ensure the safety in the process 
of use. 

(5) Positive material: In order to realize higher output voltage, this part needs higher redox potential. The more 
common ones are lithium manganate and other materials, which use a layered lattice structure, and can be 
thickened or thinned out for different use cases, which increases its scope of application and is more convenient for 
promoting its use. 

 
II. A. 2) Principle of operation of lithium-ion batteries 
The cathode and anode, which consist of positive and negative particles respectively, the diaphragm, which allows 
only the electrolyte to pass through, the electrolyte, which can generate an electric charge by transporting lithium 
ions, and the battery casing together make up the lithium ion battery. As can be seen in the figure below, a collector 
capable of collecting charge is connected externally to simulate the general situation during charging and 
discharging. The current that is continuously released outward from the positive electrode will have an effect on the 
lithium ions within the electrolyte, and the ions in the negative electrode portion will be mentioned within the liquid, 
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and due to the increase in the number of lithium ions in the negative electrode portion, it will promote their movement 
towards the positive electrode, and the collector in the external circuit will pick up the electrical energy that is coming 
from the negative electrode, and transmit it to the positive particles, through its positive electrode. 

Charging is carried out by an external power source, and the general situation inside the battery is that the lithium 
ions, assisted by the electrolyte, pass through the intermediate barrier from left to right into the negative electrode, 
and the general situation outside is that the electrons pass through the circuit and enter the negative electrode of 
the battery, and finally combine with the ions at the negative electrode. The relevant changes that occur in the 
positive part of the battery during charging are: 

 2 4 1 2 4LiMn O Li Mn O Lix x xe 
    (1) 

The relevant changes that occur in the negative portion during charging are: 

 66C Li Li Cxx xe     (2) 

When the battery is discharged, what happens is completely reversed from when it is charged; the lithium ions 
that were moving toward the negative terminal, now with the help of the electrolyte, move once again across the 
diaphragm toward the positive terminal, and the electrons from the outside will move from right to left via an external 
circuit to the positive terminal, where they will combine with the ions and the following reaction will take place: 

 1 2 4 2 4Li Mn O Li LiMn Ox x xe 
     (3) 

The reactions that will occur at the negative electrode are as follows: 

 6 6xLi C C xLi xe     (4) 

With the advancement of battery-related technology, its performance has been greatly improved compared with 
the original battery. The advantages are as follows: 

1. When the battery is charging and discharging, its requirement for the ambient temperature has been reduced. 
2. Higher voltage can be transmitted outward due to improved materials. 
3. The phenomenon of self-discharge in batteries has been improved. 
4. The amount of energy that can be released has been increasing. 
5. After discharging, it is easier to obtain the remaining internal capacity. 
6. It has become safer and more reliable during use. 
7. Due to the improvement of the production material, the waste battery after use is almost harmless to the 

environment. 
8. Its reusability has been improved, greatly increasing the number of times and duration of use. 
Lithium-ion batteries also have their own aspects that need to be improved: 
1. In order to increase safety, there needs to be a circuit used to play a protective role. 
2. As the discharge voltage increases, the range of variation also increases, making it difficult to control. 
3. The price of the materials used for manufacturing has increased due to the use of new materials. 
4. Because of the difference between them and ordinary batteries, they cannot be mixed with ordinary batteries. 
After the researchers' continuous exploration, the above mentioned situations are gradually solved to a certain 

extent, and it is believed that they will be completely overcome in the near future. 
 

II. B. Power lithium battery health feature extraction 
II. B. 1) Health Feature Extraction Based on Capacity Incremental Approach 
(1) Capacity increment analysis method 

Capacity incremental [18], [19] through the online measurement of the voltage, current data, equal interval 
calculation to obtain a set of voltage V  and capacity Q , and by differential analysis methods, the traditional 
charge and discharge voltage curves involving the battery first-order phase change of the voltage plateau into the 
capacity incremental curves on the capacity incremental curve can be clearly identified capacity incremental 
( / )Q V   peaks, which have higher sensitivity to data changes compared to conventional charge/discharge curves. 
By analyzing the IC curve, the degradation process, aging mechanism characteristics and health state changes of 
Li-ion batteries can be explored by linking the electrochemical reaction changes to the peak positions, heights, 
areas and distances between different peaks on the IC curve. The capacity increment IC is: 

