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Abstract Lane line detection is a key technology to realize autonomous driving, which is a fundamental and 
challenging task in autonomous driving. In this paper, a semantic segmentation algorithm for lane lines based on 
multi-scale deep feature fusion is proposed. By analyzing the spatial structural properties of continuous elongated 
lane lines, we design a multimorphic CASPP module, which combines the mutual quality null rate with 1D 
convolutional branching to enhance the context-awareness of elongated linear features. The DeepLab-ERFC model 
is further constructed to introduce the enhanced boundary learning of ER Loss based on Hausdorff distance, 
combined with dynamic gradient correction to alleviate the category imbalance problem, and optimize the prediction 
boundary using the post-processing of fully-connected CRFs. Experiments on TuSimple, VPG and tvtLANE 
datasets show that the model significantly outperforms mainstream methods in both accuracy and speed, with 
average intersection and merger ratios of mIoU reaching 64.62%, 68.79% and 64.62%, respectively, which is an 
improvement of 2.12-8.31 percentage points over models such as DANet and PSPNet. In terms of real-time, the 
inference speed reaches 89.34 FPS, which is more than 2.6 times higher than the comparison model. The ablation 
experiment verifies the effectiveness of the multi-module synergistic optimization, with the CASPP module 
increasing the mIoU by 5.75%, the ER Loss with gradient correction by a further 6.86%, and the CRFs post-
processing finally pushing the mIoU to 64.62%. Under extreme scenarios (e.g., sudden changes in tunnel light, 
vehicle occlusion, rain and snow interference), the average accuracy of the model improves by 3.8-21.3 percentage 
points over the suboptimal method, demonstrating strong robustness. The model constructed in the article 
significantly improves the accuracy, stability and real-time performance of lane line detection, thus realizing safer 
and more efficient autonomous driving technology. 
 
Index Terms multi-scale deep feature fusion, lane line detection, semantic segmentation algorithm, CASPP module, 
ER Loss 

I. Introduction 
Lane lines, as key traffic signs on the road, assume the important roles of dividing lanes, indicating the direction of 
travel, and providing navigation for pedestrians, which are crucial to ensure the safe driving of motor vehicles [1]. 
In the field of intelligent driving, lane line detection, as one of the core technologies, is widely used in advanced 
assisted driving systems (ADAS) to realize the functions of lane departure warning, lane keeping assistance, and 
forward collision warning [2]-[4]. However, in real-world driving environments, lane lines may be missing or 
discontinuous due to long-term wear and tear, occlusion by pedestrians and vehicles, and their visibility is also 
affected by a variety of factors such as climate, lighting, road shadows, and wear and tear of the lane lines 
themselves [5]. In addition, the lane line detection task also needs to meet the real-time requirements, which brings 
many challenges to the lane line detection technology. 

In the environment sensing system of autonomous driving, realizing fast and accurate lane line detection is crucial 
to ensure the safe and reliable driving of autonomous vehicles. There are many existing lane detection methods, 
including computer vision methods based on camera sensors, three-dimensional information acquisition methods 
based on LiDAR, and GPS methods [6]-[9]. In recent years, given that computer vision methods have advantages 
such as low cost, high adaptability and good real-time performance, they have been widely used in lane line 
detection tasks such as highways and urban roads [10]. Meanwhile, through the subsequent development of 
computer technology, the optimization from the perspective of computer vision algorithms can help to further 
improve the accuracy and real-time performance of lane line detection technology. 

Techniques are widely used before lane lines, for example, traditional image processing methods such as the 
Hough transform are the main methods for dealing with lane line detection [11]. For example, Bi W et al [12] 
proposed a color edge road lane line extraction algorithm based on quaternion Hardy filter, which first inputs a color 
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road image, followed by a quaternion Hardy filter based edge enhancement method to get a smooth road image, 
then a color gradient detector is used to record the edges, and finally the lane lines are extracted by combining with 
the Hough transform. Huang, Q and Liu, J [13] pointed out that the traditional current lane detection algorithm based 
on Hough transform has certain defects in challenging scenarios such as different lighting conditions, and thus the 
Hough transform algorithm needs to be improved. Subsequently, the key feature information is refined by an 
adaptive algorithm, and finally the Hough transform algorithm is utilized to effectively detect the location of lane lines 
[14]. Wei, Y and Xu, M [15] improved the lane line detection method of Hough transform by replacing the Canny 
operator with the Robert operator, this move reduces the detection time and improves the real-time detection 
performance, which improves the safety and efficiency of self-driving cars to some extent. Javeed, M. A et al [16] 
proposed a fast Hough transform method based on ossu thresholding and canny edge detection aiming at high lane 
detection accuracy for autonomous vehicles. In addition, Tian, J et al [17] proposed a lane line detection and tracking 
technique for ADAS that incorporates a line segment detector (LSD), an adaptive angle filter, and a dual Kalman 
filtering system, focusing on analyzing the limitations of the traditional lane line detection techniques and pointing 
out that these techniques are usually effective only under specific environmental conditions, which is rooted in the 
lack of complex and dynamic scene and dynamic scenarios. In general, traditional lane line detection methods 
usually have good detection results on well-lit highways with clear lane lines and fewer vehicles. However, the lane 
line features are easily interfered by external complex environmental factors and have poor robustness. Moreover, 
the model is complex and computationally intensive, which affects the real-time lane line detection. It can be seen 
that the traditional lane line detection methods are difficult to cope with the current increasingly complex and 
changing road scenes. 

