
International Journal for Housing Science and Its Applications
Publish August 3, 2025. Volume 46, Issue 3 Pages 944-952

944

https://doi.org/10.70517/ijhsa46371

Optimization Design of Cloud Computing Network Based on
Load Balancing
Zhihuang Jiang1,*
1 College of Data and Computer Science, Guangdong Peizheng College, Guangzhou, Guangdong, 510830, China

Corresponding authors: (e-mail: j88289876@hotmail.com).

Abstract Cloud computing is a kind of service system mainly controlled by cloud data centers, and the increasing
scale of information transmission puts forward higher requirements on its scheduling ability. This paper takes
rationalization of resource scheduling as the research objective and launches the research on cloud computing
network load imbalance problem. By analyzing the network resource load based on processing time, a cloud
computing network load balancing model is constructed. It also proposes a dynamic load balancing strategy for
cloud computing network. The strategy utilizes the distributed computing and storage capabilities of the cloud
computing platform to reasonably migrate virtual machines online. In this way, it ensures that the load of each
server tends to be balanced, so as to realize the dynamic balance and control of cloud computing network load.
Under a variety of experimental environments, the model proposed in this paper not only optimizes the average
system response time by more than 30%, but also tends to be smoother. It shows that the model can improve the
effectiveness of the data analysis problem in the communication process, and then optimize the cloud computing
network load balancing.

Index Terms cloud computing network, virtual machine, load balancing, resource scheduling, dynamic balancing

I. Introduction
With the wide application of cloud computing technology, cloud computing network architecture has become a hot
spot for research. Cloud computing network architecture is one of the key technologies to realize cloud computing
services, which can provide efficient resource management and data transmission [1]. However, existing cloud
computing network architectures have some problems, such as performance bottlenecks, security issues,
scalability and reliability issues, and efficiency and cost issues [2], [3].

Load balancing is an important technique to optimize cloud computing network architecture by spreading
network traffic across multiple servers to fully utilize the computing power of the servers and improve the overall
performance of the network [4], [5]. Kumar, C et al. proposed a load balancing mechanism based on dynamic
pricing and task allocation for and optimization of cloud computing networks [6]. Shafiq, D. A et al. optimized the
resource utilization of cloud computing based on load balancing algorithm using factors such as QoS task
parameters, VM priority and resource allocation as constraint variables to improve the load balancing of cloud
computing applications [7]. Komathi, A et al. used Support Vector Machine (SVM) to classify the data and load
balancing using Ant Colony Algorithm based on the performance metrics such as execution time, throughput,
overhead, optimization time and migration counts [8]. Hasan, R. A and Mohammed, M. N. Load balancing across
virtual machines using Krill Load Balancer (Krill LB) algorithm introduces an improved dynamic energy-aware
model that incorporates energy costs into the load balancing process for optimizing resource allocation and energy
efficiency in cloud computing environments [9]. Gao, R and Wu, J constructed a new method for dynamic load
balancing in cloud computing based on ant colony optimization technique which includes forward-backward ant
mechanism, max-min rule and task execution prediction to accelerate the search process [10]. Alghamdi, M. I
incorporates artificial neural networks into two-particle swarm optimization algorithms for optimizing load balancing
and task scheduling in cloud computing environments [11]. Gamal, M et al. constructed a new hybrid
meta-heuristic load balancing algorithm for cloud computing which combines percolation computing with ant colony
optimization in order to improve load balancing and reduce energy consumption for network optimization [12].
Khan, A. R combines deep learning, reinforcement learning and hybrid optimization techniques to construct a new
dynamic load balancing approach for cloud computing to optimize task scheduling and resource utilization in cloud
computing environments in order to improve network performance in cloud computing [13].

As the amount of data handled by cloud computing platforms continues to increase, the network congestion
problem becomes more and more serious. Network congestion can lead to data transmission delays, affecting the

Optimization Design of Cloud Computing Network Based on Load Balancing

945

responsiveness and overall performance of applications [14]. However, existing load balancing algorithms often fail
to provide differentiated quality of service guarantees, resulting in certain applications failing to meet their
performance requirements [15]. In cloud computing network architecture, traffic scheduling is one of the key factors
affecting performance [16]. Since different applications have different requirements and loads, efficient traffic
scheduling algorithms are needed to improve the overall performance of traditional load balancing algorithms.

