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Abstract Cloud computing is a kind of service system mainly controlled by cloud data centers, and the increasing 
scale of information transmission puts forward higher requirements on its scheduling ability. This paper takes 
rationalization of resource scheduling as the research objective and launches the research on cloud computing 
network load imbalance problem. By analyzing the network resource load based on processing time, a cloud 
computing network load balancing model is constructed. It also proposes a dynamic load balancing strategy for 
cloud computing network. The strategy utilizes the distributed computing and storage capabilities of the cloud 
computing platform to reasonably migrate virtual machines online. In this way, it ensures that the load of each 
server tends to be balanced, so as to realize the dynamic balance and control of cloud computing network load. 
Under a variety of experimental environments, the model proposed in this paper not only optimizes the average 
system response time by more than 30%, but also tends to be smoother. It shows that the model can improve the 
effectiveness of the data analysis problem in the communication process, and then optimize the cloud computing 
network load balancing. 
 
Index Terms cloud computing network, virtual machine, load balancing, resource scheduling, dynamic balancing 

I. Introduction 
With the wide application of cloud computing technology, cloud computing network architecture has become a hot 
spot for research. Cloud computing network architecture is one of the key technologies to realize cloud computing 
services, which can provide efficient resource management and data transmission [1]. However, existing cloud 
computing network architectures have some problems, such as performance bottlenecks, security issues, 
scalability and reliability issues, and efficiency and cost issues [2], [3]. 

Load balancing is an important technique to optimize cloud computing network architecture by spreading 
network traffic across multiple servers to fully utilize the computing power of the servers and improve the overall 
performance of the network [4], [5]. Kumar, C et al. proposed a load balancing mechanism based on dynamic 
pricing and task allocation for and optimization of cloud computing networks [6]. Shafiq, D. A et al. optimized the 
resource utilization of cloud computing based on load balancing algorithm using factors such as QoS task 
parameters, VM priority and resource allocation as constraint variables to improve the load balancing of cloud 
computing applications [7]. Komathi, A et al. used Support Vector Machine (SVM) to classify the data and load 
balancing using Ant Colony Algorithm based on the performance metrics such as execution time, throughput, 
overhead, optimization time and migration counts [8]. Hasan, R. A and Mohammed, M. N. Load balancing across 
virtual machines using Krill Load Balancer (Krill LB) algorithm introduces an improved dynamic energy-aware 
model that incorporates energy costs into the load balancing process for optimizing resource allocation and energy 
efficiency in cloud computing environments [9]. Gao, R and Wu, J constructed a new method for dynamic load 
balancing in cloud computing based on ant colony optimization technique which includes forward-backward ant 
mechanism, max-min rule and task execution prediction to accelerate the search process [10]. Alghamdi, M. I 
incorporates artificial neural networks into two-particle swarm optimization algorithms for optimizing load balancing 
and task scheduling in cloud computing environments [11]. Gamal, M et al. constructed a new hybrid 
meta-heuristic load balancing algorithm for cloud computing which combines percolation computing with ant colony 
optimization in order to improve load balancing and reduce energy consumption for network optimization [12]. 
Khan, A. R combines deep learning, reinforcement learning and hybrid optimization techniques to construct a new 
dynamic load balancing approach for cloud computing to optimize task scheduling and resource utilization in cloud 
computing environments in order to improve network performance in cloud computing [13]. 

As the amount of data handled by cloud computing platforms continues to increase, the network congestion 
problem becomes more and more serious. Network congestion can lead to data transmission delays, affecting the 
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responsiveness and overall performance of applications [14]. However, existing load balancing algorithms often fail 
to provide differentiated quality of service guarantees, resulting in certain applications failing to meet their 
performance requirements [15]. In cloud computing network architecture, traffic scheduling is one of the key factors 
affecting performance [16]. Since different applications have different requirements and loads, efficient traffic 
scheduling algorithms are needed to improve the overall performance of traditional load balancing algorithms. 