 1

1

k k

k k

Q QdQ Q
IC

dV V V V





  

 
 (5) 
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where IC  is the capacity increment; Q  is the capacity change; V  is the voltage change; kQ  and 1kQ   are 

the capacity of the battery at the time of k  and 1k  ; kV  and 1kV   are the voltage of the battery at the time of 

k  and 1k  . 
Since the cyclic aging test experiment uses constant current to charge and discharge, Q  in the above equation 

is converted to the product of constant current kI  and time interval: 

 1( )k k kQ I t t     (6) 

where kI  is the charging current at k  moment; kt  and 1kt   are k  and 1k   moments. 

According to Eq. (5) and Eq. (6) can be obtained: 

 1

1

( )k k k

k k

I t tdQ

dV V V








 (7) 

Capacity increment analysis converts the battery voltage platform into the capacity increment peak in the IC curve 
that is easier to analyze, and analyzes the performance of lithium-ion batteries through the trend of capacity change, 
which can powerfully capture the performance decline process of power battery. 

(2) IC curve denoising processing 
This section extracts and processes the B5, B6, B7 and B8 charging processes. Since there is no real-time 

capacity data in the NASA raw data set and the sampling interval of battery voltage is large, extracting the IC curve 
will lead to uncertainty in the value of the peaks and valleys. Therefore, the battery voltage sampling interval is 
reduced by linear interpolation, which in turn captures the changing characteristics of the IC curve. However, since 
the voltage interval after interpolation becomes smaller, resulting in too many “burrs” in the IC curve extraction, this 
paper uses the moving window smoothing method to denoise the IC curve. 

Unlike the NASA dataset, real-time capacity was recorded in the Oxford battery aging test. Therefore traversing 
each cycle to obtain voltage and capacity data, /dQ dV  was calculated by equation (5). Kalman filtering algorithm 
is used to set parameters such as process noise covariance, observation noise covariance, initial error covariance, 
etc., and the uncertain information on the curve is fused to remove the interfering data in order to smooth the curve. 

(3) IC curve-based health feature extraction 
In addition, only considering the effect of IHF7-IHF9 on SOH and ignoring the potential relationship among the 

three IHFs will lead to feature redundancy and low model generalization ability. Therefore, IHF1~IHF3 are 
downscaled to one-dimensional IHF4 to ensure the mutual independence between feature attributes. 

In the MDS algorithm, let the distance matrix of n  samples 1 2 3, , nx x x x  under the high-dimensional space be 

D , where any two samples ix , the distance between any two samples jx  is ijd . The sample matrix after 

dimensionality reduction is Z , where iz  and jz  follow i j ijz z d  : 

 
2 222 2 T

ij i j i j i jd z z z z z z      (8) 

Centering the sample matrix Z  yields Eq: 

 
1

0
n

i
i

z


  (9) 

 
2 22

1 1

n n

ij j j
i i

d z n z
 

    (10) 

 
2 22

1 1

n n

ij j i
j j

d z n z
 

    (11) 

Summing both sides of equation (11) again gives equation (12): 

 
2 2 22

1 1 1 1 1 1

2
n n n n n n

ij i i
i j i j i

j
i

d z n z n z
     

       (12) 

Let the one-dimensional inner product matrix TB Z Z , then: 
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 
     
 
 
    (13) 

An eigen-decomposition of matrix B  is obtained: 

 TB V V   (14) 

where,   is the eigenmatrix; V  is the eigenvector matrix. The first largest eigenvalue and eigenvector are 
selected when downscaling the data to one-dimensional space. The data points after dimensionality reduction are 
represented as: 

 1/2
1 1Z V   (15) 

where, 1  is the reduced eigenmatrix, 1/2
1  is the new diagonal matrix consisting of the 1/ 2 th power of the 

eigenvalues; and 1V  is the one-dimensional eigenvector matrix. 

 
II. B. 2) Correlation analysis of battery health characteristics 
Pearson and Spearman correlation coefficients are often used to characterize the degree of correlation between 
two variables, the closer the absolute value is to 1, the stronger the correlation is, and when the absolute value is 
1, the two variables are completely correlated. The Pearson correlation coefficient is most appropriate when 
continuous data, normal distribution, and linear relationship are met, and the Spearman correlation coefficient is 
more reliable if any of the above conditions are not met, so this paper is based on the two for a comprehensive 
examination of health characteristics. 