In this paper, we first analyze the cloud computing network resource load and elaborate the calculation of
network resource load characteristics to provide a data foundation for load task scheduling. Based on this data
preparation, a cloud computing network load balancing model is established. Subsequently, it proposes a dynamic
load balancing task scheduling strategy for cloud computing network in view of the security problems such as data
leakage that may occur in the communication process of cloud computing network. It also explores the way of
migrating running virtual machines and the selection of target servers to realize the cloud computing network load
balancing. Finally, the performance, throughput and convergence experiments of the cloud computing network load
balancing model under different experimental conditions are carried out successively to test the effectiveness of
the model and algorithm.

II. Cloud Computing Network Load Balancing Model
II. A. Network Resource Load Analysis Based on Processing Time
Assume that the communication network environment contains a total of n physical nodes and that all nodes are
involved in the transmission of resources, corresponding to a total number of transmission tasks of R , and that
there are any of these nodes  ix i n with an average processing time of ctt for the transmission tasks, and that

the running time required to complete a transmission task is ytt . Then within n nodes, there exists a physical

node whose presence processing is greater than the critical time for communication transmission, i.e., the upper
limit of timeout customized by the network, and the computation for this class of nodes can be expressed as
equation (1):

() ()ct ytf t f t

T
n


 (1)

where (*)f denotes the critical function, and T denotes the upper limit of network customized transmission
timeout, it is not difficult to see that the function of determining the timeout node is a monotonically decreasing
function by observing equation (1). On this basis, in order to fully utilize the transmission space of network
resources and effectively improve its transmission capacity for parallel tasks, this paper takes the node whose
judgment result is not timeout as the target node for load scheduling, and its corresponding transmission channel is
also the load target scheduling channel, while the load to be scheduled comes from the node with timeout and the
corresponding channel.

At this point there is a load balancing problem, as the node load scheduling occurs, the node's processing time
and running time will change dynamically accordingly, which makes the scheduled node may be transformed into a
scheduling node, for this reason, this paper sets a temporary variable a for each physical node, and there is an
initial value of a as () ()ct ytf t f t , which serves to provide real-time feedback on the ability of this target physical

node to handle network resource transfer tasks as well as load balancing. Then there are, when the unfinished
transmission tasks at the node are transmitted at the current processing speed, the time to complete the amount of

ir tasks is equation (2):

 e
i

i

r
T

ar
 (2)

where iT denotes the time for ix node to complete ir amount of tasks and er denotes the total amount of

tasks it has transmitted. And with the scheduling of the load, the change in the value of a corresponding to the
node can be expressed as equation (3):

e

i
r T

r e
aa

D


 

 (3)

where e denotes the load size of the scheduling, i.e., the amount of transmission tasks, and e takes a positive
value when the scheduling form is outgoing, and a negative value when the scheduling method is incoming. T
denotes the time overhead of the scheduling process and D denotes the bandwidth of the channel where the

Optimization Design of Cloud Computing Network Based on Load Balancing

946

node is located. In this way, the dynamic characteristics of the network resource load are calculated to provide a
data base for subsequent scheduling.

II. B. Network Load Balancing Modeling
In the communication network link layer, link load imbalance will produce link congestion and packet loss. At the
cloud data center end, collect and apply cloud network security server and client terminal data, combine with
security cloud computing, and build a network load balancing model. Setting link load balancing policy preferences,
according to different bandwidth usage rate mapping preferences, routing control of the load volume, to complete
the communication network load balancing in the cloud computing service platform. For a network topology of
number j , there are