With the continuous improvement of computer arithmetic power and datasets, more and more semantic 
segmentation algorithms based on deep learning come into being, and they have gained significant progress in 
segmentation accuracy and speed, and semantic segmentation has achieved extraordinary performance on many 
datasets, which has greatly contributed to the improvement of lane line detection accuracy [18]-[20]. For example, 
Chougule, S et al [21] considered the lane line detection and classification problem as a convolutional neural 
network (CNN) regression task, and designed their network to classify only a few points on the lane line boundary 
at the pixel level and output parameterized lane line boundaries in the form of image coordinates.This approach 
eliminates the stringent criterion for correctly classifying each pixel point, and improves the segmentation of lane 
line boundary Accuracy. Yousri, R et al [22] proposed a benchmarking framework for lane detection in complex 
dynamic road scenes, which combines computer vision techniques with deep learning, and it demonstrated high 
performance in a variety of complex scenes and lighting conditions. Zou Q et al [23] utilized the inter-frame 
relationship of continuous images to effectively integrate CNN and recurrent neural network (RNN) to construct an 
end-to-end network structure, which effectively improves the robustness of off-road lane detection for complex roads 
without reducing the detection speed. Al Mamun, A et al [24] proposed a deep learning instance segmentation 
method based on the U-net framework and the VGG16 architecture, aiming to improve the segmentation accuracy 
of lane markings under various environmental conditions. Overall, deep learning-based lane line detection methods 
can automatically learn features and perceive road scenes well without complex pre-processing and post-
processing operations. However, under complex road conditions such as lane line degradation or occlusion, lane 
line detection is easily interfered by various external factors, resulting in weak model generalization ability and 
inadequate or inaccurate extraction of lane line features. Meanwhile, the currently proposed deep learning-based 
lane line detection model generally has a large number of parameters and high complexity, which is not conducive 
to real-time lane line detection. Therefore, further optimization is needed. 

In this paper, a semantic segmentation algorithm based on multi-scale deep feature fusion is proposed for the 
lane line detection task. Lane line detection can be regarded as a special image semantic segmentation task, the 
core of which is to make full use of the inherent spatial structure features of lane lines. The article first starts from 
the geometric properties of lane lines and analyzes their continuous slender linear structure. By decomposing the 
image coordinate system into x-axis and y-axis, the probabilistic correlation model of lane lines in the row direction 
and column direction is established respectively. The model shows that whether a pixel belongs to a lane line or not 
is closely related to the pixel states of its neighboring rows or columns. Then the polymorphic CASPP module is 
proposed. By extending the subregion aggregation of feature descriptors (maximum and global average pooling), 
the contextual information utilization is improved. And one-dimensional convolutional branching is introduced to 
adapt the linear structure of lane lines. Finally, the checkerboard effect is mitigated by adopting mutual mass null 
rate. Based on CASPP module, DeepLAB-ERFC model is constructed to balance the computational efficiency and 
feature extraction capability by combining void convolution and depth-separable convolution through encoding-
decoding architecture. Two key improvements, ER Loss and Gradient Correction, are further proposed: the 
boundary loss based on Hausdorff distance (ER Loss) is introduced to strengthen the boundary learning, and the 
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category weights are dynamically adjusted in conjunction with the ratio of labeled area to alleviate the category 
imbalance problem. Fully Connected Conditional Random Fields (CRFs): fully connected CRFs are introduced in 
the decoding stage, modeling the inter-pixel position and color relationship by Gaussian kernel function, eliminating 
voids in the prediction results and refining the boundaries. 

II. Lane line semantic segmentation algorithm based on multi-scale deep feature fusion 
II. A. Spatial structure of lane lines 
For a lane line, its shape and its texture structure are roughly a continuous thin straight line or nearly straight line. 
In the lane line detection task, this inherent shape-structure feature of the lane line itself can be fully utilized as an 
a priori information. The lane line detection method in this paper is based on a semantic segmentation approach, 
which treats the lane line detection task in an image as a special kind of image semantic segmentation task. 

Specifically, given an image to be detected, the goal is to determine whether each pixel in the image belongs to 
a lane pixel. In this paper, the horizontal and vertical directions of the image are taken as the x-axis and y-axis under 
the image coordinate system, respectively. 