Pearson correlation coefficient can measure the linear relationship between two variables, and its calculation 
formula is as follows: 
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 
 (16) 

where    is the Pearson correlation result; iX   is the health characteristic; X   is the mean of the health 
characteristic; iY  is the SOH; Y  is the mean of the SOH. 

Spearman's correlation coefficient refers to the method of obtaining correlation based on the rank order of two 
variables, which has no specific need for the form of the initial variable distribution and is widely used. The formula 
is: 
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 (17) 

where ix  represents the i th value of the battery feature data, x  represents the average value of the feature 
data, iy  is the i th value of the battery capacity, and y  is the average value of the battery capacity. In this paper, 
we will use the above equation to calculate the correlation coefficients of the health features IHF1~IHF4 extracted 
above. 

 
II. C. Battery performance degradation feature extraction 
II. C. 1) Health feature extraction based on capacity incremental analysis method 
Here, in order to be able to further mine more information from the local data of the state of charge of lithium batteries, 
this paper continues to use the incremental capacity analysis (ICA) method for the mining of battery health 
characteristic information.ICA is a method used to analyze the performance of lithium-ion batteries. The method 
converts the complex characteristics of the internal electrochemical reflection of the battery into the characteristic 
parameters on the IC curve by means of the incremental capacity curve (IC), which demonstrates the performance 
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changes of the battery in a more intuitive way, thus providing an effective research tool for analyzing the cyclic aging 
as well as the degradation mechanism of lithium-ion batteries. 

Figure 1 shows the voltage-capacity (V-Q) curve. It can be found that in the middle of the charging process, there 
is a long period of time, the voltage changes more slowly, but in the voltage platform range is the main range of the 
charge amount, the battery charge throughput overall amount is larger, the practical application of the platform 
range is difficult to extract directly from the effective and easy to recognize the characteristics of the battery used to 
estimate the battery state of health SOH. The capacity increment curve is obtained by first-order derivation of the 
V-Q curve to obtain the capacity increment of the battery within one unit voltage, i.e., the change of dQ/dV, which 
transforms the flat voltage plateau region into the trough value in the IC curve that is easier to observe and analyze. 
In the capacity increment curve, the flatter the voltage plateau is, the more prominent the peak of the corresponding 
curve is, i.e., the change of the peak value can be used to reflect the impact due to battery aging during the battery 
charging process. 

 

Figure 1: Voltage - capacity V-Q curve 

The raw capacity increment IC curve is shown in Fig. 2. The sampling frequency is 0.2 Hz, and it can be seen 
that the original IC curve still has more noise signals, which cannot be directly used to extract the battery health 
characteristics, so the IC curve needs to be processed with noise reduction. 

 

Figure 2: Original capacity incremental IC curve 
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From the curve smoothing effect and the retention of curve features, this paper firstly applies the MASF filtering 
method, sets the small moving window width M=25, i.e., takes the neighboring 25 data points to perform the mean 
value filtering calculation, and then generates the Gaussian window with σ 6 and the number of output points of the 
window 36, and then does the convolution operation with the curves after the MASF filtering, to get the filtered and 
noiseless IC curves after noise reduction. IC curve after filtering and noise reduction. Figure 3 shows the IC curve 
of the capacity increment after the filtering process. It can be seen that after the MASF-GSF double filtering algorithm, 
a more satisfactory curve smoothing effect is obtained, and the characteristic information such as the peaks and 
valleys of the curve is retained to a larger extent. 