2

j
 networks in parallel, which makes a large number of redundant links during data

transmission. Packets are extracted during data stream exchange, they are reasonably matched, and the data
streams are operated according to the corresponding commands, and the packets are operated accordingly until
all tables have completed the corresponding matching. Load dynamics are detected, and load detection requests
are sent to the switches in the data center network according to the flow dynamics. In response to the received
load information, the load rate is calculated and the collected information is sent to the network load consistency.
Based on the stream rate and the number of ports, the bandwidth utilization is calculated and then the bandwidth
utilization is converted into network preference. When the functionally distributed network receives the stream
request message sent by the data stream, the functionally distributed network gets the forwarding line for the load
volume according to the network preference for the line setting. Transmitting network data information makes the
functional distributed network console collect information about the network data and then passes that information
to the data stream center. The functional distributed network console uses active transmission to transmit periodic
data and sends default messages to get the data flow connection status and generate a real-time network topology
map. Since the load in the network is constantly changing, the global topology of the network is updated slowly
when the rate of the data streams changes if the load accumulates over a long period of time. When the rate of
data flow is basically unchanged, too short accumulation time may consume a lot of resources. Therefore, for the
problem of detecting dynamic changes in the amount of load, the degree of network state change is constantly
monitored based on the cumulative time size. The cumulative time size y is related to the rate change x of
the data stream and also to the size of the previous cumulative time y . It is assumed that the size of the first
accumulation time is the minimum accumulation time min y and the maximum accumulation time is expressed
as max y . The formula for calculating the load accumulation time is equation (4):

 

 

min 1, max

max 1, min

y y

y y x

y y

  
    
   

 (4)

Two threads are opened for load load volume monitoring. In the design of the load balancing strategy, the
application uses the Softmax function, when the network bandwidth utilization is small, for the network link greatly
selected probability. When the network bandwidth utilization is large, very small selection probability for the link.
Through the establishment of load balancing model can realize the communication network resource node
utilization rate gradually converges to the average value, to achieve the goal of completing the communication
network load balancing.

III. Dynamic Load Balancing for Cloud Computing Networks
The computing unit of cloud computing technology is virtual machine, by seamlessly migrating the running virtual
machine between 2 servers, it can realize the dynamic balancing of network load. This chapter focuses on the
principles of the strategy and the implementation of dynamic load balancing in cloud computing.

III. A. Dynamic Load Balancing Task Scheduling Policy
Dynamic load balancing task scheduling for networks using cloud computing platforms. As an on-demand service
platform, cloud computing platform needs to have good service quality. The task deadline violation rate is selected
as an important index for the performance service evaluation of cloud computing platform. The priority of the
pending load balancing task is denoted by P , and its calculation formula is shown in equation (5):

 d aP T T  (5)

where dT and aT are load balancing task deadline and load balancing task arrival time, respectively. The smaller

the calculation result of Eq. (5), the higher the priority of the corresponding load balancing task.

Optimization Design of Cloud Computing Network Based on Load Balancing

947

The computing power required by the cloud computing platform to perform the load balancing task is expressed
in equation (6):

 /i ls s P (6)

where: iS is the cloud computing platform execution load function, and lS is the load balancing task length.

Calculate the average CPU resource, average memory resource, and average bandwidth resource of all load
balancing tasks within the load balancing task set, and compare the information of each load balancing task. When
the CPU resource required by a load balancing task is greater than or equal to the average CPU resource, it
means that the task is a CPU-intensive type. When the CPU resources required for the load balancing task are less
than the average CPU resources and the load balancing task memory resources are greater than or equal to the
average memory resources, the task is memory intensive. When the load balancing task memory is less than the
average memory and the bandwidth resource is greater than the average bandwidth resource, the task is network
bandwidth intensive.

The current load of the cloud computing platform node is denoted by jL , which is calculated as in equation (7):

 1 1 2 2 3 3 4 4 5 5jL w r w r w r w r w r     (7)

where: 1r and 2r are the available CPU and bandwidth resources, 3r and 4r are the available memory

resources and the task queue, 5r is the response time of executing the task, and iw is the corresponding weight

of each task.
In order to ensure that the quality of service of network load balancing tasks performed by the cloud computing

platform meets user requirements, the load balancing tasks should be completed within the specified time. When
creating the virtual machine of the cloud computing platform corresponding to the load balancing task, the CPU
resources of the cloud computing node are considered first, and then the memory and bandwidth resources of the
cloud computing node are considered.

The VM resources set for network load balancing task i need to satisfy the constraints as in equation (8):

  1

2

3

/l

f

n

s P t v

s v

s v

  



 

 (8)

where: t is the waiting time of the task in the network load balancing task queue. 1v and 2v are the CPU

resources and memory resources of the virtual machines in the cloud computing, respectively. 3v is the

bandwidth resource of the virtual machine in the cloud computing platform. The type of the virtual machine created
by the cloud computing platform needs to be the same as the type of the load balancing task.