In this paper, we first analyze the cloud computing network resource load and elaborate the calculation of 
network resource load characteristics to provide a data foundation for load task scheduling. Based on this data 
preparation, a cloud computing network load balancing model is established. Subsequently, it proposes a dynamic 
load balancing task scheduling strategy for cloud computing network in view of the security problems such as data 
leakage that may occur in the communication process of cloud computing network. It also explores the way of 
migrating running virtual machines and the selection of target servers to realize the cloud computing network load 
balancing. Finally, the performance, throughput and convergence experiments of the cloud computing network load 
balancing model under different experimental conditions are carried out successively to test the effectiveness of 
the model and algorithm. 

II. Cloud Computing Network Load Balancing Model 
II. A. Network Resource Load Analysis Based on Processing Time 
Assume that the communication network environment contains a total of n  physical nodes and that all nodes are 
involved in the transmission of resources, corresponding to a total number of transmission tasks of R , and that 
there are any of these nodes  ix i n  with an average processing time of ctt  for the transmission tasks, and that 

the running time required to complete a transmission task is ytt . Then within n  nodes, there exists a physical 

node whose presence processing is greater than the critical time for communication transmission, i.e., the upper 
limit of timeout customized by the network, and the computation for this class of nodes can be expressed as 
equation (1): 
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where (*)f  denotes the critical function, and T  denotes the upper limit of network customized transmission 
timeout, it is not difficult to see that the function of determining the timeout node is a monotonically decreasing 
function by observing equation (1). On this basis, in order to fully utilize the transmission space of network 
resources and effectively improve its transmission capacity for parallel tasks, this paper takes the node whose 
judgment result is not timeout as the target node for load scheduling, and its corresponding transmission channel is 
also the load target scheduling channel, while the load to be scheduled comes from the node with timeout and the 
corresponding channel. 

At this point there is a load balancing problem, as the node load scheduling occurs, the node's processing time 
and running time will change dynamically accordingly, which makes the scheduled node may be transformed into a 
scheduling node, for this reason, this paper sets a temporary variable a  for each physical node, and there is an 
initial value of a  as ( ) ( )ct ytf t f t , which serves to provide real-time feedback on the ability of this target physical 

node to handle network resource transfer tasks as well as load balancing. Then there are, when the unfinished 
transmission tasks at the node are transmitted at the current processing speed, the time to complete the amount of 

ir  tasks is equation (2): 
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where iT  denotes the time for ix  node to complete ir  amount of tasks and er  denotes the total amount of 

tasks it has transmitted. And with the scheduling of the load, the change in the value of a  corresponding to the 
node can be expressed as equation (3): 
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where e  denotes the load size of the scheduling, i.e., the amount of transmission tasks, and e  takes a positive 
value when the scheduling form is outgoing, and a negative value when the scheduling method is incoming. T  
denotes the time overhead of the scheduling process and D  denotes the bandwidth of the channel where the 
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node is located. In this way, the dynamic characteristics of the network resource load are calculated to provide a 
data base for subsequent scheduling. 

 
II. B. Network Load Balancing Modeling 
In the communication network link layer, link load imbalance will produce link congestion and packet loss. At the 
cloud data center end, collect and apply cloud network security server and client terminal data, combine with 
security cloud computing, and build a network load balancing model. Setting link load balancing policy preferences, 
according to different bandwidth usage rate mapping preferences, routing control of the load volume, to complete 
the communication network load balancing in the cloud computing service platform. For a network topology of 
number j , there are 

2

j
 networks in parallel, which makes a large number of redundant links during data 

transmission. Packets are extracted during data stream exchange, they are reasonably matched, and the data 
streams are operated according to the corresponding commands, and the packets are operated accordingly until 
all tables have completed the corresponding matching. Load dynamics are detected, and load detection requests 
are sent to the switches in the data center network according to the flow dynamics. In response to the received 
load information, the load rate is calculated and the collected information is sent to the network load consistency. 
Based on the stream rate and the number of ports, the bandwidth utilization is calculated and then the bandwidth 
utilization is converted into network preference. When the functionally distributed network receives the stream 
request message sent by the data stream, the functionally distributed network gets the forwarding line for the load 
volume according to the network preference for the line setting. Transmitting network data information makes the 
functional distributed network console collect information about the network data and then passes that information 
to the data stream center. The functional distributed network console uses active transmission to transmit periodic 
data and sends default messages to get the data flow connection status and generate a real-time network topology 
map. Since the load in the network is constantly changing, the global topology of the network is updated slowly 
when the rate of the data streams changes if the load accumulates over a long period of time. When the rate of 
data flow is basically unchanged, too short accumulation time may consume a lot of resources. Therefore, for the 
problem of detecting dynamic changes in the amount of load, the degree of network state change is constantly 
monitored based on the cumulative time size. The cumulative time size y  is related to the rate change x  of 
the data stream and also to the size of the previous cumulative time y . It is assumed that the size of the first 
accumulation time is the minimum accumulation time min y  and the maximum accumulation time is expressed 
as max y . The formula for calculating the load accumulation time is equation (4): 
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Two threads are opened for load load volume monitoring. In the design of the load balancing strategy, the 
application uses the Softmax function, when the network bandwidth utilization is small, for the network link greatly 
selected probability. When the network bandwidth utilization is large, very small selection probability for the link. 
Through the establishment of load balancing model can realize the communication network resource node 
utilization rate gradually converges to the average value, to achieve the goal of completing the communication 
network load balancing. 