 

Figure 3: The volume incremental IC curve after filtering processing 

Figure 4 shows the capacity increment curve of lithium battery under different cycle times. It can be seen that 
with the increase in the number of battery cycle charging and discharging, the battery gradually aging, the 
corresponding IC curve has also undergone obvious changes, the peak and valley area of the curve is gradually 
moving to the lower right, which is specifically manifested as a gradual decrease in the peak intensity of the peak 
of the peak of the IC curve, but the peak voltage corresponding to the peak is gradually increasing, that is, it indicates 
that the voltage plateau area of the battery charging process is changing towards a larger value of the voltage. The 
main reason for this phenomenon is related to the change of electrochemical information inside the battery aging, 
the battery positive and negative electrode active material in the cycle aging process there is an unavoidable loss, 
at the same time, the negative electrode surface of the battery SEI passivation film thickening makes the internal 
resistance increase, resulting in the battery in the constant-current charging stage of the battery charge to reduce 
the amount of energy, and will be faster to reach the cut-off voltage of the constant-current charging into the 
constant-voltage charging. In the figure, three IC curve spikes are marked with arrows, which are No. 1, No. 2 and 
No. 3, in which it can be seen that with the cyclic aging of the battery, the No. 1 spike gradually disappears, and the 
curve in this region becomes more and more gentle, compared with the No. 2 spike and No. 3 spike can still be 
clearly identified, and the peak intensity shows a decreasing trend, and the peak voltage is gradually shifted to the 
right, and therefore can be used as a characteristic to characterize the health state of the battery. Therefore, it can 
be used to characterize the health state of the battery. 

 

Figure 4: The incremental curve of the lithium battery in different cycles 
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Through the above analysis, the health features of the battery are extracted based on the ICA method, and the 
health feature extraction based on the ICA method is shown in Table 1. All six of the feature values are roughly 
distributed in the range of charging voltage interval from 3.8V to 4.0V in the constant current charging stage of the 
battery, which is in line with the demand for feature extraction of some of the charging data of the battery, so that 
the feature extraction of the battery based on the ICA method is theoretically feasible. 

Table 1: The health feature extraction based on the ICA method 

IC characteristic information 
ICA battery health feature extraction 

Capacity value-added (dQ/Dv) Voltage (V) 

Peak 2 HF5 HF6 

Peak 3 HF7 HF8 

Wave valley HF9 HF10 

 
II. C. 2) Correlation analysis of health characteristics of lithium-ion batteries 
Pearson correlation analysis is a mathematical statistical method used to measure the degree of correlation 
between two continuous variables. The basic idea of this method is to calculate the Pearson correlation coefficient 
based on the covariance and standard deviation of the two variables in order to measure the correlation between 
the variables. The value of Pearson correlation coefficient ranges from [-1,1], -1 means that the two variables are 
completely negatively correlated, 0 means that the two variables are completely uncorrelated, and 1 means that the 
variables are completely positively correlated. 

When the absolute value of the Pearson correlation coefficient is greater than 0.85, it indicates that the two 
variables are extremely strongly correlated. The Pearson correlation coefficients between the state of health SOH 
of the four batteries, B5, B6, B7, and B8, in NASA's publicly available lithium-ion battery dataset and the individual 
health characteristics were calculated by Pearson correlation analysis. 

The Pearson correlation coefficients between the battery health features and battery SOH are shown in Table 2. 
The results show that on four different lithium batteries, most of the extracted battery health features have their 
correlations greater than 0.85, and some of them have correlations near 0.8, but in the analyzed results of lithium 
battery No. B8, very few outliers appeared, and the results of HF9 and HF10 are extremely low, which are only 
0.2107 and 0.1924. Since Pearson correlation analysis only measures linear correlation between variables, the 
calculation of correlation in the case of nonlinearity has some limitations. In view of this, gray correlation analysis 
was continued to do quantitative analysis of the correlation between battery SOH and each health characteristic. 