III. B. Cloud Network Migration Virtual Machine Selection
The upper and lower thresholds of the servers within the cloud computing network are max , min . VM migration is

triggered when the predicted server load value appears to be greater than max or less than min for 2

consecutive cycles. Considering the shortest VM migration time and the minimum migration amount together, the
migration target VM set selection model is established, expressed as equation (9):

max

max

min

ˆ ()

ˆmin, min

ˆ

j a

s j

j

S V x u v

R S T x

V x













   
   
 


 (9)

where: x̂ is the predicted value of the j th server load within the cloud computing network. v is the amount of

resources occupied by virtual machine v . V is the set of virtual machines within the cloud computing network.
S is a subset of VMs to be migrated within V . sT is the VM migration time, and vT is the migration time of v

in equation (10):

 v
v

v

Z
T

N
 (10)

Optimization Design of Cloud Computing Network Based on Load Balancing

948

where: vZ is the memory occupied by v . vN is the available bandwidth of v , and sT is the sum of all vT .

The set of target VMs R to be migrated can be determined by solving Eq. (9) using genetic algorithm as
follows:

Step 1 Generate an initial population M while solving for the fitness of each chromosome, if the fitness f of a
chromosome is the optimal solution, then return the chromosome for which the optimal solution exists and continue
to Step 6.

Step 2 Select any 2 chromosomes within M and perform crossover.
Step 3 Solve for the f value of the 2 chromosomes after the crossover operation, if 1 of the chromosomes is

already the optimal solution, then return to the chromosome where the optimal solution exists, and continue to step
6. Conversely, select the 2 chromosomes with the maximal f corresponding to the chromosomes before and
after the crossover, and perform a mutation operation on them.

Step 4 Solve for the f value of the mutated chromosomes, and if 1 of the chromosomes is already the optimal
solution, then return to the chromosomes before and after the mutation crossover and select the 2 chromosomes
corresponding to the largest f within the chromosomes and store them into the new population.

Step 5 Repeat steps 2-step 4 until the chromosome corresponding to the largest f is obtained.
Step 6 Output the solution result of Eq. (10), i.e., the set of target VMs R to be migrated.

III. C. Target Server Selection for Cloud Computing Networks
After determining the target set of VMs R to be migrated, it is necessary to select the target server. Using the
maximum remaining capacity as the selection strategy, the target server is selected and the conditions it needs to
fulfill are:

(1) The target server can provide sufficient resources for R .
(2) Avoid secondary migration as much as possible to reduce the number of VM migrations.
Based on the above selection strategy, the target server can be selected to minimize the number of VM

migrations with energy effect and improve the resource utilization.

IV. Testing and Evaluation of Network Load Balancing Models
In order to validate the effectiveness of the modeling algorithms proposed above, this section launches
experiments on runtime performance, throughput rate and average waiting time, and convergence performance.

IV. A. Operational performance
In order to verify the performance of the algorithm, this section utilizes open-source cloud computing simulation
software to simulate a distributed cloud computing network environment, and conducts data sampling on the
software's own PlanetLab platform to test and verify the overall performance of the algorithm in this paper and
compare it with a representative algorithm for load balancing in cloud computing networks (K). First, no less than
25 heterogeneous physical host nodes (CPU processing power (MIPS) {1000,1800,2600,3000}, memory (G)
{1,2,4,8}, bandwidth (Mb/s) {500,700,1000}) are selected for the experiments, and each physical node is
configured with 3-5 virtual computing nodes respectively (CPU processing power (MIPS) {200,
500,1000,1500,2500}, memory (G) {0.5,1,2,3}, bandwidth (Mb/s) {100,200,500}), simulate to build a distributed
cloud computing network environment and simulate the operation of the cloud computing system driven by
different types of cloud tasks and different sizes of service data, and utilize the algorithm in the paper to perform the
system DLB operation. Statistics of the average response time of the system, analysis of virtual machine migration
and node utilization, and algorithm comparison results are shown in Fig. 1 and Fig. 2.