For the representation of lane line pixels ( , )x y , this paper uses a lane line structure representation similar to 

FastDraw. From the y-axis direction, a continuous lane line can be represented by a series of consecutive sets of 
pixel points 1 1 1 2 2 2{ ( , ), ( , ),..., ( , )}n n nR r x y r x y r x y     constitute. ( )nP r  denotes the probability that a pixel point 

nr  belongs to a lane line pixel, then ( )nP r  can be expressed as: 
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According to Equation (1), the probability that a pixel point in the i th row belongs to a lane line pixel is associated 

with the probability distribution of pixel points in the previous 1i   rows. Similarly, a continuous lane line viewed 
from the x-axis direction can consist of a series of consecutive sets of pixel points 

1 1 1 2 2 2{ ( , ), ( , ), , ( , )}n n nC c x y c x y c x y      constitutes. ( )nP c  denotes the probability that pixel point r belongs 

to a lane line pixel, then ( )nP c  can be expressed as: 

 
1

1 1
1

( ) ( ) ( | )
n

n j j
j

P c P c P c c





   (2) 

According to Eq. (2), the probability that a pixel point in the j th column belongs to a lane line pixel is correlated 
with the probability distribution of the pixel points in the first 1j  th column. 

Based on the above analysis of the lane line structural feature representation, the spatial structural features of 
the lane lines in the image can be roughly analyzed here. For the i th row pixel point, whether it belongs to the lane 
line pixel point or not is related to the state of its previous 1i  th row pixel point. Similarly, for the j th column pixel, 
whether it belongs to the lane line pixel point is related to the state of its previous 1j   th column pixel point. 
Therefore, this spatial structural feature of lane lines can be fully utilized as a kind of spatial information in the neural 
network structure module. 

 
II. B. CASPP, an improved polymorphic module based on ASPP 
Based on the modeling and analysis of the spatial structure of lane lines, this paper finds that the traditional ASPP 
module has significant defects in capturing the elongated morphology of lane lines. For this reason, this section 
proposes a polymorphic CASPP module, which incorporates the spatial a priori information of lane lines into the 
multi-scale feature extraction process by improving the feature aggregation method with the introduction of one-
dimensional convolutional branches. 

Deep convolutional neural networks generally obtain a larger receptive field by downsampling operation, but at 
the same time reduce the resolution of the feature maps, which leads to the loss of detailed information in the 
image.The Deeplab series uses dilated convolution to obtain a larger receptive field while maintaining the resolution 
of the image, and further proposes the ASPP module to incorporate the multiscale information.The structure of the 
ASPP is shown in Fig. 1. 
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Figure 1: ASPP structure 

ASPP operates on a given input with null convolution at different sampling rates, i.e., capturing the contextual 
information of the image at different scales. Finally fusing this multi-scale information generates the final result. The 
module constructs convolution kernels with different receptive fields by different null rates, which are used to acquire 
multi-scale object information. 

The aim of ASPP is to extract multi-scale objects through parallel null convolution, which has been proved to be 
effective by the Deeplab series of articles, but there are still some problems in lane line detection: 

(1) While it is true that convolution with different null rates can increase the sensing field, it is also true that only 
a fraction of the pixels can be sensed, and the sampling is not dense. Specifically, for the ASPP structure shown in 
Fig. 1, assuming that the input ASPP feature map X , with a size of H × W × C, can be regarded as H × W C -
dimensional descriptors, then the feature descriptors used in the ASPP structure are only 3 × 3 × 3-2 = 25. For 
feature map X , the total number of descriptors is much larger than this. Assuming that the size of feature map X  
is 64×64, the total number of descriptors is 4096, from which we can calculate the proportion of descriptors used 
by the ASPP structure is 25/4096≈0.0061, which means that the utilization rate of descriptors is only 0.61%. 

(2) The receptive field is a circular Gaussian kernel that resembles outward diffusion, and its shape does not 
match the rectangular shape of the image or the linear shape of the lane lines, making it less efficient. 

For Problem 1, this paper will draw on the paper's solution. As shown in Fig. 2 expanding the description sub-
region. Unlike ASPP which only considers 25 feature descriptors, this paper will consider subregions of the 25 
original descriptors, with the size of the subregion set to k × k. An aggregation operation is performed on each 
subregion in the feature map X, and each subregion is aggregated into a new descriptor. This still results in 25 
feature descriptors, but more contextual information is obtained for each feature descriptor. There are various ways 
of aggregation, and in this paper, we chose to conflate the maximum value and the global mean. In addition, in 
order to avoid the checkerboard effect caused by the null convolution, the null rate is set to mutually prime numbers 
such as 3, 5, 9, and 17. 

Setting the null rate to 3 and 5 is used to capture smaller target features, and 9 and 17 are used to learn larger 
target features. 

 

Figure 2: Expanded descriptor region 
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For Problem 2, considering the elongated shape of lane lines, this paper will add branching structure to the 
improved ASPP module. The branching structure consists of one-dimensional convolutional operations, and the 
corresponding convolutional kernel sizes are 3 × 1 and 1 × 3. The purpose is to allow the network to learn the lane 
line information better. 

Based on the above ideas, this section introduces the ASPP module and improves it into a polymorphic CASPP 
module. After getting the feature maps at different scales it is also necessary to perform fusion processing on these 
feature maps. To this end, the following operations are carried out in this section: first, the collapsed feature maps 
are subjected to global average pooling operation to model the feature maps at different scales, and then the weights 
of the feature maps at different scales are obtained by passing them through 1 × 1 convolutional layers, layer 
normalization, activation function, and 1 × 1 convolutional layers, and then the corresponding elements are summed 
up by using the broadcasting mechanism, and the output is the final feature map of the CASPP module map. 