Table 2: The Pearson correlation coefficient of the battery SOH 

Battery number B5 B6 B7 B8 

HF1 0.9441 0.8987 0.9531 0.7214 

HF2 0.9857 0.9599 0.9839 0.8256 

HF3 0.9892 0.9693 0.9837 0.8789 

HF4 0.9932 0.9701 0.9791 0.8677 

HF5 0.9932 0.9763 0.9824 0.9087 

HF6 0.9947 0.9832 0.9839 0.9637 

HF7 0.9908 0.9768 0.9802 0.9224 

HF8 0.9952 0.9847 0.9851 0.9767 

HF9 0.995 0.9913 0.9861 0.9859 

HF10 0.9901 0.9862 0.9802 0.9735 

III. Intelligent prediction model of battery performance decline trend and analysis of 
prediction results 

III. A. Intelligent Prediction Model Design for Battery Performance Decline Trend 
III. A. 1) BILSTM incorporating attention mechanisms 
In this paper, BILSTM [20] is used as the basic network framework, in addition, this network can avoid long 
sequences from gradient vanishing or exploding during the training process.The neuron interior of BILSTM is the 
same as that of LSTM, which contains three gating modules, namely, forgetting gate, remembering gate, and output 
gate.X denotes inputs at the moment of t, C denotes cellular state, and H denotes the hidden layer state. The input 
of the network includes the differential pressure component obtained after processing and the correlation features 
affecting the change of differential pressure, which still retains the temporal information of differential pressure and 
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is affected by the forward correlation features.The neurons of the BILSTM can selectively forget and memorize the 
new information about the cell state through the forgetting gate and the memory gate to save this useful information 
and pass it on to the subsequent neurons. The forgetting, memorizing, and outputting of information are controlled 
by the forgetting weight, memorizing weight, and outputting weight obtained from the last moment H and the current 
X through the internal weighting calculation of the neuron. Through the three gates of LSTM neurons, the feature 
information and temporal information hidden in the correlation features and pressure difference components can be 
effectively captured. Compared with LSTM, BILSTM can encode the information from back to front, which improves 
the ability to obtain the hidden information. 

After the input information is processed by the BILSTM neurons, the output y  is the tH  subjected to Softmax 
processing. I.e: 

 1t f t iC W C W W   (18) 

  0 tanht tH W C  (19) 

where, 0W  is the output weight; iW  is the memory weight; fW  is the forgetting weight. 
In this paper, the attention mechanism is added to the BILSTM network framework to reasonably assign the 

weights according to the size of the error between the result and the point, which replaces the way of randomly 
assigning the weights by the neurons. 

The attention mechanism can give enough attention to the temporal features extracted by BILSTM and ignore 
the unimportant information by reasonably assigning the weights. The attention weights are calculated using 
Softmax function, and after obtaining the attention weight W , it is weighted and integrated with the output of the 
neuron and mapped through the fully connected layer to obtain the predicted value. I.e: 

 i
h h
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h h




  (20) 
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III. A. 2) GRA-EMD-BILSTM network 
The parameters that can reflect the car condition information in the open source/non-open source data are total 
current, total voltage, state of charge  SOC , temperature and other parameters, these features reflect the external 

environment and driving behavior of the car, but it is not possible to judge whether they are correlated with the 
differential pressure or not, and if the poor correlation is made as a redundant feature inputted into the network, it 
will reduce the prediction accuracy of the model, so GRA-EMD-BILSTM is used to calculate the the correlation 
between the above parameters and the differential pressure to filter out the non-redundant features. Table 3 shows 
the correlation analysis table, the parameters with correlation greater than 0.6 are selected and considered as 
correlated features with higher correlation with differential pressure. 

Table 3: Correlation analysis 

Correlation degree Cooperative hierarchy 

1 0.5G     Severe disorder 

0.5 0G    Moderate disorder 

0 0.4G   Mild disorder 

0.4 0.6G   Basic synergy 

0.6 0.8G   Moderate synergy 

0.8 0.9G   Good collaboration 

0.9 1G   High quality synergy 

 
The specific method of GRA-EMD-BILSTM is to construct each feature into a complete matrix 

1 1 1(1) (2) ( )
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ri ri ri m
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  , determine the pressure difference sequence 
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0 0 0[ (1) (2) ( )]ri ri ri m , and after calculating the difference between each feature sequence and the corresponding 

positional element of the pressure difference sequence, determine the maximum difference and minimum difference 
between each feature sequence and the pressure difference sequence, respectively, and then determine the two 
levels of maximum difference and the two levels of minimum difference from these differences, which are ( )Max  

and ( )Min , respectively, and finally Calculate the correlation coefficient, take the average value after getting the 

correlation coefficient between each feature sequence and the differential pressure sequence, and the result 
obtained is the correlation degree. That is: 
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(min) (max)
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( ) ( ) (max)
j

j

s
ri s ri s




  