Figure 1: Average system response time under different cloud task conditions

Optimization Design of Cloud Computing Network Based on Load Balancing

949

Figure 2: The average system response time under different test times

As can be seen from the figure, on the one hand, this paper's algorithm has better adaptability to different cloud
computing task types, the average response time of the system has been significantly reduced, the algorithm is
running in a stable state, and the system has shown good load balancing performance in the initial stage of testing.
On the other hand, as the number of tests increases, the feedback adjustment optimization effectiveness of this
paper's algorithm is more obvious, compared with the K algorithm, the average response time of the system is not
only optimized by more than 30%, but also tends to be smoother, and the overall performance of the cloud
computing load balancing system has been greatly improved.

IV. B. Throughput rate and average waiting time
The experimental results of throughput rate of the designed dynamic load balancing algorithm are shown in Fig. 3,
and the experimental results of the average customer waiting time are shown in Fig. 4. From the figure, we learn
that the throughput rate of this paper's algorithm fluctuates in the range of 1000~3500, with the mean value of
about 2644 and the mean variance of about 369. The fluctuation of the average customer waiting time of this
paper's algorithm fluctuates in the range of 271~701s, with the mean value of about 387 and the mean variance of
60.

Combining data and images: the throughput rate and average customer waiting time fluctuation range up and
down is small. The overall mean square deviation of the performance of the three web servers is around 369, with
only one pulse fluctuation, which indicates that the performance of the three servers did not differ too much
throughout the experiment, so the results received by the clients show the same float, and the method maintains a
mean square deviation of around 369 with good stability, without the occurrence of a certain server being
overloaded at a certain point of time, while the other one server is idle. The mean squared deviation of both the
throughput rate and the average client waiting time is slightly lower than that of the static load balancing algorithm,
indicating that the minimum response time algorithm has higher stability.

Overall, the method proposed in this paper has better stability and can distribute load to back-end servers better,
but its accuracy is affected by the back-end performance index, so it is necessary to monitor the back-end index in
real time.

Figure 3: Throughput change

Optimization Design of Cloud Computing Network Based on Load Balancing

950

Figure 4: Average customer waiting time changes

IV. C. Convergence performance
This section evaluates the convergence performance of this paper's model algorithm and the DTORS algorithm.
Figure 5 represents the variation of load migration with the number of samples V for this paper's model algorithm
for different iteration stopping criterion ϵ. When ϵ is larger, the load migration can converge with fewer number of
samples, but converges to a higher load migration. If a smaller ϵ is used, the algorithm needs to sample more
random variables from the multivariate Gaussian distribution to recover the computational migration decision. For
example, when ϵ = 10-1, load migration can converge to a stable value after 108 samples. When ϵ = 10-2, at least
140 samples are needed to converge to a stable load migration. However, too small an ϵ increases the number of
times the algorithm samples and the iteration time for each sample, so the ϵ of the modeling algorithm in this paper
is set to 10-2.

Figure 5: The load migrating v.s.stopping criterion ϵ in textual algorithm

Figures 6 and 7 simulate the load migration convergence of the DTORS algorithm for different learning rates ϵ
and batch training sizes M, respectively. It can be seen that the DTORS algorithm can converge to a stable value
with different learning rates and batch training sizes. However, a learning rate that is too large or too small leads to
higher volatility and convergence to higher load migration. Therefore, the learning rate is set to 10-5. Fig. 7 shows
the convergence performance at three batch training sizes. When the batch training size is 128, the DTORS
algorithm converges to higher load migration. When the batch training size is 512, the DTORS algorithm converges
at a lower rate than when M = 256. Therefore, the batch training size of the DRORS algorithm is set to 256.

In summary, it can be seen that the DRORS algorithm learning rate (10-5) is lower than the model algorithm (10-2)
in this paper.

Optimization Design of Cloud Computing Network Based on Load Balancing

951

Figure 6: The load migrating v.s. stopping criterion ϵ in DTORS algorithm

Figure 7: The load migrating v.s.stopping criterion ϵ in DTORS algorithm

V. Conclusion
Aiming at the problem of cloud computing network load imbalance, this paper proposes a cloud computing network
load balancing model. The model optimizes network load balancing by real-time mining and exploring and
identifying transmission data to reduce the probability of communication channel node queue stacking problems
during transmission. It also utilizes cloud computing technology to migrate virtual machines online to achieve
dynamic load balancing and control.