 
II. C. DeepLAB-ERFC 
The design of CASPP module provides a foundation for multi-scale fusion of lane line features. In order to further 
improve the boundary learning ability and prediction accuracy of the model, this section proposes the DeepLAB-
ERFC model, which combines a novel loss function and post-processing strategy to construct a complete semantic 
segmentation framework for lane lines. 
 
II. C. 1) Model structure 
The DeepLab-ERFC model structure is shown in Fig. 3. Inspired by the Fusion Lane model, Deep Lab-ERFC uses 
a simple and effective encoding-decoding structure: in the encoding phase, it uses the cavity convolution instead of 
the traditional convolution in ResNet-101, which enhances the sense field of convolutional computation. Then the 
ASPP module based on Depth wise Separable Convolution is used to perform different number of convolution 
operations on the same feature map, which on the one hand enhances the ability of extracting semantic features at 
different levels, and on the other hand reduces the complexity of convolutional computation; in the decoding stage, 
both low-level features containing target details and high-level features containing deep semantic information are 
used to enhance the model on the original size. In the decoding stage, both low-level features containing target 
details and high-level features containing deeper semantic information are used to enhance the details of the 
model's prediction results at the original size, and finally reduced to the same size as the input image by up-sampling. 
During model training, both CELoss and ERLoss are used to weight the final training loss. The prediction accuracy 
of the model is further improved by calculating Fully-Connected CRFs before the final prediction results are output. 
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Figure 3: Model Structure of DeepLab-ERFC 

II. C. 2) ER Loss and Gradient Correction 
CELoss is a loss function commonly used to train semantic segmentation models, which can efficiently estimate the 
degree of similarity between two sets through the matrix operation of cross entropy, but given the geometric 
characteristics of thin and narrow lane lines, the model should be trained with an appropriate tendency to learn 
predictions for boundaries as well as harder-to-train categories. For this reason, this subsection proposes the use 
of ERLoss and a gradient correction method based on labeled area. 

(1) ERLoss 
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ERLoss is a boundary loss function for estimating the Hausdorff distance (HD), which has the advantage of being 
less computationally intensive. Firstly, the prediction segmentation matrix is defined as p   and the true 
segmentation matrix is defined as g , and their value domains are both [0, 1], where the part of pixels with value 0 
is the background and the part of pixels with value 1 is the detection target. Therefore, the part of the sum matrix of 
the two segmentation matrices with the value of 1 is the non-overlapping part, defined as p g . ERLoss proposes 
to perform an erosion operation on the non-overlapping part of the predicted and true labels, and to use the radius 
of the structural element E  that can completely erode out the part, r , as an approximate estimation of the HD. 
The corrosion operation for a target O  on the grid G  is defined as shown in equation (3). 

 ( , ) { | ( , ) }ER O r p G B p r O    (3) 

where ( , )B p r  denotes the structural element B  whose midpoint is at pixel p  and has radius r . Finally, the 
ERLoss is defined using the form of relaxation loss function as shown in equation (4). 

 2

1

1
( , ) ( (( ) , ) )

| |

R

ER
G r

Loss p g ER p g r r
G





   (4) 

where the parameter   determines the degree of correction for larger segmentation errors and is set to 2.0 by 
default. 

(2) Gradient correction 
Inspired by the MaxSquare model that uses the pixel frequency of each category for gradient correction, this 

subsection proposes a gradient correction method based on the area ratio of each category in the dataset 
annotation. First, the average labeled area cA  with the area of each category in each image as the basic statistic 

is calculated based on the coordinates of the boundary points of each category provided in the dataset annotation 
file, and then the mapping ratio of each category is calculated based on the largest area maxA  and the smallest 

area minA , and finally, based on the ratio of the The value domain of the weights of each category during training 

is limited to max[1, ]W . The final formula for the corresponding weights of each category is shown in equation (5). 

 max
max min

max min

1
( )c c

W
w W A A

A A


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
 (5) 

In the actual training, this subsection also uses the commonly used CELoss and applies the cw  calculated in 

Eq. (5) to this loss function, and the final complete loss function is defined as shown in Eq. (6). 
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1
( (1 ) ( , )) ( , )

| |

C

c ER CE ER ER
c

Loss w w Loss p g w Loss p g
C 

      (6) 

where ERw  denotes the weight of ERLoss in the calculation of the loss function. Considering that in the process of 

learning the boundaries by the reinforcement model, the boundaries of each category are mutually influential, the 
gradient correction of each category is not applied to the ERLoss. 
 
II. C. 3) Fully-Connected CRFs 
In modern DCNNs architectures, the commonly used Conditional Random Fields (CRFs) are mainly classified into 
two categories: short-range CRFs, which are used for smoothing the target boundary; and local-range CRFs, which 
can obtain more detailed information about the boundary, but still lose some fine structures. This subsection uses 
a more effective method to recover the details of the target boundary, Fully-ConnectedCRFs, which defines an 
energy function as shown in Equation (7). 