III. Dynamic Load Balancing for Cloud Computing Networks 
The computing unit of cloud computing technology is virtual machine, by seamlessly migrating the running virtual 
machine between 2 servers, it can realize the dynamic balancing of network load. This chapter focuses on the 
principles of the strategy and the implementation of dynamic load balancing in cloud computing. 
 
III. A. Dynamic Load Balancing Task Scheduling Policy 
Dynamic load balancing task scheduling for networks using cloud computing platforms. As an on-demand service 
platform, cloud computing platform needs to have good service quality. The task deadline violation rate is selected 
as an important index for the performance service evaluation of cloud computing platform. The priority of the 
pending load balancing task is denoted by P , and its calculation formula is shown in equation (5): 

 d aP T T   (5) 

where dT  and aT  are load balancing task deadline and load balancing task arrival time, respectively. The smaller 

the calculation result of Eq. (5), the higher the priority of the corresponding load balancing task. 
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The computing power required by the cloud computing platform to perform the load balancing task is expressed 
in equation (6): 

 /i ls s P  (6) 

where: iS  is the cloud computing platform execution load function, and lS  is the load balancing task length. 

Calculate the average CPU resource, average memory resource, and average bandwidth resource of all load 
balancing tasks within the load balancing task set, and compare the information of each load balancing task. When 
the CPU resource required by a load balancing task is greater than or equal to the average CPU resource, it 
means that the task is a CPU-intensive type. When the CPU resources required for the load balancing task are less 
than the average CPU resources and the load balancing task memory resources are greater than or equal to the 
average memory resources, the task is memory intensive. When the load balancing task memory is less than the 
average memory and the bandwidth resource is greater than the average bandwidth resource, the task is network 
bandwidth intensive. 

The current load of the cloud computing platform node is denoted by jL , which is calculated as in equation (7): 

 1 1 2 2 3 3 4 4 5 5jL w r w r w r w r w r      (7) 

where: 1r  and 2r  are the available CPU and bandwidth resources, 3r  and 4r  are the available memory 

resources and the task queue, 5r  is the response time of executing the task, and iw  is the corresponding weight 

of each task. 
In order to ensure that the quality of service of network load balancing tasks performed by the cloud computing 

platform meets user requirements, the load balancing tasks should be completed within the specified time. When 
creating the virtual machine of the cloud computing platform corresponding to the load balancing task, the CPU 
resources of the cloud computing node are considered first, and then the memory and bandwidth resources of the 
cloud computing node are considered. 

The VM resources set for network load balancing task i  need to satisfy the constraints as in equation (8): 
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where: t  is the waiting time of the task in the network load balancing task queue. 1v  and 2v  are the CPU 

resources and memory resources of the virtual machines in the cloud computing, respectively. 3v  is the 

bandwidth resource of the virtual machine in the cloud computing platform. The type of the virtual machine created 
by the cloud computing platform needs to be the same as the type of the load balancing task. 