The designed model algorithm optimizes the average response time of the system by more than 30% and tends
to be smooth, the throughput rate fluctuates in the range of 1000~3500 with an average variance of about 369, and
the average waiting time of the customers fluctuates in the range of 271~701s with an average variance of 60.
Compared with similar algorithms, it not only converges under different coefficient parameters but also achieves
the near-optimal load migration Cost. By optimizing the dynamic balancing control of cloud computing network load,
the effectiveness and real-time information in the cloud computing communication network are guaranteed.

References
[1] Zhang, Y., & Zhou, Y. (2018). Distributed coordination control of traffic network flow using adaptive genetic algorithm based on cloud

computing. Journal of Network and Computer Applications, 119, 110-120.
[2] Tamura, Y., & Yamada, S. (2016). Reliability computing and management considering the network traffic for a cloud computing. Annals of

Operations Research, 244, 163-176.
[3] Zheng, G., Zhang, H., Li, Y., & Xi, L. (2020). 5G network-oriented hierarchical distributed cloud computing system resource optimization

scheduling and allocation. Computer Communications, 164, 88-99.
[4] Chen, S. L., Chen, Y. Y., & Kuo, S. H. (2017). CLB: A novel load balancing architecture and algorithm for cloud services. Computers &

Electrical Engineering, 58, 154-160.
[5] Mishra, S. K., Sahoo, B., & Parida, P. P. (2020). Load balancing in cloud computing: a big picture. Journal of King Saud

University-Computer and Information Sciences, 32(2), 149-158.
[6] Kumar, C., Marston, S., Sen, R., & Narisetty, A. (2022). Greening the cloud: a load balancing mechanism to optimize cloud computing

networks. Journal of Management Information Systems, 39(2), 513-541.
[7] Shafiq, D. A., Jhanjhi, N. Z., Abdullah, A., & Alzain, M. A. (2021). A load balancing algorithm for the data centres to optimize cloud

computing applications. Ieee Access, 9, 41731-41744.

Optimization Design of Cloud Computing Network Based on Load Balancing

952

[8] Komathi, A., Kishore, S. R., Velmurugan, A. K., Begum, A. S., & Muthukumaran, D. (2024). Network load balancing and data
categorization in cloud computing. Indonesian Journal of Electrical Engineering and Computer ScienceThis link is disabled, 35(3),
1942-1951.

[9] Hasan, R. A., & Mohammed, M. N. (2017). A krill herd behaviour inspired load balancing of tasks in cloud computing. Studies in
Informatics and Control, 26(4), 413-424.

[10] Gao, R., & Wu, J. (2015). Dynamic load balancing strategy for cloud computing with ant colony optimization. Future Internet, 7(4),
465-483.

[11] Alghamdi, M. I. (2022). Optimization of load balancing and task scheduling in cloud computing environments using artificial neural
networks-based binary particle swarm optimization (BPSO). Sustainability, 14(19), 11982.

[12] Gamal, M., Rizk, R., Mahdi, H., & Elnaghi, B. E. (2019). Osmotic bio-inspired load balancing algorithm in cloud computing. Ieee Access, 7,
42735-42744.

[13] Khan, A. R. (2024). Dynamic load balancing in cloud computing: optimized RL-based clustering with multi-objective optimized task
scheduling. Processes, 12(3), 519.

[14] Moura, J., & Hutchison, D. (2016). Review and analysis of networking challenges in cloud computing. Journal of Network and Computer
Applications, 60, 113-129.

[15] Kang, L., & Ting, X. (2015, July). Application of adaptive load balancing algorithm based on minimum traffic in cloud computing
architecture. In 2015 International Conference on Logistics, Informatics and Service Sciences (LISS) (pp. 1-5). IEEE.

[16] Chen, J., Chen, J., & Guo, K. (2023). Queue-aware service orchestration and adaptive parallel traffic scheduling optimization in
SDNFV-Enabled cloud computing. IEEE Transactions on Cloud Computing, 11(4), 3525-3540.