 
,

( ) ( ( ) ( , ))i i ij i j
i j j i

E x x x x 


    (7) 

where x  denotes all pixels in the annotation, and the connection between pixels is divided into two cases: one is 
the self-connection of pixels, denoted as ( ) log ( )i i ix P x   , where ( )iP x  is the classification probability of pixel 

i   computed by DCNN; The other is the connection between different pixels, denoted by 

1

( , ) ( ( , ))
K

ij i j c c i j
c

x x w k f f


  , where K  denotes the number of categories, cw  denotes the weights set on the 
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Gaussian kernel function, and if  denotes the features extracted at pixel i . In the update strategy proposed in the 

article, CRFs processing is used in the prediction results after performing Softmax and only one category is 
computed at a time, so ( ) 1iP x    and 2K   . The Gaussian kernel function ck   integrates the positional 

relationship as well as the color intensity and is defined as shown in equation (8). 

 
2 2 2

1 22 2 2

|| || || || || ||
( ) ( )

2 2 2

i j i j i jp p l l p p
w exp w exp

    

  
    (8) 

where p   denotes the pixel position, I   denotes the color intensity, and the domain of the Gaussian kernel is 

regulated by the parameters ,    and  , respectively. From the factors affecting the two Gaussian kernels in 

Eq. the first kernel considers inter-pixel position and color intensity, while the second kernel only considers pixel 
position, i.e., position information plays a major role in ck . 

III. Experimental validation of lane line semantic segmentation algorithm and analysis of 
multimorphic feature fusion 

The multimorphic CASPP module and DeepLab-ERFC model proposed in Chapter 2 provide a theoretical 
framework for semantic segmentation of lane lines by fusing multiscale features and boundary optimization 
strategies. To verify its effectiveness, Chapter 3 launches experiments based on three types of datasets, TuSimple, 
VPG and tvtLANE, to systematically evaluate the practical application value of the algorithms, from the basic 
performance comparison, the robustness analysis of complex scenarios to the module ablation study. 
 
III. A. Experimental setup 
III. A. 1) Data sets 
The dataset used in this thesis research work is constructed based on the TuSimple lane dataset.The TuSimple 
lane dataset, whose main collection area is on a foreign highway, is filmed in an angle direction that is close to the 
direction of the car's travel, and consists of 4,172 video clips for the training set and 3,226 video clips for the test 
set. Each video clip contains 20 consecutive frames collected within one second. For each video clip the last frame, 
i.e., the 20th image carries an annotation. The lane lines are labeled with points, and each line is actually a collection 
of coordinates of a sequence of points rather than a collection of regions. 

The VPG dataset has a total of 22674 images with a resolution of 1288×728, of which 15872 are in the training 
set and 6802 are in the test set. In order to speed up the training process, the experiments in this section reduce 
the image resolution to 640×480 and extract 1500 images from the original dataset as the dataset used for the 
experiments, and according to the division ratio of 7:3, we get the specific number of training set and test set divided 
into 1050 and 450. The six categories of white solid lines, white dashed lines, double yellow lines, yellow solid lines, 
stop lines, and crosswalks, which appear most frequently in the traffic scene, are selected as segmentation targets 
for the experiment. 

The tvtLANE dataset: the TuSimple lane dataset is newly added to the TuSimple lane dataset, which consists of 
1308 sequences of rural driving scenarios collected in China, constructed from 10 challenging driving situations, for 
robustness evaluation. 

 
III. A. 2) Experimental parameterization 
In the experiments, the lane detection images were sampled with a resolution of 256 × 128.The lane line detection 
experiments were performed on a processor AMD Ryzen 5 3550H 2.10 GHz computer, developed using Python 
3.5. The optimizer was selected ADAM, the initial learning rate was set to 5e-4, the momentum parameter 0.9, and 
the data precision type was FP32/FP16. 
 
III. A. 3) epoch and Batch_Size settings 
Suitable epoch and Batch_Size settings are the basis of network training. epoch needs to be decided according to 
the training sample size, generally speaking epoch obtained too small will lead to underfitting, too large will lead to 
overfitting. For the training data, the epochs reach basic stability at 100 iterations, and the training loss is shown in 
Figure 4. 
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Figure 4: Loss training 

Batch_Size has an impact in terms of model convergence speed, generalization ability, and stochastic gradient 
noise. Because the batch data is too small, resulting in insufficient input data for the network, if the parameters of 
the network are adjusted only for a few features, it will lead to a slower convergence speed of the model. A large 
amount of batch data not only generates gradient noise, but also occupies a large amount of computational space, 
thus affecting the learning effect of the model. When epoch is set to 100, the model training process performs well 
when Batch_Size is set to 16 according to the amount of training data. 