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where,   is the resolution factor, which is taken as 0.5. 
Although BILSTM is able to capture the nonlinearity and temporality of the differential pressure sequence, the 

nonsmooth part of this type of sequence with a high frequency of change leads to a decrease in the prediction 
accuracy, therefore, in this paper, EMD is used to decompose the differential pressure sequence into multiple 
smooth, multiscale components, which provides a better signal-to-noise ratio compared to the Fourier variation and 
the wavelet variation. The differential pressure sequence ( )V t  is decomposed by EMD to obtain multiple intrinsic 
mode functions (IMFs) and residual signals Res . Namely: 

 
1

( ) ( ) Re
n

i

V t IMF t s


   (23) 

The GRA-EMD-BILSTM model incorporates the attention mechanism, the differential pressure sequence is 
decomposed by EMD to obtain multiple components, in the construction of feature engineering, these components 
are used as the target labels, combined with the corresponding GRA screened correlation features together with 
the input to the BILSTM network, the attention mechanism is introduced into the output portion of the network, and 
the predicted value of each component is obtained by the fitting of the fully connected layer, and the predicted value 
of each component is superimposed to be the final prediction result. The predicted values of each component are 
superimposed as the final prediction result. 

  

(a)IMF1 (b)IMF2 

  

(c)IMF3 (d)IMF4 

Figure 5: B5 lithium battery model component prediction results 
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III. B. Analysis of forecast results 
The prediction results of each modal component of the B5 lithium battery are shown in Fig. 5, where (a)~(d) 
represent IMF1-IMF4, respectively; the B5 prediction results and errors are shown in Fig. 6, where (a) and (b) 
represent the B5 prediction results and the errors of the B5 prediction results, respectively; and the RMSE indexes 
of the prediction errors of the battery for each modal are shown in Table 4. 
It can be seen that the original sequence is first processed by using EMD method, which can well deal with the 
partial capacity augmentation phenomenon that exists in lithium-ion batteries, and then each IMF component and 
residual term is predicted separately by using LSTM method, and then the prediction results are summed up and 
reconstructed to output the prediction results, and it can be seen that compared with the separate LSTM prediction 
results, the prediction results of GRA-EMD-BILSTM The accuracy of the results is greatly improved, and the error 
is less than -1.87% to 1.43%, and according to the computational evaluation indexes, it can be seen that the MAE, 
RMSE, and MAPE of the B5 cell of the GRA-EMD-BILSTM method used in this paper are reduced by 0.0081, 0.011, 
and 0.0122, respectively, compared with that of the LSTM method alone, which indicates that the adopted GRA-
EMD-BILSTM method not only can take into account the effect of capacity augmentation, but also ensures a good 
prediction accuracy. 

  

(a) B5 prediction results (b)B5 prediction error 

Figure 6: B5 prediction results and errors 

Table 4: The battery model prediction error RMSE index 

Method  MAE RMSE MAPE 

LSTM 0.0139 0.0167 0.0195 

This method 0.0058 0.0057 0.0073 

IV. Conclusion 
The intelligent prediction model in this paper is able to effectively capture the battery performance degradation trend 
driven by real vehicle data. Ten health features are extracted from the battery charging process by capacity 
incremental analysis, and it is verified that these features are highly correlated with the battery health state, with the 
Pearson correlation coefficients of most of the features exceeding 0.85. The GRA-EMD-BILSTM prediction model 
incorporating the attention mechanism successfully solves the problem of non-smoothness in the battery sequence 
and significantly improves the prediction accuracy. Experiments show that the prediction error of this model for B5 
batteries is controlled between -1.87% and 1.43%, and the prediction evaluation indexes MAE is reduced by 0.0081, 
RMSE is reduced by 0.0057, and MAPE is reduced by 0.0073 compared with the traditional LSTM method. The 
empirical mode decomposition method effectively handles the capacity augmentation phenomenon that exists in 
the lithium-ion batteries, and it can be used to predict the capacity of lithium-ion batteries by decomposing the 
nonstationary sequences into multiple smooth components, combined with gray correlation analysis to screen the 
correlation features, which substantially improves the model's ability to predict the battery decline trend. This health 
state assessment method based on partial charging data provides a reliable monitoring means for the battery 
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management system, which is of great value for extending the service life of batteries and ensuring the safe 
operation of electric vehicles. 
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