 
III. B. Cloud Network Migration Virtual Machine Selection 
The upper and lower thresholds of the servers within the cloud computing network are max , min . VM migration is 

triggered when the predicted server load value appears to be greater than max  or less than min  for 2 

consecutive cycles. Considering the shortest VM migration time and the minimum migration amount together, the 
migration target VM set selection model is established, expressed as equation (9): 
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where: x̂  is the predicted value of the j th server load within the cloud computing network. v  is the amount of 

resources occupied by virtual machine v . V  is the set of virtual machines within the cloud computing network. 
S  is a subset of VMs to be migrated within V . sT  is the VM migration time, and vT  is the migration time of v  

in equation (10): 
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where: vZ  is the memory occupied by v . vN  is the available bandwidth of v , and sT  is the sum of all vT . 

The set of target VMs R  to be migrated can be determined by solving Eq. (9) using genetic algorithm as 
follows: 

Step 1 Generate an initial population M  while solving for the fitness of each chromosome, if the fitness f  of a 
chromosome is the optimal solution, then return the chromosome for which the optimal solution exists and continue 
to Step 6. 

Step 2 Select any 2 chromosomes within M  and perform crossover. 
Step 3 Solve for the f  value of the 2 chromosomes after the crossover operation, if 1 of the chromosomes is 

already the optimal solution, then return to the chromosome where the optimal solution exists, and continue to step 
6. Conversely, select the 2 chromosomes with the maximal f  corresponding to the chromosomes before and 
after the crossover, and perform a mutation operation on them. 

Step 4 Solve for the f  value of the mutated chromosomes, and if 1 of the chromosomes is already the optimal 
solution, then return to the chromosomes before and after the mutation crossover and select the 2 chromosomes 
corresponding to the largest f  within the chromosomes and store them into the new population. 

Step 5 Repeat steps 2-step 4 until the chromosome corresponding to the largest f  is obtained. 
Step 6 Output the solution result of Eq. (10), i.e., the set of target VMs R  to be migrated. 
 

III. C. Target Server Selection for Cloud Computing Networks 
After determining the target set of VMs R  to be migrated, it is necessary to select the target server. Using the 
maximum remaining capacity as the selection strategy, the target server is selected and the conditions it needs to 
fulfill are: 

(1) The target server can provide sufficient resources for R . 
(2) Avoid secondary migration as much as possible to reduce the number of VM migrations. 
Based on the above selection strategy, the target server can be selected to minimize the number of VM 

migrations with energy effect and improve the resource utilization. 

IV. Testing and Evaluation of Network Load Balancing Models 
In order to validate the effectiveness of the modeling algorithms proposed above, this section launches 
experiments on runtime performance, throughput rate and average waiting time, and convergence performance. 
 
IV. A. Operational performance 
In order to verify the performance of the algorithm, this section utilizes open-source cloud computing simulation 
software to simulate a distributed cloud computing network environment, and conducts data sampling on the 
software's own PlanetLab platform to test and verify the overall performance of the algorithm in this paper and 
compare it with a representative algorithm for load balancing in cloud computing networks (K). First, no less than 
25 heterogeneous physical host nodes (CPU processing power (MIPS) {1000,1800,2600,3000}, memory (G) 
{1,2,4,8}, bandwidth (Mb/s) {500,700,1000}) are selected for the experiments, and each physical node is 
configured with 3-5 virtual computing nodes respectively (CPU processing power (MIPS) {200, 
500,1000,1500,2500}, memory (G) {0.5,1,2,3}, bandwidth (Mb/s) {100,200,500}), simulate to build a distributed 
cloud computing network environment and simulate the operation of the cloud computing system driven by 
different types of cloud tasks and different sizes of service data, and utilize the algorithm in the paper to perform the 
system DLB operation. Statistics of the average response time of the system, analysis of virtual machine migration 
and node utilization, and algorithm comparison results are shown in Fig. 1 and Fig. 2. 

 

Figure 1: Average system response time under different cloud task conditions 
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Figure 2: The average system response time under different test times 

As can be seen from the figure, on the one hand, this paper's algorithm has better adaptability to different cloud 
computing task types, the average response time of the system has been significantly reduced, the algorithm is 
running in a stable state, and the system has shown good load balancing performance in the initial stage of testing. 
On the other hand, as the number of tests increases, the feedback adjustment optimization effectiveness of this 
paper's algorithm is more obvious, compared with the K algorithm, the average response time of the system is not 
only optimized by more than 30%, but also tends to be smoother, and the overall performance of the cloud 
computing load balancing system has been greatly improved. 