 
III. A. 4) Performance evaluation indicators 
In this paper, we adopt the average intersection and merger ratio mIoU, which is the most commonly used in 
semantic segmentation, as a metric to judge the accuracy of segmentation, and the number of frames per second 
transmitted as a metric to measure the speed of segmentation. The formula for mIoU can be expressed as: 

 
0

1 K
TP

FN FP TPi

T
mIoU

K F F T


   (9) 

where, TTP denotes a true example, FFP denotes a false positive example, FFN denotes a false negative example, 
and K denotes the number of categories. 
The calculation of FPS starts from the uploading of the image to the GPU and the calculation formula can be 
expressed as: 

 

1

n

i
i

n
FPS

t




  (10) 

where, n denotes the number of predicted image sheets and ti denotes the time used to predict the ith sheet. 
FLOPS: Floating point operations per second, which is used to measure the performance of the computing device, 

is used to measure the computational complexity of the algorithm or model. 
To better evaluate the performance of the proposed method, the model is quantitatively evaluated using Accuracy, 

Precision, Recall and F1-measure. 
 

III. B. Comparative Experiments 
On the basis of completing the experimental parameter settings and dataset preprocessing, this section verifies the 
comprehensive advantages of DeepLab-ERFC in terms of accuracy, speed and adaptability to complex scenes by 
comparing the performance of mainstream models, such as DANet and PSPNet, on the Tusimple, VPG and tvtLANE 
datasets. 
 
III. B. 1) Comparison experiments on the Tusimple dataset 
In order to illustrate the accuracy and timeliness of the lane line segmentation network designed in this paper, 
compared with other mainstream semantic segmentation networks on the Tusimple dataset, this subsection 
conducts comparative experiments with the same experimental parameters for the current mainstream 
segmentation networks replicated with the specific models of DANet, PSPNet, and DeeplabV3plus. The quantitative 
comparison results of the experiments on the Tusimple the quantitative comparison results of the experiments on 
the dataset are shown in Fig. 5 and Table 1, respectively. 
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Figure 5: The MIoU performance of each model on the Tusimple dataset 

Table 1: Comparative experimental results on Tusimple 

 DANet PSPNet DeeplabV3plus DeepLab-ERFC 

FLPOs(G) 199.67 176.51 175.32 206.11 

FPS(frame/s) 27.08 33.52 26.78 89.34 

#params(M) 50.88 48.55 45.63 55.84 

 
On the Tusimple dataset, the DeepLab-ERFC model proposed in this paper shows significant advantages in all 

the metrics. In terms of segmentation accuracy, its average mIoU reaches 64.62%, which is 2.12, 6.75 and 6.15 
percentage points higher than the comparison models DANet's 62.50%, PSPNet's 57.87% and DeeplabV3plus's 
58.47%, respectively. Specifically for different lane line categories, the model's improvement in detecting secondary 
lane lines, such as lane line 1 and lane line 2, is particularly obvious, e.g., the mIoU of lane line 1 is improved from 
48.48% to 52.39% in DANet, indicating that the model enhances the feature extraction capability of the elongated 
structure through the polymorphic CASPP module and the one-dimensional convolutional branching. In terms of 
real-time performance, the FPS of DeepLab-ERFC is as high as 89.34 fps, which is much higher than that of other 
models, such as PSPNet's 33.52 fps, thanks to the efficient computational design of deeply separable convolution 
in the encoding-decoding architecture. Although the model's FLPOs of 206.11G and parametric count of 55.84M 
are slightly higher than the comparison models, it excels in the balance of accuracy and speed, verifying the 
effectiveness of the multi-scale feature fusion and post-processing strategy. 

 
III. B. 2) Comparison experiments on VPG dataset 
In the experiments in the previous section, the types of lane lines were not differentiated, and in order to further 
validate the superiority of the semantic segmentation network of lane lines designed in this chapter and to consider 
the semantic guidance of different types of lane lines for the vehicle assisted driving system to determine the drivable 
area, this section uses the VPG dataset to conduct further tests. Figure 6 shows the results of the comparison 
experiments with the VPG dataset. 

 

Figure 6: Comparative experimental results on VPG 
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In more complex VPG datasets, DeepLab-ERFC's generalization ability is further highlighted. Its average mIoU 
is 68.79%, an improvement of more than 8 percentage points from 60.50% in DANet and 60.48% in DeeplabV3plus. 
In the subdivided lane line category, the mIoU of white solid line and white dashed line reaches 57.86% and 50.81%, 
respectively, which is an improvement of 18.61 and 16.49 percentage points compared with DANet, indicating that 
the reinforcement of boundary learning by ER Loss significantly improves the detection of fine line-like targets. In 
addition, the model's detection accuracy of 80.25% for crosswalk is also better than other methods, which verifies 
the adaptability of multimorphic feature fusion to complex textures. Notably, the detection accuracy of double yellow 
lines (88.26%) is close to that of the background category (99.21%), indicating that the model is more capable of 
modeling regular linear structures.DeepLab-ERFC significantly improves the robustness of semantic segmentation 
of multi-category lane lines by fusing spatial prior information with dynamic gradient correction. 

 
III. B. 3) Comparison experiments on the tvtLANE dataset 
In order to better validate the superiority of the DeepLab-ERFC lane line semantic segmentation algorithm proposed 
in this paper, model performance comparisons are investigated under a number of challenging driving scenarios. 
These challenging scenarios cover a wide range of situations containing severe vehicle occlusion, poor lighting 
conditions (e.g., shadows, dimness), tunnel situations, and dirt road conditions. Even in some extremely difficult 
scenarios, e.g., where the entire lane is completely obscured by cars, other objects, or shadows, and where the 
lane deviates from the structural joints of the roadway, which are difficult for a human being to recognize, the 
proposed model is still able to accurately recognize them.The 10 challenging driving situations are (1): severe 
vehicular obstruction (e.g., large trucks, buses that completely block the lane lines); (2): alternating shadow and 
bright lighting conditions (e.g., alternating shade and direct sunlight covering the lane); (3): dim or low-light 
conditions (e.g., nighttime, dawn, or dusk); (4): dramatic lighting changes in tunnels (sudden changes in light and 
darkness when entering and exiting tunnels); (5): dirt or unpaved roads (lack of a clear lane line or ambiguous 
roadway boundaries); (6): lanes that are completely obstructed (completely covered by other vehicles, obstacles, 
or snow) ; (7): lanes deviating from the structural joints of the road (e.g., ambiguous demarcation between the edge 
of the road and the grass or shoulder); (8): blurred lane lines due to rain or snow (rain washout, snow cover, or 
reflections on slippery surfaces); (9): interference from glare reflections (e.g., reflections on water surfaces, glass, 
or metal surfaces affecting the identification of the lane lines); and (10): road construction or temporary rerouting 
(confusing lane lines, temporary markings overlapping with original markings overlap). 

Table 2 shows the model performance comparison of the 10 scenarios that will be challenging in the tvtLANE 
dataset. 

Table 2: Performance in 10 challenging scenarios(%) 

 
DANet PSPNet DeeplabV3plus DeepLab-ERFC 

Precision F1 Precision F1 Precision F1 Precision F1 

Scene 1 49.85 46.14 45.61 42.13 51.96 50.08 53.46 50.72 

Scene 2 52.49 50.34 58.61 56.51 59.87 57.35 71.38 68.59 

Scene 3 65.94 63.43 55.12 52.81 67.59 65.62 71.32 68.55 

Scene 4 81.85 78.19 74.03 72.49 67.85 64.97 87.14 85.43 

Scene 5 45.98 43.34 62.96 60.97 56.64 55.10 64.37 61.04 

Scene 6 52.38 50.13 69.25 65.60 68.59 66.31 72.35 70.33 

Scene 7 49.11 45.58 39.43 35.72 38.73 36.50 53.94 52.29 

Scene 8 57.42 55.88 52.45 50.52 56.49 53.21 62.67 61.10 

Scene 9 56.41 54.38 73.32 70.24 75.66 73.83 76.94 75.36 

Scene 10 55.71 54.05 75.55 72.04 70.92 68.48 77.32 74.70 

 
The DeepLab-ERFC model shows significant advantages under 10 extreme driving scenarios in the tvtLANE 

dataset. Overall, its average accuracy Precision and F1 scores are higher than those of the comparison models in 
all scenarios, verifying the robustness of the algorithm in complex environments. 

The model performs especially well in scenes with drastic changes in illumination. For example, the Precision of 
Scene 4 (sudden change of light and darkness in the tunnel) reaches 87.14%, which is 5.29, 13.11, and 19.29 
percentage points higher than the 81.85% of DANet, the 74.03% of PSPNet, and the 67.85% of DeeplabV3plus, 
respectively, indicating that the polymorphic CASPP module is effective in capturing sudden changes of illumination 
under the lane line features. In Scene 2 (alternating shadows and brights), the Precision of DeepLab-ERFC is 
71.38%, which is improved by more than 10 percentage points compared with other models, indicating that the 
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enhancement of boundary learning by ER Loss significantly improves the model's ability to adapt to the interference 
of alternating brights and darks. 

In the complex road condition and occlusion scenarios, the Precision of DeepLab-ERFC is 53.46% and 72.35% 
in Scene 1 (severe vehicle occlusion) and Scene 6 (lane completely occluded), respectively, which are 1.5 and 3.76 
percentage points higher than the suboptimal models, thanks to the fusion of global contextual information by the 
encoding-decoding architecture. In addition, in Scenario 7 (lane deviation from roadway joint), both model Precision 
(53.94%) and F1 score (52.29%) are significantly ahead of each other, indicating that the fully-connected CRFs 
effectively refine the prediction results with fuzzy boundaries. 

For Scenario 5 (Dirt or unpaved road), the Precision of DeepLab-ERFC is, 64.37% although it is only 1.41 
percentage points higher than that of PSPNet's 62.96%, but the F1 score (61.04%) still maintains the advantage, 
indicating that the dynamic gradient correction alleviates the problem of category imbalance. In Scenario 9 (glare 
reflective interference) and Scenario 10 (road construction rerouting), the model Precision reaches 76.94% and 
77.32%, respectively, which is improved by 1.28 and 1.77 percentage points compared with the suboptimal model, 
verifying the adaptability of multi-scale feature fusion to temporary marking and reflective interference. 