 
IV. B. Throughput rate and average waiting time 
The experimental results of throughput rate of the designed dynamic load balancing algorithm are shown in Fig. 3, 
and the experimental results of the average customer waiting time are shown in Fig. 4. From the figure, we learn 
that the throughput rate of this paper's algorithm fluctuates in the range of 1000~3500, with the mean value of 
about 2644 and the mean variance of about 369. The fluctuation of the average customer waiting time of this 
paper's algorithm fluctuates in the range of 271~701s, with the mean value of about 387 and the mean variance of 
60. 

Combining data and images: the throughput rate and average customer waiting time fluctuation range up and 
down is small. The overall mean square deviation of the performance of the three web servers is around 369, with 
only one pulse fluctuation, which indicates that the performance of the three servers did not differ too much 
throughout the experiment, so the results received by the clients show the same float, and the method maintains a 
mean square deviation of around 369 with good stability, without the occurrence of a certain server being 
overloaded at a certain point of time, while the other one server is idle. The mean squared deviation of both the 
throughput rate and the average client waiting time is slightly lower than that of the static load balancing algorithm, 
indicating that the minimum response time algorithm has higher stability. 

Overall, the method proposed in this paper has better stability and can distribute load to back-end servers better, 
but its accuracy is affected by the back-end performance index, so it is necessary to monitor the back-end index in 
real time. 

 

Figure 3: Throughput change 
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Figure 4: Average customer waiting time changes 

IV. C. Convergence performance 
This section evaluates the convergence performance of this paper's model algorithm and the DTORS algorithm. 
Figure 5 represents the variation of load migration with the number of samples V for this paper's model algorithm 
for different iteration stopping criterion ϵ. When ϵ is larger, the load migration can converge with fewer number of 
samples, but converges to a higher load migration. If a smaller ϵ is used, the algorithm needs to sample more 
random variables from the multivariate Gaussian distribution to recover the computational migration decision. For 
example, when ϵ = 10-1, load migration can converge to a stable value after 108 samples. When ϵ = 10-2, at least 
140 samples are needed to converge to a stable load migration. However, too small an ϵ increases the number of 
times the algorithm samples and the iteration time for each sample, so the ϵ of the modeling algorithm in this paper 
is set to 10-2. 

 

Figure 5: The load migrating v.s.stopping criterion ϵ in textual algorithm 

Figures 6 and 7 simulate the load migration convergence of the DTORS algorithm for different learning rates ϵ 
and batch training sizes M, respectively. It can be seen that the DTORS algorithm can converge to a stable value 
with different learning rates and batch training sizes. However, a learning rate that is too large or too small leads to 
higher volatility and convergence to higher load migration. Therefore, the learning rate is set to 10-5. Fig. 7 shows 
the convergence performance at three batch training sizes. When the batch training size is 128, the DTORS 
algorithm converges to higher load migration. When the batch training size is 512, the DTORS algorithm converges 
at a lower rate than when M = 256. Therefore, the batch training size of the DRORS algorithm is set to 256. 

In summary, it can be seen that the DRORS algorithm learning rate (10-5) is lower than the model algorithm (10-2) 
in this paper. 
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Figure 6: The load migrating v.s. stopping criterion ϵ in DTORS algorithm 

 

Figure 7: The load migrating v.s.stopping criterion ϵ in DTORS algorithm 

V. Conclusion 
Aiming at the problem of cloud computing network load imbalance, this paper proposes a cloud computing network 
load balancing model. The model optimizes network load balancing by real-time mining and exploring and 
identifying transmission data to reduce the probability of communication channel node queue stacking problems 
during transmission. It also utilizes cloud computing technology to migrate virtual machines online to achieve 
dynamic load balancing and control. 

The designed model algorithm optimizes the average response time of the system by more than 30% and tends 
to be smooth, the throughput rate fluctuates in the range of 1000~3500 with an average variance of about 369, and 
the average waiting time of the customers fluctuates in the range of 271~701s with an average variance of 60. 
Compared with similar algorithms, it not only converges under different coefficient parameters but also achieves 
the near-optimal load migration Cost. By optimizing the dynamic balancing control of cloud computing network load, 
the effectiveness and real-time information in the cloud computing communication network are guaranteed. 
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