DeepLab-ERFC maintains the lead in all 10 challenging scenarios, with the average Precision and F1 scores 
improved by 3.8~21.3 percentage points compared with the comparison model, and the advantage is especially 
significant in scenarios with dynamic occlusion, sudden lighting changes and complex boundaries. This is attributed 
to the contextual enhancement of the polymorphic CASPP module, the boundary optimization of ER Loss, and the 
post-processing refinement of fully-connected CRFs, which verifies the practicability and robustness of the algorithm 
in real complex driving environments. 

 
III. C. Ablation experiments 
Comparison experiments show that DeepLab-ERFC outperforms in multiple datasets, but the specific attribution of 
its performance improvement still needs to be further analyzed. To this end, this section decouples the contributions 
of the polymorphic CASPP module, ERLoss and CRFs post-processing layer by layer through ablation experiments 
to reveal the core drivers of the model improvement. 

To validate the effectiveness of each improvement module in the DeepLab-ERFC model, the following groups of 
ablation experiments are designed on the Tusimple dataset, with controlled variables to analyze the effects of the 
polymorphic CASPP module, ERLoss with gradient correction, and fully connected CRFs on the model performance. 
The experiments are divided into 5 parts, (1) Baseline: DeepLabV3 + original architecture (standard ASPP module 
+ cross-entropy loss); (2) Baseline + polymorphic CASPP module (3) Baseline + CASPP + ERLoss; (4) Baseline + 
CASPP + ERLoss + labeled area-based gradient correction (5) Baseline+CASPP+ERLoss+ gradient correction + 
post-processing of fully connected CRFs. Each evaluation index of the ablation experiment is shown in Table 3. 

Table 3: Evaluation indicators of the ablation experiment 

Group Accuracy/% Precision/% F1/% MIoU/% 

Baseline 68.62 71.15 68.58 49.22 

Baseline+CASPP 73.57 77.68 72.49 54.97 

Baseline+CASPP + ERLoss 84.29 85.42 82.85 59.74 

Baseline+CASPP + ERLoss+Gradient correction 90.07 92.41 90.32 61.60 

Baseline+CASPP + ERLoss+Gradient correction+Fully-ConnectedCRFs 97.75 96.45 95.`3 64.62 

 
Table 3 demonstrates the contribution of each improvement module in the DeepLab-ERFC model to the 

performance improvement. The accuracy, precision, F1 score, and average intersection and merger ratio mIoU of 
the baseline model are 68.62%, 71.15%, 68.58%, and 49.22%, respectively. After adding the polymorphic CASPP 
module, the four metrics are significantly improved to 73.57%, 77.68%, 72.49% and 54.97%, indicating that the 
polymorphic CASPP effectively enhances the extraction of elongated lane line features through the reciprocal 
nulling rate and the one-dimensional convolutional branching. After further introduction of ERLoss, the model 
accuracy is 85.42% vs. 59.74% of mIoU is substantially improved, which verifies the enhancement effect of 
boundary loss based on Hausdorff distance on lane line edge learning. On this basis, combined with the gradient 
correction based on labeled area, the model accuracy is improved to 90.07% versus 90.32% for the F1 score, 
indicating that the dynamic gradient correction alleviates the category imbalance problem. Finally, by adding the 
post-processing of fully-connected CRFs, the model metrics reached the optimum, and the mIoU was improved to 
64.62% with an accuracy of 97.75%, indicating that the CRFs significantly optimized the boundary details and global 
consistency of the prediction results by modeling the inter-pixel location and color relationships. The ablation 
experimental data show that the layer-by-layer superposition of the polymorphic CASPP module, ERLoss, gradient 



Research on Semantic Segmentation Algorithm for Lane Lines Based on Multiscale Deep Feature Fusion 

8396 

correction and CRFs post-processing systematically improves the model's adaptability to the semantic 
segmentation task of lane lines. 

IV. Conclusion 
In this paper, a semantic segmentation algorithm based on multi-scale deep feature fusion is proposed for the lane 
line detection task in autonomous driving, which significantly improves the accuracy, real-time performance and 
robustness of lane line detection by systematically improving the network architecture and optimization strategy. 

On TuSimple, VPG and tvtLANE datasets, the average mIoU of the proposed DeepLab-ERFC model reaches 
64.62%, 68.79% and 64.62%, respectively, which is an improvement of 2.12-21.3 percentage points compared with 
the mainstream methods, such as DANet, PSPNet, etc., and the inference speed reaches 89.34 FPS, with the real-
time performance improved by 2.6 times more. Especially in extreme scenarios (e.g., sudden change of tunnel light, 
vehicle occlusion, rain and snow interference), the average accuracy of the model is improved by 3.8~21.3 
percentage points compared with the suboptimal methods, demonstrating strong environmental adaptability. 

The ablation experiments show that the CASPP module improves the model's mIoU by 5.75% on the TuSimple 
dataset, and the introduction of full connectivity condition random field CRFs post-processing effectively eliminates 
voids in the prediction results and refines the boundaries by modeling the inter-pixel position and color relationships. 
The final model achieves an mIoU of 64.62% on the TuSimple dataset, which is a 15.4 percentage point 
improvement over the baseline model. 
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